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Abstract — In this paper, we introduce a simple method to construct
very low rate systematic recursive convolutional codes from a standard rate�����

code. These codes in turn are used in parallel concatenation to obtain
very low rate turbo codes. This construction always leads to a class of con-
volutional codes for which the signals on trellis transition are a subset of
complete bi-orthogonal signal set for any given code rate. The resulting
codes are rate compatible and require low complexity decoders. By apply-
ing this construction methodology to the rate 1/2 turbo code used in 3G
standard, we show that an additional coding gain of approximately

��� �
dB

is achievable at a bit error rate of
���
	��

.

I. INTRODUCTION

It is a well known fact that, for a given input block size, in
an additive white Gaussian noise (AWGN) channel, reduction
in the code rate beyond a certain threshold has diminishing re-
turns [1]. Furthermore, if low rate convolutional codes are con-
structed by specifying the generator polynomial for each coded
bit, then a substantial encoding complexity is incurred. In ad-
dition, for a convolutional code with fixed number of states, it
may be difficult to achieve additional coding gain [5]. A consid-
erable amount of research has been done in this area in the past
few decades [13,15,16,17]. These codes find their application in
systems where bandwidth expansion has no additional penalty
(e.g. spread spectrum systems) or in systems which are power
limited with abundance of bandwidth to utilize (e.g. ultra wide
band systems).

After the discovery of turbo codes [10], very low rate turbo-
like codes such as super-orthogonal turbo codes (SOTC) [3],
turbo Hadamard codes (THC) [2], etc. have been introduced.
The disadvantage of the SOTC is that the decoding complex-
ity increases dramatically with decrease in code rate. On the
other hand, for practical input block sizes (such as 1024 bits
etc.) concatenated codes that are constructed using weaker
constituent codes are outperformed by the ones that are con-
structed with stronger constituent codes [4]. So, in designing
very low rate turbo-like codes, one of the crucial issues is to
design strong enough constituent convolutional codes with de-
coding complexity of the overall code being almost independent
of the code rate. It will also be useful if these codes can be de-
signed with some in-built structures that can be utilized in other
front end receiver processing tasks such as synchronization.

In this paper, we introduce a technique to construct such a
class of low rate convolutional codes. These codes are then
used to build very low rate turbo codes. Since these codes are
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constructed from rate ���� parent codes, the complexity of the
resulting encoder and decoder is very low. The performance
of this code is about 0.6 dB away from the corresponding con-
strained channel capacity [1].

The rest of the paper is organized as follows. Section
II briefly reviews the class of super-orthogonal convolutional
codes. Section III describes the algorithm that is used in this
work to construct low rate codes. Numerical results and con-
clusions are given in Sections IV and V, respectively.

II. BRIEF REVIEW ON SUPER-ORTHOGONAL CODES

Block codes are characterized by the parameters ��������������� �"!
where � is the length of the codeword, � the input alphabet size
and � �#� � the minimum distance between any two codewords.
The ratio �"��� is the code rate. Orthogonal binary block codes
are characterized by ( �%$%�������&$('*) ) and the corresponding code
rate is �"�&�&$ . Here, the size of the code (i.e. the number of
codewords in the code) is also �%$ . In other words, for a given �
tuple, the encoding process is selection of one of the � $ possible
codewords. A bi-orthogonal code is a block code that includes
an orthogonal code and its corresponding complementary set.
The length of this code remains the same but the input alphabet
size is increased by one, reducing the code rate to �+�-,.
!��&�/$ .
In the rest of this paper, we will refer to these codewords as
‘signals’.
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Fig. 1. Encoder structure for Orthogonal, Bi-orthogonal and Super-orthogonal
codes

Orthogonal convolutional codes (OCC) of rate ����/$ are de-



signed such that for any given state, the output signals on all the
outgoing and incoming branches are pairwise orthogonal. Since
these signals are selected from an orthogonal block code of size�&$ , the input alphabet size should be � . A block diagram of this
encoder is given in Figure 1. As the rate of the convolutional
code is 
�&�0$ , only one data bit will be fed to the finite state ma-
chine (FSM) for each length �%$ output. Therefore, the memory
of the finite state machine should be large enough ( �213 to be
precise) to access all the signals. In the trellis structure of the
bi-orthogonal convolutional code (BOCC), the signals on the
branches that merge into a state are orthogonal whereas those
that originate from a state are antipodal or vice versa. Since the
code size is �0$546) for rate 
�&�&$ , the memory of the finite state
machine should be at least � to access all these signals. Figure 2
shows a section of trellis transitions of these codes. The dotted
line corresponds to an input 78(7 and the solid line corresponds
to an input 7 9&7 .
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Fig. 2. A section of trellis transition of (a) Orthogonal code, (b) Bi-orthogonal
code, (c) Super-orthogonal code

Super-orthogonal convolutional codes (SOCC) are a clever
engineering construction of binary trellis codes in such a way
that the signals on the trellis transitions from and to any given
state are pairwise antipodal (as shown in Figure 2 (c)) [13]. In
order to accomplish this kind of trellis structure, the number
of states should be at least ��: $�46)�; . The total number of possible
signals (which is twice that of the code rate) that can be used in a
trellis step is same as that of the total number of states. So, when
the code rate is decreased, the code size increases and hence the
total number of states increases. For this class of codes to be
considered for very low rate applications (rate <=��/?> ), it is
imperative that this dependence is removed without disturbing
the trellis structure.

In this work, we present an efficient way of removing the
dependency of the state complexity to the code rate. This results
in a class of ‘simple’ super-orthogonal codes.

III. CODE STRUCTURE

In order to construct very low rate codes, we start with a stan-
dard, @ state, rate ���� recursive systematic convolutional code
and apply a combination of repetition and bit flipping. The al-
gorithm used in this work can be described as follows.A Divide the state space into B equal, even subsets ( CD����EGF&�����?HIH HI��B ) such that the cardinality of JKC��LFM@ .A For each C�� , assign a one-to-one mapping with a combina-
tion of repetition and flipping of the corresponding output code
symbol.

A Depending on the membership of the current state N?O&�8PQF9"�R0�����?HIH H ��@S1K , apply the mapping to the output.
The mapping that is used can be described recursively. The

following example illustrates the construction algorithm. Let
the number of states @ be ?> and divide this space into four
( BTFVU ) subsets. Let the required rate W be 1/8. Let X denote the
two coded output bits of the parent code and the corresponding
current state be N5O&�YPZF[9��?&�RH H HI�?(\ . Apply the following one-
to-one mapping to obtain the required rate:
– If N5O^]_C ) , then the coded output is X5X5XRX .
– If N5O^]_C�` , then the coded output is X&aX5X&aX .
– If N5O^]_C�b , then the coded output is X5X&aX&aX .
– If N O ]_Cdc , then the coded output is X&aX&aXRX .

R = 1/2
N States

I

R = 1/2
N States

Mapper:
State/Rate
Dependent

Mapper:
State/Rate
Dependent

Standard rate 1/2 PCCC

Fig. 3. Parallel concatenation of the proposed low-rate encoder structure

The schematic of the resulting encoder is given in Figure 3
where it is shown applied to each of the two constituent codes
of the turbo code. Figure 4 shows the change in the trellis struc-
ture by the application of our algorithm to a four state rate 1/2
parent code in order to obtain a rate 1/4 code. In this case,
the state space is divided into two subsets of two states each.C ) corresponds to states e
N(f&��N )(g and C�` corresponds to statese�N ` ��N b g . Let X be the coded output of the parent rate 1/2 code
at a given time instant. Then, if the current state belongs to C ) ,
the new coded output is X5X whereas if the current state belongs
to C�` , the output is X�aX . Since we start with constituent system-
atic recursive codes of rate 
�&� , code rates (for the turbo codes)
such as ��&h/�?
��i��R��/
\��R��/R>"�R(��j�&�?(��j0� , etc. can be obtained
directly with other rates achieved by puncturing.
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Fig. 4. Change in the trellis structure with application of our algorithm (a)
parent code (b) resulting lower rate code

For any given state in the trellis, signals on all the incom-
ing and outgoing branches are pairwise antipodal. In other
words, the resulting code will always be super-orthogonal in



nature (and thus have good distance properties) for inverse of
the code rates that are multiples of U . For a code rate of 
���/$ ,
at any trellis step, this code uses only a subset of the complete
bi-orthogonal signal set. Figure 5 shows the trellis structure of
the traditional super-orthogonal code for rate 
��U along with
that of the ‘simple’ super-orthogonal code that results from our
construction procedure. Notice that the traditional SOCC uses
all the i possible signals while the ‘simple’ code uses only U
signals.
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Fig. 5. Trellis diagram of (a) ‘simple’ SOCC (b) traditional SOCC

Because of the super-orthogonal nature, after an initial in-
crease, the size of the signal set becomes a constant for a given
state complexity irrespective of the change in the code rate ( W ).
If we represent this signal set as a matrix k , then, for a spe-
cific number of states @ , as the code rate decreases, k becomes
a rectangular matrix of a maximum size of @mln� where � is
equal to 
��W . The rank of this matrix is o ` since there are o ` lin-
early independent rows and their corresponding complementary
sequences. Usually �p1q@ columns of k will be a linear com-
bination of the rest @ columns. However, by construction, asWsr=9 with a fixed number of states, several columns of k will
be the same. So, it may be possible to puncture one or more of
these columns to obtain any arbitrary rate with minimal coding
loss.

The decoder used in this work is a standard turbo decoder
[14,3] (with log domain sum-product algorithm). This can be
implemented as min*(.) operation which is defined as

min t&�vu6��w�!xF 1 ln �+y
z{,|y
}�!
F min ��uL��w�!d1 ln �~�,�y/� z ' } � !�H (1)

IV. NUMERICAL RESULTS

The parent code that we apply our algorithm to is a rate 
�&�
recursive systematic convolutional code. The feed forward and
feedback polynomials of this code are j/h and ��j in octal, re-
spectively. Two such codes are concatenated parallely through
an interleaver of size 1024 bits. The state space of each con-
stituent code is divided into four subsets (m = 4) of four states
each. The mapping technique explained in the example in sec-
tion III is applied. Additive white Gaussian noise (AWGN)
channel is considered. All the results that are shown here are
obtained after 15 iterations unless specified otherwise.
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Fig. 6. Rate 1/3 parent code vs Rate 1/63 code

Figure 6 shows the coding gain that is achievable in using this
technique in order to reduce the code rate from 
��j to rate 
��>0j .
Since both the parent codes are systematic, one systematic out-
put can be punctured and hence we obtain a rate ���j to begin
with. It can be seen that for a 1024 bit interleaver, this simple
scheme can achieve approximately 0.9 dB in additional coding
gain.
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Fig. 7. Performance of the proposed encoding scheme as a function of state
complexity (rate 1/63)

In Figure 7 the performance of the proposed construction
method as a function of number of states in each component
code is shown. As explained before, a maximum of only i sig-
nals will be used for a i -state code. So, to isolate the influence
of the number of states on the performance, we have plotted
the performance of a ?> -state code that uses only i signals1.
Though not shown here, based on our simulations, we realize
that component encoders with two and four states are not strong
enough to handle such low rates. Since one of the main ob-�

In order to make this
���

-state code to use only � signals, we divide the state
space into two subsets of � states each and apply the algorithm as shown in
Figure 4.
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Fig. 8. Performance of various PCCC schemes with rate 1/32 constituent codes.
(a) Traditional SOTC (b) Code constructed using our algorithm (c) Code
constructed using our algorithm (with less number of code words)

jectives of this work is to reduce the state complexity, we have
not simulated codes with more than ?> states each. From the
results, we can see that a marginal gain of about 0.15 dB is
possible in doubling the number of states.

The performance degradation of this code with respect to the
corresponding traditional SOTC is evaluated and the result is
shown in Figure 8. As can be noticed, the degradation is less
than 0.1 dB at BER of ?9"'�� . However, our code structure results
in about 75% complexity reduction at the decoder compared to
the traditional SOTC.

The complexity is calculated in terms of total number of oper-
ations needed to decode one information bit. Since the code rate
and number of iterations are same for all the code structures, the
number of states is the only parameter that decides the complex-
ity for a given interleaver size. Since the traditional SOTC for a
rate 
��>&j requires a total of 
��i states compared to our scheme
which require j%� states in total, a complexity reduction of about
75% is achieved.

In Figure 9, we have plotted the bit and frame error rate of a
low rate code constructed by the application of our algorithm to
the 8-state rate 1/2 turbo code used in the 3G standard. Since
this standard includes wide band applications, it is worth eval-
uating the gain that is achievable by the application of our al-
gorithm to this specific code. The results shown here are after
performing 10 iterations. A performance gain of about 1.2 dB
in terms of bit error rate or frame error rate is obtained.

V. CONCLUDING REMARKS

We have proposed a simple method to generate a class of very
low rate turbo codes from rate ���� constituent codes that can
be used for combined coding and spreading in spread spectrum
systems. Apart from being rate compatible for various rates,
these codes allow for low complexity encoder and decoder im-
plementation.
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Fig. 9. Performance gain in BER and FER by the application of our algorithm
to the � -state rate 1/2 turbo code used in 3G standard
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