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Abstract

In this paper, we introduce a simple method to construct
very low rate recursive systematic convolutional codes from a
standard rate- ����� convolutional code. These codes in turn are
used in parallel concatenation to obtain very low rate turbo like
codes. The resulting codes are rate compatible and require low
complexity decoders. Simulation results show that an additional
coding gain of 0.9 dB in additive white Gaussian noise (AWGN)
channel and 2 dB in Rayleigh fading channel is possible com-
pared to rate-1/3 turbo code. The low rate coding scheme in-
creases the capacity by more than 25% when applied to multi-
ple access environments such as Code Division Multiple Access
(CDMA).

I. INTRODUCTION

It is a well known fact that, for a given input block size, in
an additive white Gaussian noise (AWGN) channel, reduction
in the code rate beyond a certain threshold has diminishing re-
turns [1]. Furthermore, if low rate convolutional codes are con-
structed by specifying the generator polynomial for each coded
bit, then a substantial encoding complexity is incurred. In ad-
dition, for a convolutional code of a given constraint length, it
may be difficult to achieve additional coding gain [6]. A con-
siderable amount of research has been done in this area in the
past few decades [7, 9, 11]. Such codes find their application in
systems where bandwidth expansion has no additional penalty
(e.g. spread spectrum systems) or in systems which are power
limited with abundance of bandwidth to utilize (e.g. ultra wide
band systems).

After the discovery of turbo codes [2], very low rate turbo-
like codes such as super-orthogonal turbo codes (SOTC) [4],
turbo Hadamard codes (THC) [3], etc. have been introduced.
Both these codes use a binary bi-orthogonal block code char-
acterized by ���
	���
���������	������ where ��
������ is the input in-
formation size, �
	 is the output code word length and ��	���� is
the minimum distance of the block code. SOTC is a parallel
concatenation of two super-orthogonal recursive convolutional
codes. In the case of THC, 
 information bits are fed into a
recursive single parity check encoder, the output of which is
mapped onto a bi-orthogonal signal set. Therefore, in order for a
one-to-one mapping it is enough to have a 2-state finite state ma-
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chine. The disadvantage of the SOTC is that the decoding com-
plexity increases dramatically with decrease in code rate. On
the other hand, THC, which is constructed using weaker con-
stituent codes has slower rate of convergence which might not
be a desired property for practical applications. So, in design-
ing very low rate turbo-like codes for practical applications, one
of the critical issues is to design strong enough constituent con-
volutional codes with decoding complexity of the overall code
being almost independent of the code rate.

In this paper, we introduce a technique to construct such a
class of low rate convolutional codes. These codes are then
used to build very low rate turbo codes. Since these codes are
constructed from rate- ����� parent codes, the complexity of the
resulting encoder and decoder is very low.

The rest of the paper is organized as follows. Section
II briefly reviews the class of super-orthogonal convolutional
codes. Section III describes the algorithm that is used in this
work to construct low rate codes. Application to spread spec-
trum systems is considered in Section IV. Numerical results and
conclusions are given in Section V and VI, respectively.

II. BRIEF REVIEW ON SUPER-ORTHOGONAL CODES

Block codes are characterized by the parameters ������
��� "!$#&%'�
where � is the length of the codeword, 
 the input alphabet size
and  !(#&% the minimum distance between any two codewords.
The ratio 
'�)� is the code rate. Orthogonal binary block codes
are characterized by ( ��	���
�����	���� ) and the corresponding code
rate is 
'���
	 . Here, the size of the code (i.e. the number of
codewords in the code) is also ��	 . In other words, for a given 

tuple, the encoding process is selection of one of the � 	 possible
codewords. A bi-orthogonal code is a block code that includes
an orthogonal code and its corresponding complementary set.
The length of this code remains the same but the input alphabet
size is increased by one, reducing the code rate to ��
*�+���,���-	 .
In the rest of this paper, we will refer to these codewords as
‘signals’.

One way of generating orthogonal (hence bi-orthogonal) sig-
nal set is by using Hadamard matrices. A simple method to
generate a Hadamard matrix of size ��	�./�
	 is through recur-
sion i.e., a Hadamard matrix of size ��	0./��	 can be generated
recursively from a Hadamard matrix of size �1.2� denoted by
H � , where H � = [1]. The recursion is given by

H 	43 5
H 	���� H 	����
H 	���� 6H 	����87 � (1)
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Fig. 1. Encoder structure for Orthogonal, Bi-orthogonal and Super-orthogonal
codes

where 6H represent the complement of H. The Hadamard matrix
of size ��	9.:��	 and its corresponding complementary matrix
form the required bi-orthogonal signal set.

Orthogonal convolutional codes (OCC) of rate �)���-	 are de-
signed such that for any given state, the output signals on all the
outgoing and incoming branches are pairwise orthogonal. Since
these signals are selected from an orthogonal block code of size� 	 , the input alphabet size should be 
 . A block diagram of this
encoder is given in Figure 1. As the rate of the convolutional
code is �����
	 , only one data bit will be fed to the finite state ma-
chine (FSM) for each length ��	 output. Therefore, the memory
of the finite state machine should be large enough ( 
1;<� to be
precise) to access all the signals. In the trellis structure of the
bi-orthogonal convolutional code (BOCC), the signals on the
branches that merge into a state are orthogonal whereas those
that originate from a state are antipodal or vice versa. Since the
code size is �
	�=>� for rate ������	 , the memory of the finite state
machine should be at least 
 to access all these signals. Figure 2
shows a section of trellis transitions of these codes. The dotted
line corresponds to an input ?@��? and the solid line corresponds
to an input ?&A�? .
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Fig. 2. A section of trellis transition of (a) Orthogonal code, (b) Bi-orthogonal
code, (c) Super-orthogonal code

Super-orthogonal convolutional codes (SOCC) are a clever
engineering construction of binary trellis codes in such a way
that the signals on the trellis transitions from and to any given
state are pairwise antipodal (as shown in Figure 2 (c)). In order
to accomplish this kind of trellis structure, the number of states

should be at least � 	B=>� . The total number of possible signals
(which is twice that of the code rate) that can be used in a trellis
step is same as that of the total number of states. So, when
the code rate is decreased, the code size increases and hence
the total number of states increases. This, in turn increases the
complexity of the decoder. Hence, for this class of codes to be
considered for very low rate applications (rate CD���-��E ), it is
imperative that this dependence be removed without disturbing
the trellis structure.

III. CODE CONSTRUCTION

In order to construct very low rate codes, we start with a
‘good’, F -state, rate- ����� recursive systematic convolutional
code and apply a combination of repetition and bit flipping. By
good code, we mean that the signals emerging from and con-
verging to any given state differ in maximum possible bit loca-
tions. Our algorithm can be described as follows:G Divide the state space into H equal and even subsets ( IJ#K�ML 3�
���N�PO&OQO&�MH ) such that the cardinality of R2I # 3 F .G For each I # , assign a one-to-one mapping with a combina-
tion of repetition and flipping of the corresponding output code
symbol.G Depending on the membership of the current state SUT��@V 3A'�P�
���"�UOQO&O&�,FW;2� , apply the mapping to the output.

The mapping that is used can be described recursively. The
following example illustrates the construction algorithm. Let
the number of states F be �UE . Let this space be divided into four
( H 3YX ) subsets. Let the required rate Z be 1/8. Let [ denote the
two coded output bits of the parent code and the corresponding
current state be S T �\V 3 AN�U���PO&O&OQ�U��] . Apply the following one-
to-one mapping to obtain the required rate:
– If S�T_^8I � , then the coded output is [�[�[P[ .
– If S T ^8I�` , then the coded output is [ 6[�[ 6[ .– If S T ^8I�a , then the coded output is [�[ 6[ 6[ .– If S T ^8Icb , then the coded output is [ 6[ 6[P[ .
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Fig. 3. Parallel concatenation of the proposed low-rate encoder structure

The schematic of the resulting encoder is given in Figure 3
where it is shown applied to each of the two constituent codes of
the turbo code. Figure 4 shows the change in the trellis structure
by the application of our algorithm to a four state rate-1/2 par-
ent code in order to obtain a rate-1/4 code. In this case, the state
space is divided into two subsets of two states each. I � corre-
sponds to states d)SUe
��S ��f and I ` corresponds to states d�S ` ��S a f .
Let  be the coded output of the parent rate-1/2 code at a given



time instant. Then, if the current state belongs to I � , the new
coded output is  
 whereas if the current state belongs to I ` ,
the output is  6 . Since this construction methodology is based
on rate-1/2 codes with arbitrary number of states, the following
observations can be made.G code rates (turbo codes) such as 1/7,1/8,1/15,1/16,1/31,1/32,
etc. can be obtained directly while other rates can be achieved
by puncturing.G code rate is independent of the number of states which trans-
lates to the code complexity being a design parameter [5].
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In addition, note that for any given state in the trellis, signals
on all the incoming and outgoing branches are pairwise antipo-
dal. In other words, for rates that are reciprocal of multiples
of 4, codes constructed by this method will always be super-
orthogonal [10] in nature. Figure 5 shows the trellis structure
of the traditional super-orthogonal code for rate �)� X along with
that of the ‘simple’ super-orthogonal code that results from our
construction procedure. Notice that the traditional SOCC uses
all the g possible signals while the ‘simple’ code uses only X
signals. In other words, the proposed code uses only a subset
of the complete bi-orthogonal signal set which in turn leads to
reduction in code complexity.
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Fig. 5. Trellis diagram of (a) ‘simple’ SOCC (b) traditional SOCC

Let the code rate be �)���
	 . Let B be the matrix representa-
tion of the complete bi-orthogonal signal set. Then B is of size�-hi	B=>�Mj(.k�
	 . Let lm represent a subset of the bi-orthogonal sig-
nal set such that the size of lm is � % .n�
	 . For large enough 
 ,
we assume �oCp
 . That is, for low encoding rate, our encoder

selects signals from a relatively smaller subset of the complete
bi-orthogonal signal set. By construction, as 
rqts , with �
fixed, several columns of lm can be made to be same. So, it may
be possible to puncture one or more of these columns to obtain
any arbitrary rate with minimal coding loss.

The decoder is a standard turbo decoder [3] (with log domain
sum-product algorithm). The decoding algorithm can be imple-
mented as min*(.) operation which is defined as

min u���vw�MxN� 3 ; ln ��y�z{�ry�|����3 min �}vw�,xN�c; ln �M�$�~y-� z � |�� �BO (2)

IV. APPLICATION TO SPREAD SPECTRUM SYSTEMS

In this section, the application of the proposed low rate turbo-
like code to spread spectrum systems, especially to code divi-
sion multiple access (CDMA), is considered. The schematics of
the code-spread system using low rate codes and conventionally
coded (rate-1/3 turbo code) and spread system is given in Fig-
ure 6. Three different channels, namely AWGN channel, block
fading channel and multi-user channel with AWGN are consid-
ered.
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Fig. 6. (a) Low rate coded and scrambled system (b) Conventionally coded and
spread system

A simple semi-analytic expression to estimate the degrada-
tion in signal to noise ratio due to the presence of multiple users
in a low rate coded system can be derived. The matched filter
output that corresponds to a coded symbol on a trellis transition
can be written as

x 	�3�� ���  # 	 � � ��� ��T,� ��� T��� #  T 	 ��� 	 (3)

under perfect power control and synchronization. Here, � 	 is
zero mean Gaussian random variable with variance F0�P��� , � is
the total number of users and � � is the coded symbol energy.
Under the assumption that the multiple access interference can
be modelled as Gaussian, it is straight forward to show that the
additional information bit-to-noise ratio needed to achieve the
single user performance can be approximated by� �{�F*�N�{���M��� �)������ � ���;���� � ���� � � ����;2��� � (4)



where
� � ���� � � is the bit-to-noise ratio needed for single user

performance for a specific bit error rate (usually �UA �¢¡ ). Equa-
tion (4) can be generalized to� �{�F �N�{���M��� � � �� � � ���;��{£ ��� � � �� � � � ���¤;:��� � (5)

where £ represents additional spreading involved.

V. NUMERICAL RESULTS

The algorithm is applied to 16-state rate- �)��� recursive sys-
tematic convolutional parent code used in [2]. The feed forward
and feedback polynomials of this code are ¥-¦ and ��¥ in octal, re-
spectively. Two such codes are used to build the turbo code. The
interleaver size is 1024 bits. The state space of each constituent
code is divided into four subsets (m = 4) of four states each. The
mapping technique explained in the example in Section II is ap-
plied. Results shown are after 15 iterations in AWGN channel
and 10 iterations in fading channel.
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Fig. 7. Performance of Rate-1/3 parent (turbo) code vs Rate-1/63 code in
AWGN channel

Figure 3 shows the coding gain achievable using the pro-
posed technique to reduce the code rate from �)�)¥ to rate ���)E
¥
in AWGN channel. Note that an additional coding gain of 0.9
dB is possible. The performance degradation of this code with
respect to the corresponding traditional SOTC is evaluated and
the results are shown in Figure 8. The degradation is less than
0.1 dB at BER of �UA ��¡ . For completeness, we have also in-
cluded the performance of the best known low rate turbo-like
code (THC, code rate 7/370). The result for THC is obtained
after performing 50 iterations. Note that there is a degradation
of only 0.2 dB. However, the proposed code structure results
in about 75% complexity reduction at the decoder compared to
the traditional SOTC. In addition, the computational complex-
ity of the proposed scheme per iteration is much lesser than that
of THC. Furthermore, the convergence rate of THC is approx-
imately three times slower than that of the proposed scheme.
This is an undesired property for hardware implementation.
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Fig. 8. Performance of various PCCC schemes with rate 1/32 constituent codes.
(a) Code constructed using the new algorithm (b) Traditional SOTC (c)
Turbo-Hadamard code

No. of signals used 4 8 16 Conventional SOTC
Code rate = 1/16 16 24 - 48
Code rate = 1/32 32 40 - 128
Code rate = 1/64 72 80 96 320

TABLE I
COMPARISON OF NUMBER OF ADDITIONS REQUIRED TO COMPUTE THE

BRANCH METRIC IN TRADITIONAL SOTC AND SIMPLE SOTC

Here, we compare the complexity of the proposed scheme
with that of the traditional SOTC in detail1. The complexity
is calculated in terms of total number of operations needed to
decode one information bit. Since the code rate and number
of iterations are same for both the code structures, the num-
ber of states is the only parameter that decides the complexity
for a given interleaver size. Since the traditional SOTC for a
rate �)�)E
¥ requires a total of ����g states compared to the new
scheme which require ¥
� states in total, a complexity reduc-
tion of about 75% is achieved. To be precise, in the presence of
AWGN, both hard and soft decoding of convolutional codes that
use bi-orthogonal signal set involves the calculation of correla-
tion between the received signal with the bi-orthogonal signal
set. The complexity of the proposed scheme and the traditional
SOTC scheme is compared based on the total number of oper-
ations required to calculate this correlation since it has direct
influence on the total number of operations required to decode
an information bit. One advantage of using Hadamard matrix
(of size ��	*.9��	 ) to generate the bi-orthogonal signal set is that
it has a nice property that the correlation can be calculated in�
	§. log ` �@��	�� 3 
8./�
	 operations. The total number of ad-
ditions involved (neglecting negations) in order to calculate the
branch metric is given in Table 1 for both the traditional SOTC
and the proposed code. For a given code rate Z , the table gives
the number of computations needed by the proposed coding¨

The complexity analysis of THC is not considered in this work.



scheme if � signals are used from the complete bi-orthogonal
signal set. The last column corresponds to using all the signals
in the signal set i.e., the computational complexity of the tra-
ditional SOTC. Note that a tremendous amount of complexity
reduction is achievable with the new coding scheme.
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Fig. 9. Performance of Rate-1/3 parent code vs Rate-1/63 code in flat Rayleigh
fading channel.

Simulation results for Rayleigh fading channel are shown in
Figure 4. In this case, an additional channel interleaver is also
included. The fading amplitude is kept constant over a block
of 63 coded symbols and independent among blocks. Simula-
tion results show that an additional coding gain of 2 dB can be
achieved with the application of low rate coding. Note from
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Fig. 10. Additional ©�ªM«K¬c­ (in dB) required to maintain single user perfor-
mance in multiple access channel

Figure 5 that in a heavily loaded system, with single user de-
tectors, a significant reduction in � � �BF � required to maintain
single user performance is possible by using the low rate coded
scheme2 instead of conventionally coded (rate 1/3 turbo code)
and spread scheme. Multiple access interference is modelled as®

In this case, users are separated by scrambling sequences

Gaussian. Due to complexity, simulations were carried out only
for a maximum of 8 users.

VI. CONCLUDING REMARKS

We have proposed a simple method to generate a class of very
low rate turbo codes from rate- ����� constituent codes that can
be used for combined coding and spreading in spread spectrum
multiple access systems. Apart from being rate compatible for
various rates, these codes allow for low complexity encoder and
decoder implementation.
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