UWB Hardware Issues, Trends, Challenges, and Successes

Larry Larson

larson@ece.ucsd.edu
UWB Motivation

• Ultra-Wideband
 – Large bandwidth (3.1GHz-10.6GHz)
 – Power spectrum density limited: -41.25 dBm/MHz
 – Many narrow-band interferers
 • 5GHz UNII band (802.11a, cordless telephones)
 • Airport and Marine Radars
 • WiMAX
 – Signal generation: Impulse (Gaussian Monopulse), DSSS, OFDM, Spectral Encoding, etc.
Long Run Threat to Wide Adoption of UWB is Interference

Roughly -40 dBm/MHz!

Figure 30. NTIA spectrum survey graph summarizing 70 scans across the 3100-3700 MHz range (System-2, band event 15, stepped algorithm, +peak detector, 3000-kHz bandwidth) at Los Angeles, CA, 1995.

Raders, Comm. Systems, Military, etc., etc. ……
Long Run Threat to Wide Adoption of UWB is Interference

Figure 38: NTIA spectrum survey graph summarizing 35 scans across the 8500-10550 MHz range (System-2, band event 23, stepped algorithm, peak detector, 3000-kHz bandwidth) at Los Angeles, CA, 1995.
UWB Time Hopping Signals

- **UWB TH Signal defined as:**

\[s(t) = \sum_{n} a(n) p(t - nT - t_{pn}(n) - t_{d}d(n)) \]

- \(T \) - frame length
- \(p(t) \) - pulse
- \(t_{d} \) - time offset
- \(a(n), d(n) \) - data bits
- \(t_{pn} \) - pseudo-random time offset

UWB TH-BPSK

“0”

“1”

UWB TH-PPM
Look Ahead Block Inversion

Goal: Determine the set of flag bit polarities that minimizes the power out of the complementary filter

Minimizes power transmitted in the notch

\[J(r) = \sum_{i=-\infty}^{r} RIS(i) \]
Example of LABI PI Spectral Shaping

10MHz notch at 3GHz

50MHz notch at 3GHz

Smaller blocks lengths and longer filters improve performance
UWB Spectral Encoding

DAC: Spectral Encoded Waveform

- Spectral Encoding Block
- DAC

Graphs showing:
- Frequency (GHz) vs. Power (dB)
- Differential Output (V) vs. Time (ns)
- Frequency (GHz) vs. Power (dB)
Multi-Band OFDM Ultra-Wideband Systems - II

Frequency (MHz)

3168

3696

4224

4752

9.5 ns Guard Interval for TX/RX Switching Time

312.5 ns

60.6 ns Cyclic Prefix

Period = 937.5 ns

Band 1
Band 2
Band 3
Band 4
Band 5
Band 6
Band 7
Band 8
Band 9

Group 1
Group 2
Group 3
Narrow Band Jammers

Receivers have a non-linear transfer function

\[y(t) = c_1 x(t) + c_2 x(t)^2 + c_3 x(t)^3 \]

A wideband spur at the input to the receiver spreads a narrow band jammer to twice its bandwidth due to the 3\(^{rd}\) order nonlinearity, reducing the SNR.

Need to quantify this cross-modulation product to correctly specify the receiver.
Effect of Cross-Modulation on Received SNR

- Calculate noise at the output of receiver from just the LNA and mixer
- Add in-band noise power to this noise to calculate new SNR
Wideband Distortion

SNR at receiver output drops in the presence of 2 or more signals

Need to quantify this SNR reduction to accurately specify receiver
2nd Order Intermodulation PSD

It can be shown that the PSD of the 2nd order intermodulation product is given by

\[
PSD(\omega) = c_x^2 A_{t1}^2 A_{t2}^2 \frac{T_{sym}}{4} \sum_{-N_s/2}^{N_s/2} \sum_{-N_s/2}^{N_s/2} \sin c((\omega + \omega_1 + \omega_2 + \Delta \omega(m+n))\frac{T_{sym}}{4}) + \sin c((\omega - \omega_1 - \omega_2 - \Delta \omega(m+n))\frac{T_{sym}}{4})
\]

Comparison of simulated and calculated 2nd order inter-modulation power spectral density

Link budget degradation in the presence of distortion
Issues With Standard Receiver Designs

- Suited for narrow band signals
- Consume a lot of die area
- Susceptible to interference

- Industry focus
 - Time to market critical, no time to innovate or take risks
 - Use a standard design approach and run with it

- Academia
 - Take one step back and re-visit current design techniques. Are they suitable for a radically new system like MB-OFDM UWB?
 - Answer above question with a new innovative solution
Tunable LNA - I

- Take advantage of frequency hop nature of MB-OFDM signal
- Dynamically tune LNA to desired frequency: “Pseudo UWB LNA”
Receiver Gain: 3-8 GHz
Gain variation over bands ≈ 6 dB
• Not very significant since received power will vary more than this over bands

Noise Figure: 5 to 6.5 dB
Input IIP3: -2.5 to -6 dBm
UWB Receiver Die Micrograph

- 0.18 µM CMOS
- 0.35 mm²
- 19.5 mA Current Consumption
- 2.64 GHz IF
- NO on-chip inductors
Conclusions

• **UWB Systems will be widely adopted if**
 – they are very low cost (highly integrated with small die area) and consume little dc power
 – are robust against interference across the entire UWB band