The Impact of Snell's Law on the BeamLoc Approach for NLoS Indoor Localization

CHRISTIANE SENGER & THOMAS KAISER
University Duisburg-Essen, Department of Communication Systems

BeamLoc & Snell's Law

In *Line of Sight* situations the *Direction of Departure* (DoD) and *Direction of Arrival* (DoA) of the *Direct Path* (DP) differ by 180°.



For *Non Line of Sight* situations this is affected by Snell's Law. Nevertheless, the 180° difference holds approximately true.

Signal Model

The transmit signal p(t) passes through the transmit beamformer $b_{\rm T}(\theta_{\rm T},\phi_{\rm T})$, where $\theta_{\rm T}$ is the steering direction of the beamformer and $\phi_{\rm T}$ is the DoD of the transmit signal. Next, the impulse response of the wireless channel

$$h(t) = \sum_{k=1}^{K} \alpha_k \delta(t - \tau_k)$$

has to be taken into account, where every summand represents a path k with amplitude α_k and delay τ_k .

As in the transmit case a receive beampattern is defined and denoted by $b_{\rm R}(\theta_{\rm R},\phi_{\rm R})$. Hence, the received signal is

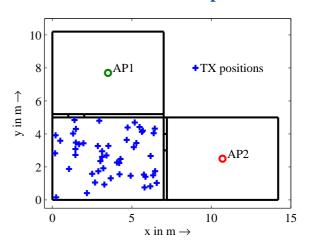
$$r(t) = \sum_{k=1}^K \alpha_k b_{\mathrm{T}}(\theta_{\mathrm{T}}, \phi_{\mathrm{T},k}) p(t-\tau_k) b_{\mathrm{R}}(\theta_{\mathrm{R}}, \phi_{\mathrm{R},k}),$$

assuming a DoD $\phi_{\mathrm{T},k}$ and a DoA $\phi_{\mathrm{R},k}$ for every path k.

The transmit signal is set to the second derivative of the gaussian pulse

$$p(t) = (1 - 2(t/\tau_{\rm p})^2) e^{-(t/\tau_{\rm p})^2}.$$

Simulation Setup



Default Settings: Wall Thickness 20 cm

Dielectric Constant Wall $\epsilon_{\rm w}=7$; Door $\epsilon_{\rm D}=3$

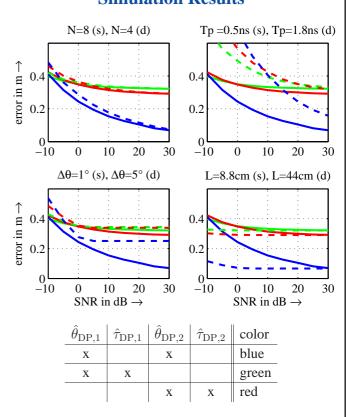
Number of Antennas $N_{\rm T}=N_{\rm R}=N=8$

Array Size $L=2\lambda_{\rm c}=8.8\,{\rm cm}$

Pulse Length $T_{\rm p}=0.5\,{\rm ns}\,(\tau_{\rm p}=0.233\,{\rm ns})$

Rotation Step Size $\Delta\theta = 1^{\circ}$

Simulation Results



Contact: Dipl.-Math. CHRISTIANE SENGER; c.senger@uni-duisburg.de