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ABSTRACT 

This paper describes the hardware implementation of a real-time, 
large-scale, multi-chip FPGA (Field Programmable Gate Array) 
based emulation engine with a capacity of 10 million ASIC 
(Application Specific Integrated Circuits) equivalent gates. 
Attainable system operation frequency can exceed 60 MHz, and 
the system throughput has been empirically verified to achieve 
600 billion 16-bit additions per second. The emulator is custom 
designed to maximize the performance and resource utilization 
for a range of telecommunication and digital signal processing 
applications. With its high-speed interconnect architecture and 
large external I/O bandwidth, the emulator excels in prototyping 
real-time systems that have strict timing, logic capacity, and data 
rate requirements. Our development efforts are guided by such 
ongoing projects as ultra-wide band (UWB) and multi-channel-
multi-antenna (MCMA) radio systems research.  

Categories:  
I. Computing Methodologies 
I.6 Simulation and Modeling 
I.6.7 Simulation Support Systems  
Subject Descriptors:  
Hardware Emulation Engine 

General Terms:  
Algorithms, Performance, Design, Experimentation, 
Verification 

Keywords:  
FPGA, Hardware Emulation, Rapid-Prototyping 

1. INTRODUCTION 
With the increasing complexity and integration of digital and 
analog systems, the computing power required for detailed cycle 
accurate and bit-true software simulation of even a single 
subsystem can easily become prohibitive. In addition, the 
excessively long and non-deterministic execution time of the 
simulation makes the accurate verification of integrated systems 
with heterogeneous components very difficult. In communication 
systems, digital base-band processing needs to be verified at the 
same data rate as the analog radio front-end in order to test the 
performance of the system in a real-world environment. This 
typically requires the whole simulated system to be run at least at 
tens of megahertz speed, with cycle accuracy and bit-level 
detailed modeling of the final target system. This is commonly 
100,000 to 1 million times faster than what the best simulation 
software can do at the same abstraction level [1].  

One alternative to simulation is hardware emulation. A typical 
hardware emulator utilizes an array of FPGAs to directly emulate 
the digital portion of the system using reconfigurable hardware 
instead of software running on general-purpose processor. Using 
various schemes of inter-FPGA connection topologies, these 
emulators can achieve overall system performance up to a few 
megahertz. A typical use for such an emulator would be in-
circuit verification of a gate-level netlist with exhaustive test 
vectors. Another alternative is rapid prototyping based on FPIC 
(Field Programmable Interconnect Component), FPCB (Field 
Programmable Circuit Board), and FPGA technologies. These 
systems enable full functional verification at system operation 
frequency around a few tens of MHz, and offer the flexibility of 
integrating heterogeneous components, such as FPGA emulated 
ASIC designs, DSP chips, and general-purpose processors.  

Ideally, a real-time reconfigurable hardware emulator should 
have multi-million ASIC gate logic capacity, identical system 
operation frequency to the final target system, and be able to 
seamlessly integrate multiple heterogeneous components. This 
presents three major challenges. First, in ASIC emulation, the 
gate-level ASIC structural netlist is retargeted to the FPGA 
technology, which can reduce the on-chip performance of a 
single FPGA emulated system to a fraction of the ASIC 
performance. Second, ASIC designs can be much bigger than the 
capacity available on even the state-of-the-art FPGA chips. 
Therefore, the original ASIC netlist needs to be partitioned into 
multiple pieces, each implemented on a different FPGA, which 
can lead to inter-FPGA routing congestion. Sometimes high pin-
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count crossbar chips can be used to maximize local inter-FPGA 
connection while maintaining global routability at the expense of 
introducing additional delays between FPGAs. Due to 
insufficient routing resources, time-multiplexed virtual-wiring 
[2] may be necessary for emulation systems, at the expense of 
further reducing the overall system speed. Third, most 
commercial emulators either have limited external parallel I/O 
bandwidth or complex high-speed serial links, which makes it 
difficult to connect to analog front-ends. Furthermore, a typical 
way to implement external I/O connections is through buffered 
memory to synchronize the interface between digital and analog, 
which increases the interface design complexity. 

Although real-time emulation of arbitrarily fast ASIC designs is 
impractical, designs with a clock frequency below 60 MHz can 
be prototyped using the current FPGA technology. For a range of 
low-power communication system designs, a low system clock 
frequency is desirable to save power. Direct-mapped parallel 
architectures are a straightforward way to achieve the necessary 
performance at the reduced system operation frequency [3], 
therefore allowing real-time emulation with FPGAs, a preferred 
solution. The Berkeley Emulation Engine (BEE) was built 
especially for this range of applications. The BEE system has the 
large design capacity of a hardware emulator—10 million ASIC 
equivalent gates per module, the extensibility of a rapid-
prototyping system, a large amount of simple and flexible 
external interconnects, and the real-time system operation speed 
exceeding 60 MHz. It is primarily used to emulate real-time 
communication and DSP algorithms. In addition, a parallel path 
to the prototyping flow leads automatically from the top-level 
description to an ASIC implementation. The targeted 
communication systems include UWB (Ultra-Wide Band) radio 
and MCMA (Multi-Channel-Multi-Antenna) applications. Both 
the UWB radio with 1.2 GHz sample rate and the MCMA radio 
with up to 16 parallel radio front-ends have the worst-case 
external I/O bandwidth requirement of up to 90 gigabits per 
second, while the low-power criteria forces the digital portion of 
the system to have multi-million-gate parallel processing 
components running at speeds up to 60 MHz.  

The rest of this paper describes the hardware architecture of the 
BEE system in Section 2 and signal integrity issues along with 
the solutions found in Section 3. Hardware performance results 
are presented in Section 4. Due to the scope of this paper, the 
integrated design flow targeting both the BEE and the ASIC 
implementation can only be briefly introduced in Section 5. 
Finally Section 6 concludes the paper. 

2. SYSTEM ARCHITECTURE 

2.1 Overview 
Figure 1 depicts the overall structure of the BEE system, which 
consists of three major components: BEE Processing Units 
(BPUs), analog front-ends, and host servers. Users first create 
their target design under Matlab Simulink [4], then synthesize on 
the host server into FPGA bit-streams, which are downloaded 
later through Ethernet to BPUs for emulation. Each BPU can 
directly connect to multiple analog front-ends through either 
Low-Voltage TTL (LVTTL) or Low-Voltage Differential 
Signaling (LVDS) signals. Multiple BPUs can also be directly 
linked to form aggregated systems to increase emulation 

capacity, or networked through the analog front-end, such as a 
RF communication front-end, to form wired or wireless 
asynchronous networks for complete multi-node communication 
network testing in realistic channel environments. 

 

Figure 1: BEE system overview 

2.2 BEE Processing Unit 

 

Figure 2: Complete BPU with a radio front-end 

 

As shown in Figure 2, the core of a BPU is the Main Processing 
Board (MPB), which provides the computation power for the 
system. Eight riser I/O cards, vertically mounted to the MPB, 
provide a total of 2400 external connections off the BPU. A 
StrongARM-based single board computer (SBC) establishes the 



 

connection between the BPU and the host server through a 
10Base-T Ethernet link. A separate power board (not shown in 
Figure), along with two modular AC/DC converters, are capable 
of supplying the system up to 800 W. 

Each MPB has 20 Xilinx Virtex-E 2000 chips, 16 ZBT (Zero-
Bus Turn-around) 133 MHz synchronous SRAMs, and 8 
VHDM-HSD (Very High Density Modular-High Speed 
Differential) I/O connectors for front-end connection and system 
expansion. 

2.3 On-board Inter-FPGA Connections 
As for any hardware emulator, the effectiveness of the inter-
FPGA connection topology directly affects the performance, the 
algorithm mapping, and routing capability. The basic 
architectures analyzed in the literature are mesh (Figure 3a) [5], 
and partial crossbar (Figure 3b) [6], [7]. Previous research has 
shown that the partial cross bar is one of the most effective 
architectures [8], [9], and hybrid architectures, such as the hybrid 
complete-graph and partial-crossbar (HCGP, Figure 3c), have 
also been proposed to out-perform pure partial-crossbar 
structures [10].  

 

Nevertheless, interconnect structure is not the only factor that 
determines the overall emulator performance. The logic capacity 
of each individual FPGA, that is, the granularity of the emulation 
system, also plays an important role in achieving desired 
performance. On one hand, high-density FPGAs can sometimes 
relax the inter-chip connection requirements by absorbing more 
tightly integrated design modules into each FPGA. On the other 
hand, FPGA utilization is directly affected by the interconnect 
topology. In an interconnect-constrained multi-FPGA system, the 
FPGA utilization can easily be driven below 50%. Simply 
increasing the number of I/Os on the FPGAs often helps little in 
reducing the routing congestion while it simultaneously increases 
the printed circuit board (PCB) design complexity. 

Given the BEE system target design capacity of 10 million ASIC 
equivalent gates, 20 high-density Xilinx XC2000E FPGA chips 
are needed, each with a capacity to emulate half a million logic 
gates. Then, to maximize the interconnect bandwidth between 
the chips while achieving above 60 MHz link speed, all 20 
FPGA chips need to be placed on the same PCB. Finally, from 
available Xilinx FPGA packages, the 680-pin chip with 512 user 
I/Os was chosen to keep PCB design complexity under bound. 

To match the direct-mapped architectures, which typically have 
more local connections than global routes, 16 out of the 20 
FPGAs are used to the form a 4-by-4 array, and the 8-way local 
mesh structure is used to provide local interconnect, thus creating 
a uniform and tightly integrated reconfigurable fabric among the 
FPGAs. Each mesh link is 48 bits wide and can be configured at 
run-time for bi-directional signaling. The FPGAs on the 
periphery of the board have either 3 or 5 neighboring FPGAs, 
thus the remaining links are routed to the nearby off-board 
connectors. 

Although the local 8-way mesh is an effective interconnect 
strategy for direct-mapped architectures, it has two major 
weaknesses. First, long connections between large design 

modules, such as in a feedback loop, compete not only with local 
connection for the available channels, but also FPGAs along the 
path. For example, if a global 8-bit bus needs to be connected 
between the top-left FPGA and the bottom-right FPGA, then 
using only the local-mesh, the connection needs to pass through 
the two FPGAs in the middle of the board. Each of the FPGAs 
has to dedicate 16 I/O pins to pass-on the signal. Therefore, the 
route-through FPGA I/O pin resources are reduced by two times 
the width of the global connection. Second, control logic, which 
may be a single large module that connects many data-path 
modules, competes with data-path components for FPGA 
capacity and routing channels.  

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

XBAR XBAR XBAR

FPGA FPGA FPGA FPGA

XBAR XBAR XBAR

A) 8-way Mesh

B) Partial Crossbar

C) HCGP  

Figure 3: Various multi-FPGA interconnect 
topologies 

In light of the above two weaknesses, a global mesh was 
designed on top of the local mesh. Four FPGAs are used, one in 
each quadrant of the board. Since these FPGAs can be used as a 
crossbar for global routing, they are dubbed XBAR for 
distinction. Each XBAR connects to the neighboring four FPGAs 
in the same quadrant via a 36-bit wide link and to other XBARs 
through a 96-bit link in a 3-way second layer mesh. The resulting 
routing architecture is depicted in Figure 4 and called a Two-
layer Mesh. Under this structure, global connections can be 
routed though the XBARs independent of the local mesh. In 
addition, since each XBAR has a total of 288 inter-XBAR 



 

  

connections and 144 XBAR-to-FPGA connections, the 2-to-1 
ratio ensures efficient utilization of the global routing channels 
between non-neighboring FPGAs. Furthermore, XBARs can be 
effectively used for central control logic in a quadrant, while the 
data-path is distributed among the four FPGAs.  
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Figure 4: Second layer XBAR mesh 

When compared to other interconnect topologies, such as simple 
8-way mesh or HCGP, with the same four-by-four array of 
FPGAs used in BEE, the Two-layer Mesh has on average a lower 
number of hops between FPGAs, which in general leads to lower 
inter-chip latency. However, this design limits the scalability of 
the system. Although up to four BPUs can be directly connected 
using external connections, the increased latency and the reduced 
connection bandwidth between BPUs drastically reduces the 
usability of large systems scaled in this fashion. 

2.4 External I/O Connections 
The simplest way to link the BPU to analog front-ends or other 
BPUs is through external connectors using LVTTL signals. 
However, when external cables are used, the LVTTL signal 
strength degrades rapidly with the increase of cable length, 
limiting the maximum link speed to less than 40 MHz over a 1 
meter long ribbon cable. Therefore, when higher than 60 MHz 
links are desired, Low-Voltage Differential Signaling is used 
instead. LVDS links can achieve up to 200 Mbps speed over a 2 
meter twisted-pair cable. 

Using LVDS solves some of the speed and cable length 
problems; however, it also creates two new problems. First, 
LVDS signal termination is asymmetrical. Second, the LVDS 
drivers used on the Xilinx Virtex-E series FPGAs require 
external source resistor networks to achieve the standard LVDS 
signal voltage levels [11].  Although both of these problems have 
been solved using on-chip active termination as provided in the 
Xilinx Virtex II chips, due to the unavailability of the newer 
generation FPGA chips at the time of BEE construction, external 
riser card solution had to be used to maximize the reusability of 
BEE hardware for many applications. 

Riser cards are designed to bridge this link between the MPB and 
the physical cables to analog front-ends or other BPUs. The 2400 
external I/Os from the MPB are broken into 8 groups of 300 

signals each. Each group connects to one riser card though a 400-
pin connector. Each signal pair of the connector is individually 
shielded from the other signals, thus lessening cross talk and 
allowing high-speed differential signals. Immediately after the 
connector, signals are terminated with appropriate resistor 
networks on the riser card, and then routed to six 68-pin SCSI 
(Small Computer Systems Interface) connectors. Using external 
cables, connections can be established between any two SCSI 
connectors, therefore also between any two BPUs, a BPU and a 
front-end, or to form a BPU self loop back. The choice of SCSI 
connector and cable is mainly due to the high-speed differential 
signal standard used in SCSI, and the availability of high quality 
cables and connectors.  

Both LVDS and LVTTL signaling standards can be used on the 
riser cards by simply populating the resistor termination network 
with footprint compatible resistor chip array packages with 
different termination structure. In addition to I/O functions, 
custom riser cards can also be used as expansion modules to 
integrate heterogeneous components into the BEE system, such 
as DSP or general-purpose processors, or high-density memory 
components.  

2.5 System Controls 
Another key feature in the BEE system design was the ease of 
information propagation between the user and the emulator. The 
use of the integrated single board computer not only removes the 
requirement of an external service computer, but also provides 
the Ethernet interface as a convenient link between the user and 
the BEE system. With a 206 MHz Intel StrongARM Processor, 
32 MByte of SDRAM, 16 MByte Flash ROM, 10 Base-T 
Ethernet controller and connector, and a compact flash slot for 
expansion, the SBC can support complex software, such as Linux 
operating system, Apache web server, and other BEE servicing 
programs. Therefore, the users of the BEE system can easily log 
into each BPU and perform the necessary tasks. With the 
compact flash slot, additional storage, such as a micro drive or a 
compact flash memory card, can further expand the storage 
capacity of the SBC.  

Through the SBC Linux network login interface, the users can 
remotely control all functions of the system, such as uploading 
design files and the read-back of emulation results. The SBC 
connects to the 20 FPGAs on the MPB through a configuration 
FPGA, which mainly serves as a bi-directional signal multiplexer 
between the 16 general-purpose I/O lines from the SBC to over 
100 control signals on the MPB, some of which are further 
connected to the power supply system and chassis control 
switches. Shown in Figure 5, the control functions of the entire 
BPU can be classified into the following five categories: 

1) programming the FPGAs 
2) data read-back from the FPGAs 
3) clock domain control 
4) power management 
5) thermal management  
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Figure 5: BEE configuration subsystem 

Processing FPGAs can be programmed by the SBC using either 
the Xilinx SelectMAP mode [12] or JTAG [13]. The JTAG daisy 
chain originates from the configuration FPGA, loops through all 
20 processing FPGAs, and back to the configuration FPGA. It 
can be driven directly by the SBC or through an external header 
using a JTAG cable from a PC. Due to its faster programming 
speed, the SelectMAP is used as the primary programming mode. 
The 14-bit configuration bus originates from the configuration 
FPGA and routes through all 20 FPGAs.  

Read-back of the FPGA signal states can be achieved using the 
JTAG or through the user bus interface. Read-back directly using 
the JTAG interface is not only too slow, but also too complex for 
convenient usage in some applications. Using Xilinx ChipScope 
ILA (Integrated Logic Analyzer), synchronous data can be 
selectively recorded in on-chip RAM at the same rate as the 
design, then read back through the JTAG interface and displayed 
intuitively as waveforms. However, the JTAG speed limitation 
still makes it hard to achieve read back at high data rate. 
Therefore, a user bus interface was designed to provide both run-
time upload and read-back capability. After initial programming, 
the 14-bit configuration bus can be used for communication 
between the FPGAs and the SBC. Between the FPGAs on the 
user bus, a throughput of 10 Mbytes per second can be achieved, 
however, between the SBC and FPGA, the throughput is limited 
by the SBC to 2 Mbytes per second.  

Each FPGA on the MPB can be simultaneously driven by four 
different clock sources. The primary clock provides a 
synchronous clock domain throughout the entire board. The 
source of the primary clock is a configurable PLL clock driver, 
whose output frequency can be digitally programmed between 1 
MHz and 200 MHz by the SBC with a resolution of under 5 
ppm. The secondary clock consists of four independent clock 
domains throughout the MPB, one for each quadrant. Each 
quadrant clock can be independently driven from an external 
SMA connector. The tertiary clocks independently provide each 
of the 16 peripheral FPGAs and the four XBARs with two clock 
sources. Both clocks originate from a SCSI connector on one of 
the riser cards; one uses LVTTL signaling, the other uses LVDS.  

By implementing a simple resource sharing program on the 
control Linux module, multiple users can access and run 
different designs on a single BPU simultaneously. Spatially 

different users can be allocated to different FPGA chips or 
different quadrants of the board. Temporally different users are 
served in a first come first serve fashion by specifying the 
duration of the FPGA chip reservation. When the reservation 
expires, other users can reclaim the FPGA. In practice, each BPU 
can support between 4 to 8 users depending on contention for 
shared resources such as system main clock, configuration bus, 
and external I/Os. 

2.6 PCB Design & Testing 
Figure 6 shows the photo of the main processing board—a 26 
layer PCB, with a width of 58 cm and depth of 53 cm, which is 
the largest and the most complex board in the BEE system. Table 
1 shows statistics of the PCB. 

Table 1: Main processing board PCB  

Component count 3400 
Pin count 28611 
Layout area (sq cm) 2754.8 
Number of nets 8493 
Number of connections 19877 
Manhattan distance (km) 1.167 
Etch length (km) 1.316 
Via count 32334 

 

 

Figure 6: A main processing board and a riser card 

 

The complexity of the MPB leads to numerous testing 
challenges. A rapid diagnostic method is needed to verify 
connections between the FPGAs and the SCSI connectors 
through the riser I/O boards. The connectivity diagnostic is 
separated into two stages. The first stage is to verify connections 
between the peripheral FPGAs and the external SCSI connectors. 
The FPGAs are configured to output a distinct sequence of 
patterns to each of the SCSI connectors through the riser I/O 
boards; then an external SCSI cable tester is used to display the 
pattern on LEDs for each of the SCSI connectors. Therefore, all 
external connections can be verified visually. Second stage is to 
verify all internal on-board connections between the FPGAs.  



 

  

2.7 Mechanical Issues 
Given the large size of the MPB and the worse case power 
consumption of 400 W, the BPU mechanical chassis has to not 
only accommodate the MPB and all the power supplies, but also 
provide active ventilation for the heat dissipation.  

Figure 7 is a cross section photo of the BEE chassis. The MPB 
slides into a slot in the middle of the chassis dividing it into the 
upper and lower chambers. The lower chamber contains all the 
power supplies, SBC, and all internal wires. On the front panel, 
seven high flow fans are used to cool both chambers. Cold air is 
pulled into the chassis from the fan panel side, and then 
exhausted from the opposite panel, thus increasing the airflow 
speed. Detailed thermal modeling of the chassis has been used to 
determine the maximum allowed power consumption for each 
FPGA. When only using the chassis fans, the FPGAs can operate 
safely up to 12 W each; if passive heat sinks are used, then over 
20 W power consumption can be tolerated [14]. All FPGAs are 
continuously monitored by the configuration FPGA for thermal 
runaway. If any of the FPGA junction temperatures exceeds 
80◦C, the configuration FPGA automatically shuts off the main 
power and alerts the user through the separately powered SBC. 

 

 

 

Figure 7: BEE chassis cross section  

3. SIGNAL INTEGRITY 
As for any large-scale high-speed PCB design, signal integrity is 
a challenging obstacle in achieving the desired performance 
within the BEE system. Signal integrity solutions taken in BEE 
can be classified into the following categories: crosstalk 
reduction, impedance control, signal reflection reduction, delay 
matching, and supply voltage bypassing. 

The root of the crosstalk problem is the large mount of signal 
routes on the MPB board. With a given PCB board size, high 
routing density can cause severe cross talk issues that drastically 
slow down the overall performance. Thus, the primary method 
for improving signal integrity is to reduce the routing density, 
which can be achieved by increasing the PCB area and the total 
number of PCB layers at the expense of increased manufacturing 

cost. However, this solution is limited by the PCB manufacturing 
technology.  

The MPB PCB utilizes the largest form factor that was available 
from the PCB fabrication vendor at the build time, and the 
number of layers was determined by the routing necessity. 
Routing density is measured in terms of the space between any 
adjacent traces, which is kept above 8 Mils between traces on the 
same layer to reduce crosstalk. In addition, all signals designed 
to run above 10 MHz are routed on the internal PCB layers as 
striplines to further reduce inter-layer crosstalk by sandwiching 
the traces by a power or ground plane. Nevertheless, due the 
large size of the PCB, long traces, such as between XBARs, 
requires increased inter-trace spacing to reduce the capacitive 
coupling. 

On the MPB, an impedance of 50 Ohm for single ended and 100 
Ohm for differential signals was chosen for approximate 
matching with signal drivers and other PCBs. Since the external 
connections use LVDS signaling standard, each differential 
signal trace pair was routed together with fixed spacing. PCB 
layer thicknesses and trace widths were chosen to ensure uniform 
impedance value throughout the board. Similar rules were also 
used for the riser I/O card PCB design to control impedance 
matching. 

Due to the large PCB size, connections between distant 
components on the board, such as between XBARs, typically 
have trace lengths exceeding 30 cm. The 8 mA slow I/O buffer 
does not exactly match to 50 Ohm impedance, thus signal 
reflections can degrade signal quality. Therefore, series resistor 
terminations are used on these long traces to attenuate the 
reflections. External LVDS connections typically require the 
termination resistors to be placed within a couple of centimeters 
from the FPGA chip. As discussed in section 2.4, to increase the 
reusability of the MPB, external terminations are placed on the 
riser I/O cards, increasing the distance to approximately 6 cm. 
Although this approach reduces the maximum LVDS link speed, 
the external differential links can still operate at 160 MHz speed. 

Careful routing of the clock traces is critical for reducing clock 
skew on a large PCB. Since the main clock originates from the 
center of the board, if routing to each FPGA followed the 
shortest route, the trace length would vary over 15 cm between 
the near and far chips. Therefore, all clock traces are routed 
manually, matching lengths to within one tenth of a millimeter, 
and are isolated from other signal traces by using dedicated PCB 
layers. 

Ground bounce is another problem due to high switching activity 
on multiple high pin-count FPGAs. In extreme cases, the voltage 
drop could be so significant that the chip can momentarily 
malfunction and produce errors. Therefore, sufficient bypassing 
capacitors of various values are necessary to ensure the proper 
operation of the system. There are over 2400 bypassing 
capacitors on the MPB, which are divided into four tiers of 
values: 47 nF, 100 nF, 100 µF and 2200 µF.  

4. TEST AND MEASUREMENT 
After the assembly of all four BPUs, a series of tests were 
performed to verify the functionality, as well as to determine the 
performance and capacity of each system. Functionality tests 



 

verify the basic operation of the system, such as system power up 
with proper voltage levels, programming all FPGAs though 
JTAG and through SBC Ethernet link, and so on. Performance 
tests measure the maximum clock speed, internal inter-chip 
speed, and external link speed. Capacity tests gauge the 
maximum design size and the throughput of the system. All 
performance tests are done using designs implemented directly 
on the FPGAs, rather than through logic analyzer measurements. 
Therefore, tests can be easily repeated on different BPUs for 
consistency and convenience.  

4.1 System Clock Rate 
The maximum clock rate of the system is determined through the 
clock speed test. The programmable system main clock is slowly 
ramped from 1 MHz, until the test structure indicates an error. 
This clock rate has been measured to be above 160 MHz for all 
four BPUs. Since the internal clock rate of the clock speed test 
design on the FPGA is estimated to be above 180 MHz with 
Xilinx post placement and routing timing analysis, the failure at 
160 MHz is most likely due to the distribution of the main clock 
on the PCB. Therefore, 160 MHz is determined to be the upper 
bound of the distributed system clock. However, in practice, the 
clock rate usually does not exceed 100 MHz because of the 
design style and goals, and if higher clock rates are desired, on-
chip delay-locked loops can be used to double or quadruple the 
clock frequency on the FPGA.  

4.2 On-board Internal Connections 
The inter-FPGA link speeds are one of the determining factors of 
the overall system performance. Nevertheless, due to the vast 
amount of links, the precision measurement of the link speed is 
usually tedious and time-consuming. Instead of measuring the 
links speed for every single connection individually, the speed is 
measured on the whole group of signals between two chips, that 
is, 48 bits between FPGAs, 96 bits between XBARs, and 36 bits 
between FPGAs and XBARs. The source FPGA implements a 
pseudo-random number generator to create for every clock cycle 
a unique word as well as the checksum bits. The data word and 
its checksum are transmitted through the link under test to the 
destination FPGA, where the data word is extracted and its 
checksum recomputed and compared with the transmitted 
checksum. If the two checksums are not matched, an external 
LED indicator is lighted. The inter-FPGA links are registered on 
both the source and destination FPGA, and the registers are 
packed into the I/O block to minimize the effect of on-chip 
routing on the inter-chip link speed. The designs on both the 
transmitter and receiver side are capable of running at over 158 
MHz on-chip as reported by the Xilinx post placement and 
routing timing analysis. Since each FPGA only directly connects 
to one LED, several sets of tests are needed to cover all the links 
on the MPB, each exclusively covering a portion of the links on 
the board.  

As summarized in Table 2, using the 12 mA slow LVTLL I/O 
buffers, the internal link speed on all BPUs can achieve at least 
60 MHz. The relatively large speed variations on the same BPU 
is largely due to the link trace length differences. In general, the 
adjacent FPGAs have much higher link speeds than the longer 
range links, such as between XBARs. Illustrated in Figure 8, the 
link speed profiles for each BPU look very different from each 

other; however, the mean and standard deviation only varies less 
than 5% among different BPUs.  

 

 

Figure 8: Internal link speed histogram 

Table 2: Internal link speed statistics  

 BPU1 BPU2 BPU3 BPU4 
Mean (MHz) 90.2 95.1 92.7 98.1 
STD (MHz) 16.3 19.1 17.2 19.1 
Min (MHz) 60.3 62.5 63.5 65.5 
Max (MHz) 116 136 137.5 145.8 

 

The connection speed between a FPGA and a SRAM can be 
determined by first writing a sequence of random words to the 
SRAM and then reading them back for comparison. Since the 
connection is always less then 5 cm and routed similarly 
throughout the board, the maximum speed of above 110 MHz is 
achieved consistently throughout all FPGAs on all BPUs. 

4.3 External Connections 
External link speeds can also be determined using similar 
methods as internal links. In this case, an external cable is used 
to link between any two SCSI connectors on either the same or 
different riser cards. The data link loops through the riser I/O 
card and the external cable, then back through the riser I/O card 
and connector to either another FPGA or back to the same 
FPGA. In addition to the LVTTL standard, external links can use 
LVDS standard. Due to the addition of riser I/O cards and the 
external 1 meter long cable, when using LVTTL, the maximum 
external links speed is between 30 MHz to 50 MHz; when using 
LVDS, the maximum speed is between 160 MHz and 210 MHz.  

4.4 System Configuration 
Another important performance factor is the run-time 
configuration and read-back speed. As explained in Section 2.5, 
the configuration bus originates from the SBC, and is then 
multiplexed by the configuration FPGA to the rest of the 20 
FPGAs. The same bus is used at run-time for communication 



 

  

between the SBC and the FPGAs. Between the configuration 
FPGA and the rest of the chips, the bus has been verified to 
operate at 10 MHz. However, due to the Linux kernel overhead 
and the StrongARM GPIO (General Purpose Input and Output) 
speed limitations, the link between the SBC and the 
configuration FPGA can only achieve up to 2 MHz. Furthermore, 
due to the 10-base-T Ethernet link interface, the connection 
between the SBC and client workstation is limited to 10 megabits 
per second, which in practice is typically 7 Mbps. Given the 
above limitations, the entire process of downloading a bit file to 
the SBC and then programming it onto the FPGA, takes about 2 
seconds, which is substantially faster than using the JTAG 
interface, which takes about 30 seconds. At run-time, the 
communication between the client PC and the FPGA on the 
MPB is limited to about 1 MByte per second. 

4.5 System Design Capacity 
Performance of the system can also be measured with its 
capacity in terms of the maximum number of operations per 
second. To verify the capacity, a benchmark design was 
constructed to fully utilize all resources available on the main 
processing board. The benchmark design is a 10,240-tap 16-bit 
fixed-coefficient FIR (Finite Impulse Response) filter. Depicted 
in Figure 9, each filter tap is implemented with one 16-bit adder, 
one 12-bit constant multiplier, and one tap-delay register. 
Multiple taps are cascaded along with additional registers to 
reduce input fan-out and pipeline inter-chip connections. Each 
FPGA implements 512 taps, and all 20 FPGAs aggregate to 
10240 taps.  

 

Figure 9: A single FIR tap implementation  

As summarized in Table 3, this benchmark FIR design illustrates 
that each BPU is capable of operating at full capacity with a 
throughput of up to 600 billion operations per second, while 
emulating an 8 million ASIC gate equivalent design. Since the 
FIR design does not utilize any of the on-chip dedicated 640 
Kbit RAM components, the total capacity upper bound 
including memory is at least 10 million gates per BPU. 

Table 3: 10,240-tap FIR filter design statistics 

FPGA utilization 99% of 19200 slices 
[In all 20 FPGAs] 

Max Clock Rate 28.5 MHz 
System Operations per Second 
(addition & multiplication) 

583.68 billion 

ASIC equivalent gates (per 
FPGA) 

401000 

ASIC equivalent gates total 8 million 
Power consumption 2.5 W per FPGA 

5.  DESIGN FLOW 
In order to take full advantage of the large design capacity 
offered by BEE, an automated design flow using high abstraction 
level description is essential to the practical usefulness of such 
system. Figure 10 illustrates the current BEE design flow.  
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Figure 10: BEE design flow 

The main goal of the BEE design flow is to enable 
communication algorithm designers to use system-level design 
tools to create hardware designs that can be both implemented 
rapidly on a BEE system and eventually taped out as an ASIC 
chip. The chosen system design tool is Simulink from 
Mathworks with the Xilinx System Generator toolbox [15]. On 
the system-level, the user is provided with a set of hardware-like 
components that model the cycle-to-cycle behavior of the 
hardware and simulate using fix-point numbers. The block 
library includes low-level components, such as an adder and a 
multiplier, and high-level components, such as FIR filter and 
FFT block. Hardware specific issues, such as word-length, 
quantization effects, and latency, can be controlled directly by 
the system designer. In addition, different system 
implementation architectures can be conveniently explored. 
High-level performance estimates, such as the speed, area, and 
power, allow different architectures to be compared. After 
constructing the design in Simulink, the BEE compiler is used to 
generate VHDL structural netlist that is functionally equivalent, 
bit-true, and cycle-accurate with the original Simulink design. 
The same VHDL netlist is used for both FPGA and ASIC 
implementations, but with each block implemented with either 
FPGA or ASIC optimized cores depending on the target 
technology. Therefore, the functionality of each library block can 
be maintained between the FPGA and ASIC implementation, 



 

while the block-level performance is not sacrificed for either 
technology. 

Using the BEE design flow, a design of 400,000 ASIC 
equivalent gates can be generated and implemented on the BEE 
hardware in less than an hour. Therefore, rapid design changes 
are practical and the impact of a change on the performance can 
be verified directly on the BEE hardware, which shortens the 
design cycle of a typical communication system. Furthermore, 
when connected to radio front-ends, the entire system can be 
tested at the target clock rate, and the system performance 
metrics, such as bit error rate, can be directly measured and 
verified. 

6. CONCLUSION 
Fully exploiting the design space available to the contemporary 
designer of digital signal processing systems is difficult with 
traditional design automation tools. Particularly, if design time 
is to be minimized, the use of algorithm level design capture is a 
necessity. Furthermore, the run-time through the design flow 
from top to bottom usually directly affects the amount of design 
space exploration that is practical. The BEE hardware emulator 
allows rapid prototyping for direct-mapped communication or 
DSP designs. Running low-power applications in real-time 
facilitates the verification of complete systems instead of just 
verifying the functionality of sub-systems, one at a time. This 
provides more ASIC implementation choices to be explored 
without sacrificing time-to-market. 

A component library targeted for signal processing is used for 
BEE designs to accelerate the design process and capture 
application domain specific information. By constraining the 
application domain to low-power signal processing, reasonable 
assumptions can be made about the required optimizations. 
Moreover, the components guarantee that the design can be 
implemented on both FPGA and ASIC technologies with 
identical functionality. 

The BEE hardware architecture is tailored to accommodate a 
class of wireless communication applications. The sub-designs 
are assumed to connect primarily locally, thus emphasizing the 
fast links between the FPGAs. Similarly, future radio systems 
are thought to require increasingly complex digital computing to 
replace some of the analog signal processing. This contributed to 
the emphasis on the I/O channel capacity currently implemented 
on BEE. 

Currently, four BEE systems have been constructed, and several 
radio designs are under development. For example, a 2.4 GHz 1 
Mbps narrow band radio has been demonstrated on BEE. In 
addition, an ultra-wide band radio front-end has been developed. 
The operation speed and capacity of BEE has exceeded the 
original design goal of 100 to 200 giga-operations per second at 
50 MHz. Also, the system has been used for more general 
purpose computing applications, such as high-level 
communication network simulation, wireless channel modeling, 
and image compression. The real-time emulation capability 
along with the easy-to-use fully integrated design flow make the 
BEE system a indispensable tool in the next generation 
communication system design. 

The future work in this project includes the construction of 
larger communication environments based on multiple BPUs 
and radio front-ends. These environments allow system-level 
issues to be examined on top of the configurable wireless 
communication network.  
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