

Two-Stage Acquisition for UWB in Dense Multipath

Jihad Ibrahim, Dr. R.M. Buehrer

Sponsored by The Office of Naval Research

Motivation

- Two major challenges for UWB acquisition in dense multipath: 1) Very long acquisition time
 - Extremely short, low duty cycle pulses result in a huge number of potential delays (cells) in uncertainty region
- 2) Presence of multiple H_1 (in-phase) cells
 - Tens or hundreds of multipath delays can terminate acquisition
 - Locking into an arbitrary multipath might result in significant symbol energy loss, or very large ranging error.

Coarse Acquisition

Serial Search:

- Cells in the uncertainty region are searched consecutively, in the order in which they occur in time.
- Approximately half of the cells are searched on average.
- Does not take advantage of the multipath channel, which is a highly suboptimal approach.

Jump-Phase Search:

- Search the multipath components in non-consecutive order.
- Simpler than bit reversal search.
- Jump by a spreading code duration.
- The H_1 cells are uniformly spread over the uncertainty region

Jump-phase Search

Fine Acquisition

Step 1: Second Level Threshold Crossing

In coarse acquisition, the noise power is unknown, and the threshold setting mechanism cannot take SNR information into account with a simple procedure. After coarse acquisition, since the H1 region has been identified to within a spreading length, an estimate of the noise variance can now be obtained by calculating the average of the decision statistics over the H0 region. Input to step 2: Cells that survived threshold test

Spreading Gain = 256.

Proposed System

- **Two-Stage Acquisition Model**
- 1) Coarse Acquisition
 - Locks onto an arbitrary multipath. Achieves rough symbol timing
- 2) Fine Acquisition
 - Searches for first arriving path in reduced uncertainty region. - Takes advantage of an estimate of noise variance to
 - construct more reliable threshold.
 - Exploits clustered nature of multipath to better segregate noise (H_0) cells.

Mean Acquisition Time. 32-length Spreading Code.

Step 2: H₀ Cell Segregation

- Let C, be the number of cells that passed the first phase of the fine acquisition stage.
- We denote their indices by X_i , $1 < j < C_s$.
- For a particular cell X_k , we calculate t_k , the time difference between X_k and its closest neighboring survivor cell X_{k+1} .
- If t_k exceeds a predefined constant t_0 , then cell X_k is eliminated.
- After all cells are tested, the earliest surviving cell is selected
- Rationale based on the clustered nature of multipath. Since multipath occurs in clusters, it is most likely that the multipath cluster will result in a group of neighboring surviving cells. If, on the other hand, an isolated cell exceeds the threshold, it is most likely an H_0 cell.

Relevant Publications

• J. Ibrahim and R.M. Buehrer, "Two-Stage Acquisition for UWB in Dense Multipath", IEEE Journal on Selected Areas in Communications, UWB Communications Special Issue, April 2006.

• J. Ibrahim and R.M. Buehrer, "Two-Stage Acquisition for UWB in Dense Multipath," IEEE Military Communication Conference, MILCOM 2005, October •2005