

A Coding Technique for Spectral Shaping Ultra-Wideband Time Hopping Modulated Signals

J. Jamp and L. Larson, University of California, at San Diego

Motivation

- Ultra-Wideband
 - Bandwidth: > 500MHz, or fractional BW > 20%
 - Frequency allocation: 3.1GHz-10.6GHz
 - Power spectrum density limited: -41.25 dBm/MHz
 - Many narrow-band interferers
 - 5GHz UNII band (802.11a, cordless telephones)
 - Airport and Marine Radars
 WiMAX

 - Signal generation: Impulse (Gaussian Monopulse), DSSS, Spectral Encoding, etc.

Motivation for Interference Mitigation

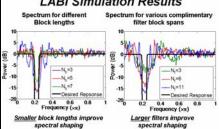
- Narrowband interference (NBI)
 - Receiver: Spectral notch at the NBI frequencies
 - Transmitter Shape signal spectrum to avoid transmitting in NBI bands
 - Reduced power consumption
- Possible Solutions:
 - Filters with desired spectral shape
 - Filters with narrow notches (<5% of BW) difficult and expensive to build
 - Techniques for spectral shaping

 - Coding
 Spectral Encoding

Look Ahead Block Inversion

- Described by Cavers and Marchetto (1991, Trans.
- Allows for arbitrary shaping of a digital signal's spectrum through data block inversion

- Insert Flag bits to indicate polarity of the block
- Issues:
 - Achievable Spectral Shaping


Look Ahead Block Inversion

Goal: Determine the set of flag bit polarities that nimizes the power out of the complementary filter

· Minimizes total power transmitted in the notch $J(r) = \sum_{i}^{r} RIS(i)$

LABI Simulation Results

UWB Time Hopping Signals

UWB TH Signal defined as:

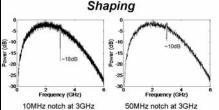
UWB TH-BPSK

$$s(t) = \sum_{n} a(n)p(t - nT - t_{pn}(n) - t_{d}d(n))$$

$$T - \text{frame length} \qquad p(t) - \text{pulse}$$

$$t_{d} \cdot \text{time offset} \qquad a(n), d(n) - \text{data bits}$$

$$t_{pn} - \text{pseudo-random time offset}$$


UWB TH-PPM

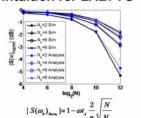
LABI Applied to UWB TH signals

- · RIS is a measure of the power out of the
- Change the RIS calculation to take into account TH
- LABI calculates the RIS in the time domain. With UWB TH signals, it is preferable to calculate the RIS in the frequency domain

Example of LABI PI Spectral

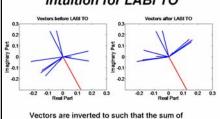
Smaller blocks lengths and longer filters improve performance. Similar notches can be obtained with LABI TO

Intuition for LABI TO


• Original Equation: $S(\omega) = P(\omega) \sum_{n=1}^{N-1} e^{-j\omega(nT+t_{pn}(n))} e^{-j\omega t_{d}d(n)}$

· Using Taylor Series approximation: $S(\omega) \approx P(\omega) \sum_{i=1}^{N-1} e^{i\omega}$

Goal: Choose d(n) such that U ≈ -V.

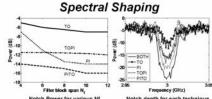

 $\approx P(\omega)[V+U]$

Intuition for LABI TO

10

Intuition for LABI TO

the data modulated vectors best cancels the


data independent vector.

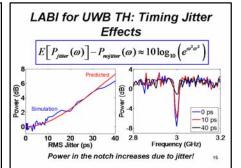
Improvements to LABI PI & TO

- Only varies one aspect of a UWB TH signal:
- pulse polarity timing position
- Third aspect: Time hopping sequence

 J. Bellorado et. al, "Time-Hopping Sequence Design for Narrowband Interference Suppression," VTC2004 Fall
- Improved performance by varying both
- LABI TOPI (Cascade) LABI PITO (Cascade)
- LABI BOTH (Simultaneously Pulse polarity and time offset)

- · Example: -14dB Notch

 - 2nd block in cascade has fixed Nf=6 LABI PI with Nf=10 (2^10 RIS calculations per trellis stage) LABI PITO with Nf=4 & Nf=6 (2^4 & 2^6)


LABI for UWB TH: Timing Jitter **Effects**

· Problem: Timing Jitter (i.e. noise) adds an additional time offset to the pulse

$$s(t) = \sum_{n=0}^{N-1} p(t - \gamma_n - \delta_n)$$

 $\gamma_n = t_{pn}(n) + t_d d(n) + nT$ δ - jitter term, $N(0, \sigma^2)$ N - number of pulses

