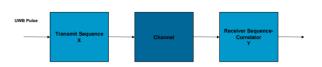

Sequence Optimization-based UWB Receiver

Jihad Ibrahim, Rekha Menon, and Dr. R.M. Buehrer

Sponsored by The Office of Naval Research

Motivation


 Large Number of multipath components in indoor UWB channels distort received pulse shape

- Challenge: Maximize energy capture with a simple receiver
- Main receiver topologies:
 - Rake receiver Large number of Rake fingers required
 - · Template-assisted receiver Noise is augmented
 - · Alternative strategies:
 - Pre-Rake receiver: Rake combining at transmitter
 - · Modify transmit pulse shape

Proposed Receiver

- Transmit pulse shape controlled by transmit sequence X
- Receiver template controlled by sequence Y

- Objective: Jointly optimize X and Y
- Different scenarios:
 - · Single User: Maximize SNR
 - Multiple Users: Maximize SINR
 - High-power narrowband interference (NBI): Maximize SINR

Single User Case

Objective: Maximize SNR

Optimal transmit sequence X solves:

$$\max_{X \neq 0} \frac{Y^T H X}{X^T X} = \max_{X \neq 0} \frac{X^T H^T H X}{X^T X}$$

H is the channel matrix

Optimal X is the maximum eigenvector of X^TH^THX

Optimal received sequence Y is given by

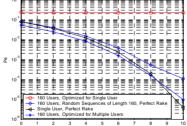
$$Y = HX$$

- Transmit seq. length = 160
- · Results averaged over multiple NLOS channels
- Simple matched filter fails: Captures only first path energy
- · Random sequence fails: No coherent combining of paths
- Pilot-based Receiver with 250 pilots: 2 dB away from perfect

Rake

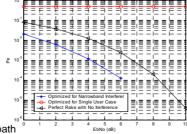
- Optimal sequence: 1.5 dB better than perfect Rake
 - Coherent combining of multipath: Boost in received energy level
 - · Similar to gains when using transmit beamforming

Multiple Users Case


- Objective: Maximize SINR
- K users are assumed to exist in the system
- The interference covariance matrix is

$$\boldsymbol{Z}_{i} = \sum \boldsymbol{p}_{j} \boldsymbol{H}_{j} \boldsymbol{X}_{j} \boldsymbol{X}_{j}^{T} \boldsymbol{H}_{j}^{T} + \sigma^{2}$$

Optimal received sequence Y is given by


$$Y = Z_i^{-1} H_i X_i$$

• Optimal transmit sequence X is the maximum eigenvector of $H_i^T Z_i^{-1} H_i$

- 160 equal-power users
- Sequence optimized for single user fails:
 - Cross-correlations from different users not taken into account
- CDMA-like system with spreading gain 160 is 1 dB away from Rake receiver
- Sequence optimized for multiuser scenario performs almost like perfect Rake in AWGN

High Power NBI Case

- NBI modeled by data-modulated sine wave
 - NBI power is 100 dB above signal power
 - Sequence length = 160
 - Sequence optimized for single user fails:
 - Performance limited by NBI
 - Sequence optimized for NBI effectively cancels NBI:
 - 2.5 dB gain over perfect Rake in AWGN

Summary of Results

- Sequence optimization for UWB multipath
- channels:
- Big gains in single user scenarios
- Very good multiuser and NBI cancellation
- Relatively simple receiver
- Requires sequence feedback
- Requires storing real-valued sequence

Relevant Publications

- J. Ibrahim, R. Menon, and R.M. Buehrer, "UWB Signal Detection Based on Sequence Optimization for Dense Multipath Channels," *IEEE* Communications Letters, April 2006.
- •R. Menon, J. Ibrahim, and R.M. Buehrer, "UWB Signal Detection Based on Sequence Optimization", WIRELESSCOM 2005, June 2005.
- J. Ibrahim, R. Menon, and R.M. Buehrer, "UWB Sequence Optimization for Enhanced Energy Capture and Interference Mitigation," *IEEE Military* Communication Conference, MILCOM 2005, October 2005