

Implementation of BEE: a Real-time Large-scale
Hardware Emulation Engine

Chen Chang1, Kimmo Kuusilinna1,2, Brian Richards1, Robert W. Brodersen1

1University of California, Berkeley
Berkeley Wireless Research Center

2108 Allston Way, Berkeley, CA 94704
{chenzh, kimmo, richards, rb}@eecs.berkeley.edu

2Tampere University of Technology
Institute of Digital and Computer Systems

P.O.BOX 553, FIN-33101 Tampere, Finland

ABSTRACT

This paper describes the hardware implementation of a real-time,
large-scale, multi-chip FPGA (Field Programmable Gate Array)
based emulation engine with a capacity of 10 million ASIC
(Application Specific Integrated Circuits) equivalent gates.
Attainable system operation frequency can exceed 60 MHz, and
the system throughput has been empirically verified to achieve
600 billion 16-bit additions per second. The emulator is custom
designed to maximize the performance and resource utilization
for a range of telecommunication and digital signal processing
applications. With its high-speed interconnect architecture and
large external I/O bandwidth, the emulator excels in prototyping
real-time systems that have strict timing, logic capacity, and data
rate requirements. Our development efforts are guided by such
ongoing projects as ultra-wide band (UWB) and multi-channel-
multi-antenna (MCMA) radio systems research.

Categories:
I. Computing Methodologies
I.6 Simulation and Modeling
I.6.7 Simulation Support Systems
Subject Descriptors:
Hardware Emulation Engine

General Terms:
Algorithms, Performance, Design, Experimentation,
Verification

Keywords:
FPGA, Hardware Emulation, Rapid-Prototyping

1. INTRODUCTION
With the increasing complexity and integration of digital and
analog systems, the computing power required for detailed cycle
accurate and bit-true software simulation of even a single
subsystem can easily become prohibitive. In addition, the
excessively long and non-deterministic execution time of the
simulation makes the accurate verification of integrated systems
with heterogeneous components very difficult. In communication
systems, digital base-band processing needs to be verified at the
same data rate as the analog radio front-end in order to test the
performance of the system in a real-world environment. This
typically requires the whole simulated system to be run at least at
tens of megahertz speed, with cycle accuracy and bit-level
detailed modeling of the final target system. This is commonly
100,000 to 1 million times faster than what the best simulation
software can do at the same abstraction level [1].

One alternative to simulation is hardware emulation. A typical
hardware emulator utilizes an array of FPGAs to directly emulate
the digital portion of the system using reconfigurable hardware
instead of software running on general-purpose processor. Using
various schemes of inter-FPGA connection topologies, these
emulators can achieve overall system performance up to a few
megahertz. A typical use for such an emulator would be in-
circuit verification of a gate-level netlist with exhaustive test
vectors. Another alternative is rapid prototyping based on FPIC
(Field Programmable Interconnect Component), FPCB (Field
Programmable Circuit Board), and FPGA technologies. These
systems enable full functional verification at system operation
frequency around a few tens of MHz, and offer the flexibility of
integrating heterogeneous components, such as FPGA emulated
ASIC designs, DSP chips, and general-purpose processors.

Ideally, a real-time reconfigurable hardware emulator should
have multi-million ASIC gate logic capacity, identical system
operation frequency to the final target system, and be able to
seamlessly integrate multiple heterogeneous components. This
presents three major challenges. First, in ASIC emulation, the
gate-level ASIC structural netlist is retargeted to the FPGA
technology, which can reduce the on-chip performance of a
single FPGA emulated system to a fraction of the ASIC
performance. Second, ASIC designs can be much bigger than the
capacity available on even the state-of-the-art FPGA chips.
Therefore, the original ASIC netlist needs to be partitioned into
multiple pieces, each implemented on a different FPGA, which
can lead to inter-FPGA routing congestion. Sometimes high pin-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGA’03, February 23-25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002…$5.00.

count crossbar chips can be used to maximize local inter-FPGA
connection while maintaining global routability at the expense of
introducing additional delays between FPGAs. Due to
insufficient routing resources, time-multiplexed virtual-wiring
[2] may be necessary for emulation systems, at the expense of
further reducing the overall system speed. Third, most
commercial emulators either have limited external parallel I/O
bandwidth or complex high-speed serial links, which makes it
difficult to connect to analog front-ends. Furthermore, a typical
way to implement external I/O connections is through buffered
memory to synchronize the interface between digital and analog,
which increases the interface design complexity.

Although real-time emulation of arbitrarily fast ASIC designs is
impractical, designs with a clock frequency below 60 MHz can
be prototyped using the current FPGA technology. For a range of
low-power communication system designs, a low system clock
frequency is desirable to save power. Direct-mapped parallel
architectures are a straightforward way to achieve the necessary
performance at the reduced system operation frequency [3],
therefore allowing real-time emulation with FPGAs, a preferred
solution. The Berkeley Emulation Engine (BEE) was built
especially for this range of applications. The BEE system has the
large design capacity of a hardware emulator—10 million ASIC
equivalent gates per module, the extensibility of a rapid-
prototyping system, a large amount of simple and flexible
external interconnects, and the real-time system operation speed
exceeding 60 MHz. It is primarily used to emulate real-time
communication and DSP algorithms. In addition, a parallel path
to the prototyping flow leads automatically from the top-level
description to an ASIC implementation. The targeted
communication systems include UWB (Ultra-Wide Band) radio
and MCMA (Multi-Channel-Multi-Antenna) applications. Both
the UWB radio with 1.2 GHz sample rate and the MCMA radio
with up to 16 parallel radio front-ends have the worst-case
external I/O bandwidth requirement of up to 90 gigabits per
second, while the low-power criteria forces the digital portion of
the system to have multi-million-gate parallel processing
components running at speeds up to 60 MHz.

The rest of this paper describes the hardware architecture of the
BEE system in Section 2 and signal integrity issues along with
the solutions found in Section 3. Hardware performance results
are presented in Section 4. Due to the scope of this paper, the
integrated design flow targeting both the BEE and the ASIC
implementation can only be briefly introduced in Section 5.
Finally Section 6 concludes the paper.

2. SYSTEM ARCHITECTURE

2.1 Overview
Figure 1 depicts the overall structure of the BEE system, which
consists of three major components: BEE Processing Units
(BPUs), analog front-ends, and host servers. Users first create
their target design under Matlab Simulink [4], then synthesize on
the host server into FPGA bit-streams, which are downloaded
later through Ethernet to BPUs for emulation. Each BPU can
directly connect to multiple analog front-ends through either
Low-Voltage TTL (LVTTL) or Low-Voltage Differential
Signaling (LVDS) signals. Multiple BPUs can also be directly
linked to form aggregated systems to increase emulation

capacity, or networked through the analog front-end, such as a
RF communication front-end, to form wired or wireless
asynchronous networks for complete multi-node communication
network testing in realistic channel environments.

Figure 1: BEE system overview

2.2 BEE Processing Unit

Figure 2: Complete BPU with a radio front-end

As shown in Figure 2, the core of a BPU is the Main Processing
Board (MPB), which provides the computation power for the
system. Eight riser I/O cards, vertically mounted to the MPB,
provide a total of 2400 external connections off the BPU. A
StrongARM-based single board computer (SBC) establishes the

connection between the BPU and the host server through a
10Base-T Ethernet link. A separate power board (not shown in
Figure), along with two modular AC/DC converters, are capable
of supplying the system up to 800 W.

Each MPB has 20 Xilinx Virtex-E 2000 chips, 16 ZBT (Zero-
Bus Turn-around) 133 MHz synchronous SRAMs, and 8
VHDM-HSD (Very High Density Modular-High Speed
Differential) I/O connectors for front-end connection and system
expansion.

2.3 On-board Inter-FPGA Connections
As for any hardware emulator, the effectiveness of the inter-
FPGA connection topology directly affects the performance, the
algorithm mapping, and routing capability. The basic
architectures analyzed in the literature are mesh (Figure 3a) [5],
and partial crossbar (Figure 3b) [6], [7]. Previous research has
shown that the partial cross bar is one of the most effective
architectures [8], [9], and hybrid architectures, such as the hybrid
complete-graph and partial-crossbar (HCGP, Figure 3c), have
also been proposed to out-perform pure partial-crossbar
structures [10].

Nevertheless, interconnect structure is not the only factor that
determines the overall emulator performance. The logic capacity
of each individual FPGA, that is, the granularity of the emulation
system, also plays an important role in achieving desired
performance. On one hand, high-density FPGAs can sometimes
relax the inter-chip connection requirements by absorbing more
tightly integrated design modules into each FPGA. On the other
hand, FPGA utilization is directly affected by the interconnect
topology. In an interconnect-constrained multi-FPGA system, the
FPGA utilization can easily be driven below 50%. Simply
increasing the number of I/Os on the FPGAs often helps little in
reducing the routing congestion while it simultaneously increases
the printed circuit board (PCB) design complexity.

Given the BEE system target design capacity of 10 million ASIC
equivalent gates, 20 high-density Xilinx XC2000E FPGA chips
are needed, each with a capacity to emulate half a million logic
gates. Then, to maximize the interconnect bandwidth between
the chips while achieving above 60 MHz link speed, all 20
FPGA chips need to be placed on the same PCB. Finally, from
available Xilinx FPGA packages, the 680-pin chip with 512 user
I/Os was chosen to keep PCB design complexity under bound.

To match the direct-mapped architectures, which typically have
more local connections than global routes, 16 out of the 20
FPGAs are used to the form a 4-by-4 array, and the 8-way local
mesh structure is used to provide local interconnect, thus creating
a uniform and tightly integrated reconfigurable fabric among the
FPGAs. Each mesh link is 48 bits wide and can be configured at
run-time for bi-directional signaling. The FPGAs on the
periphery of the board have either 3 or 5 neighboring FPGAs,
thus the remaining links are routed to the nearby off-board
connectors.

Although the local 8-way mesh is an effective interconnect
strategy for direct-mapped architectures, it has two major
weaknesses. First, long connections between large design

modules, such as in a feedback loop, compete not only with local
connection for the available channels, but also FPGAs along the
path. For example, if a global 8-bit bus needs to be connected
between the top-left FPGA and the bottom-right FPGA, then
using only the local-mesh, the connection needs to pass through
the two FPGAs in the middle of the board. Each of the FPGAs
has to dedicate 16 I/O pins to pass-on the signal. Therefore, the
route-through FPGA I/O pin resources are reduced by two times
the width of the global connection. Second, control logic, which
may be a single large module that connects many data-path
modules, competes with data-path components for FPGA
capacity and routing channels.

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

XBAR XBAR XBAR

FPGA FPGA FPGA FPGA

XBAR XBAR XBAR

A) 8-way Mesh

B) Partial Crossbar

C) HCGP

Figure 3: Various multi-FPGA interconnect
topologies

In light of the above two weaknesses, a global mesh was
designed on top of the local mesh. Four FPGAs are used, one in
each quadrant of the board. Since these FPGAs can be used as a
crossbar for global routing, they are dubbed XBAR for
distinction. Each XBAR connects to the neighboring four FPGAs
in the same quadrant via a 36-bit wide link and to other XBARs
through a 96-bit link in a 3-way second layer mesh. The resulting
routing architecture is depicted in Figure 4 and called a Two-
layer Mesh. Under this structure, global connections can be
routed though the XBARs independent of the local mesh. In
addition, since each XBAR has a total of 288 inter-XBAR

connections and 144 XBAR-to-FPGA connections, the 2-to-1
ratio ensures efficient utilization of the global routing channels
between non-neighboring FPGAs. Furthermore, XBARs can be
effectively used for central control logic in a quadrant, while the
data-path is distributed among the four FPGAs.

FPGA FPGA

FPGA FPGA

XBAR

FPGA FPGA

FPGA FPGA

XBAR

FPGA FPGA

FPGA FPGA

XBAR

FPGA FPGA

FPGA FPGA

XBAR

SRAM

Quadrant

Figure 4: Second layer XBAR mesh

When compared to other interconnect topologies, such as simple
8-way mesh or HCGP, with the same four-by-four array of
FPGAs used in BEE, the Two-layer Mesh has on average a lower
number of hops between FPGAs, which in general leads to lower
inter-chip latency. However, this design limits the scalability of
the system. Although up to four BPUs can be directly connected
using external connections, the increased latency and the reduced
connection bandwidth between BPUs drastically reduces the
usability of large systems scaled in this fashion.

2.4 External I/O Connections
The simplest way to link the BPU to analog front-ends or other
BPUs is through external connectors using LVTTL signals.
However, when external cables are used, the LVTTL signal
strength degrades rapidly with the increase of cable length,
limiting the maximum link speed to less than 40 MHz over a 1
meter long ribbon cable. Therefore, when higher than 60 MHz
links are desired, Low-Voltage Differential Signaling is used
instead. LVDS links can achieve up to 200 Mbps speed over a 2
meter twisted-pair cable.

Using LVDS solves some of the speed and cable length
problems; however, it also creates two new problems. First,
LVDS signal termination is asymmetrical. Second, the LVDS
drivers used on the Xilinx Virtex-E series FPGAs require
external source resistor networks to achieve the standard LVDS
signal voltage levels [11]. Although both of these problems have
been solved using on-chip active termination as provided in the
Xilinx Virtex II chips, due to the unavailability of the newer
generation FPGA chips at the time of BEE construction, external
riser card solution had to be used to maximize the reusability of
BEE hardware for many applications.

Riser cards are designed to bridge this link between the MPB and
the physical cables to analog front-ends or other BPUs. The 2400
external I/Os from the MPB are broken into 8 groups of 300

signals each. Each group connects to one riser card though a 400-
pin connector. Each signal pair of the connector is individually
shielded from the other signals, thus lessening cross talk and
allowing high-speed differential signals. Immediately after the
connector, signals are terminated with appropriate resistor
networks on the riser card, and then routed to six 68-pin SCSI
(Small Computer Systems Interface) connectors. Using external
cables, connections can be established between any two SCSI
connectors, therefore also between any two BPUs, a BPU and a
front-end, or to form a BPU self loop back. The choice of SCSI
connector and cable is mainly due to the high-speed differential
signal standard used in SCSI, and the availability of high quality
cables and connectors.

Both LVDS and LVTTL signaling standards can be used on the
riser cards by simply populating the resistor termination network
with footprint compatible resistor chip array packages with
different termination structure. In addition to I/O functions,
custom riser cards can also be used as expansion modules to
integrate heterogeneous components into the BEE system, such
as DSP or general-purpose processors, or high-density memory
components.

2.5 System Controls
Another key feature in the BEE system design was the ease of
information propagation between the user and the emulator. The
use of the integrated single board computer not only removes the
requirement of an external service computer, but also provides
the Ethernet interface as a convenient link between the user and
the BEE system. With a 206 MHz Intel StrongARM Processor,
32 MByte of SDRAM, 16 MByte Flash ROM, 10 Base-T
Ethernet controller and connector, and a compact flash slot for
expansion, the SBC can support complex software, such as Linux
operating system, Apache web server, and other BEE servicing
programs. Therefore, the users of the BEE system can easily log
into each BPU and perform the necessary tasks. With the
compact flash slot, additional storage, such as a micro drive or a
compact flash memory card, can further expand the storage
capacity of the SBC.

Through the SBC Linux network login interface, the users can
remotely control all functions of the system, such as uploading
design files and the read-back of emulation results. The SBC
connects to the 20 FPGAs on the MPB through a configuration
FPGA, which mainly serves as a bi-directional signal multiplexer
between the 16 general-purpose I/O lines from the SBC to over
100 control signals on the MPB, some of which are further
connected to the power supply system and chassis control
switches. Shown in Figure 5, the control functions of the entire
BPU can be classified into the following five categories:

1) programming the FPGAs
2) data read-back from the FPGAs
3) clock domain control
4) power management
5) thermal management

StrongARM
SBC

C
on

fig
ur

at
io

n
FP

G
A

20
FPGAs

Power Supply

Clock Synthesizer

Temperature
Sensors

Server/
User

Main Clock Driver
Ethernet

16-bit Bus

14-bit Bus

JTAG

Figure 5: BEE configuration subsystem

Processing FPGAs can be programmed by the SBC using either
the Xilinx SelectMAP mode [12] or JTAG [13]. The JTAG daisy
chain originates from the configuration FPGA, loops through all
20 processing FPGAs, and back to the configuration FPGA. It
can be driven directly by the SBC or through an external header
using a JTAG cable from a PC. Due to its faster programming
speed, the SelectMAP is used as the primary programming mode.
The 14-bit configuration bus originates from the configuration
FPGA and routes through all 20 FPGAs.

Read-back of the FPGA signal states can be achieved using the
JTAG or through the user bus interface. Read-back directly using
the JTAG interface is not only too slow, but also too complex for
convenient usage in some applications. Using Xilinx ChipScope
ILA (Integrated Logic Analyzer), synchronous data can be
selectively recorded in on-chip RAM at the same rate as the
design, then read back through the JTAG interface and displayed
intuitively as waveforms. However, the JTAG speed limitation
still makes it hard to achieve read back at high data rate.
Therefore, a user bus interface was designed to provide both run-
time upload and read-back capability. After initial programming,
the 14-bit configuration bus can be used for communication
between the FPGAs and the SBC. Between the FPGAs on the
user bus, a throughput of 10 Mbytes per second can be achieved,
however, between the SBC and FPGA, the throughput is limited
by the SBC to 2 Mbytes per second.

Each FPGA on the MPB can be simultaneously driven by four
different clock sources. The primary clock provides a
synchronous clock domain throughout the entire board. The
source of the primary clock is a configurable PLL clock driver,
whose output frequency can be digitally programmed between 1
MHz and 200 MHz by the SBC with a resolution of under 5
ppm. The secondary clock consists of four independent clock
domains throughout the MPB, one for each quadrant. Each
quadrant clock can be independently driven from an external
SMA connector. The tertiary clocks independently provide each
of the 16 peripheral FPGAs and the four XBARs with two clock
sources. Both clocks originate from a SCSI connector on one of
the riser cards; one uses LVTTL signaling, the other uses LVDS.

By implementing a simple resource sharing program on the
control Linux module, multiple users can access and run
different designs on a single BPU simultaneously. Spatially

different users can be allocated to different FPGA chips or
different quadrants of the board. Temporally different users are
served in a first come first serve fashion by specifying the
duration of the FPGA chip reservation. When the reservation
expires, other users can reclaim the FPGA. In practice, each BPU
can support between 4 to 8 users depending on contention for
shared resources such as system main clock, configuration bus,
and external I/Os.

2.6 PCB Design & Testing
Figure 6 shows the photo of the main processing board—a 26
layer PCB, with a width of 58 cm and depth of 53 cm, which is
the largest and the most complex board in the BEE system. Table
1 shows statistics of the PCB.

Table 1: Main processing board PCB

Component count 3400
Pin count 28611
Layout area (sq cm) 2754.8
Number of nets 8493
Number of connections 19877
Manhattan distance (km) 1.167
Etch length (km) 1.316
Via count 32334

Figure 6: A main processing board and a riser card

The complexity of the MPB leads to numerous testing
challenges. A rapid diagnostic method is needed to verify
connections between the FPGAs and the SCSI connectors
through the riser I/O boards. The connectivity diagnostic is
separated into two stages. The first stage is to verify connections
between the peripheral FPGAs and the external SCSI connectors.
The FPGAs are configured to output a distinct sequence of
patterns to each of the SCSI connectors through the riser I/O
boards; then an external SCSI cable tester is used to display the
pattern on LEDs for each of the SCSI connectors. Therefore, all
external connections can be verified visually. Second stage is to
verify all internal on-board connections between the FPGAs.

2.7 Mechanical Issues
Given the large size of the MPB and the worse case power
consumption of 400 W, the BPU mechanical chassis has to not
only accommodate the MPB and all the power supplies, but also
provide active ventilation for the heat dissipation.

Figure 7 is a cross section photo of the BEE chassis. The MPB
slides into a slot in the middle of the chassis dividing it into the
upper and lower chambers. The lower chamber contains all the
power supplies, SBC, and all internal wires. On the front panel,
seven high flow fans are used to cool both chambers. Cold air is
pulled into the chassis from the fan panel side, and then
exhausted from the opposite panel, thus increasing the airflow
speed. Detailed thermal modeling of the chassis has been used to
determine the maximum allowed power consumption for each
FPGA. When only using the chassis fans, the FPGAs can operate
safely up to 12 W each; if passive heat sinks are used, then over
20 W power consumption can be tolerated [14]. All FPGAs are
continuously monitored by the configuration FPGA for thermal
runaway. If any of the FPGA junction temperatures exceeds
80◦C, the configuration FPGA automatically shuts off the main
power and alerts the user through the separately powered SBC.

Figure 7: BEE chassis cross section

3. SIGNAL INTEGRITY
As for any large-scale high-speed PCB design, signal integrity is
a challenging obstacle in achieving the desired performance
within the BEE system. Signal integrity solutions taken in BEE
can be classified into the following categories: crosstalk
reduction, impedance control, signal reflection reduction, delay
matching, and supply voltage bypassing.

The root of the crosstalk problem is the large mount of signal
routes on the MPB board. With a given PCB board size, high
routing density can cause severe cross talk issues that drastically
slow down the overall performance. Thus, the primary method
for improving signal integrity is to reduce the routing density,
which can be achieved by increasing the PCB area and the total
number of PCB layers at the expense of increased manufacturing

cost. However, this solution is limited by the PCB manufacturing
technology.

The MPB PCB utilizes the largest form factor that was available
from the PCB fabrication vendor at the build time, and the
number of layers was determined by the routing necessity.
Routing density is measured in terms of the space between any
adjacent traces, which is kept above 8 Mils between traces on the
same layer to reduce crosstalk. In addition, all signals designed
to run above 10 MHz are routed on the internal PCB layers as
striplines to further reduce inter-layer crosstalk by sandwiching
the traces by a power or ground plane. Nevertheless, due the
large size of the PCB, long traces, such as between XBARs,
requires increased inter-trace spacing to reduce the capacitive
coupling.

On the MPB, an impedance of 50 Ohm for single ended and 100
Ohm for differential signals was chosen for approximate
matching with signal drivers and other PCBs. Since the external
connections use LVDS signaling standard, each differential
signal trace pair was routed together with fixed spacing. PCB
layer thicknesses and trace widths were chosen to ensure uniform
impedance value throughout the board. Similar rules were also
used for the riser I/O card PCB design to control impedance
matching.

Due to the large PCB size, connections between distant
components on the board, such as between XBARs, typically
have trace lengths exceeding 30 cm. The 8 mA slow I/O buffer
does not exactly match to 50 Ohm impedance, thus signal
reflections can degrade signal quality. Therefore, series resistor
terminations are used on these long traces to attenuate the
reflections. External LVDS connections typically require the
termination resistors to be placed within a couple of centimeters
from the FPGA chip. As discussed in section 2.4, to increase the
reusability of the MPB, external terminations are placed on the
riser I/O cards, increasing the distance to approximately 6 cm.
Although this approach reduces the maximum LVDS link speed,
the external differential links can still operate at 160 MHz speed.

Careful routing of the clock traces is critical for reducing clock
skew on a large PCB. Since the main clock originates from the
center of the board, if routing to each FPGA followed the
shortest route, the trace length would vary over 15 cm between
the near and far chips. Therefore, all clock traces are routed
manually, matching lengths to within one tenth of a millimeter,
and are isolated from other signal traces by using dedicated PCB
layers.

Ground bounce is another problem due to high switching activity
on multiple high pin-count FPGAs. In extreme cases, the voltage
drop could be so significant that the chip can momentarily
malfunction and produce errors. Therefore, sufficient bypassing
capacitors of various values are necessary to ensure the proper
operation of the system. There are over 2400 bypassing
capacitors on the MPB, which are divided into four tiers of
values: 47 nF, 100 nF, 100 µF and 2200 µF.

4. TEST AND MEASUREMENT
After the assembly of all four BPUs, a series of tests were
performed to verify the functionality, as well as to determine the
performance and capacity of each system. Functionality tests

verify the basic operation of the system, such as system power up
with proper voltage levels, programming all FPGAs though
JTAG and through SBC Ethernet link, and so on. Performance
tests measure the maximum clock speed, internal inter-chip
speed, and external link speed. Capacity tests gauge the
maximum design size and the throughput of the system. All
performance tests are done using designs implemented directly
on the FPGAs, rather than through logic analyzer measurements.
Therefore, tests can be easily repeated on different BPUs for
consistency and convenience.

4.1 System Clock Rate
The maximum clock rate of the system is determined through the
clock speed test. The programmable system main clock is slowly
ramped from 1 MHz, until the test structure indicates an error.
This clock rate has been measured to be above 160 MHz for all
four BPUs. Since the internal clock rate of the clock speed test
design on the FPGA is estimated to be above 180 MHz with
Xilinx post placement and routing timing analysis, the failure at
160 MHz is most likely due to the distribution of the main clock
on the PCB. Therefore, 160 MHz is determined to be the upper
bound of the distributed system clock. However, in practice, the
clock rate usually does not exceed 100 MHz because of the
design style and goals, and if higher clock rates are desired, on-
chip delay-locked loops can be used to double or quadruple the
clock frequency on the FPGA.

4.2 On-board Internal Connections
The inter-FPGA link speeds are one of the determining factors of
the overall system performance. Nevertheless, due to the vast
amount of links, the precision measurement of the link speed is
usually tedious and time-consuming. Instead of measuring the
links speed for every single connection individually, the speed is
measured on the whole group of signals between two chips, that
is, 48 bits between FPGAs, 96 bits between XBARs, and 36 bits
between FPGAs and XBARs. The source FPGA implements a
pseudo-random number generator to create for every clock cycle
a unique word as well as the checksum bits. The data word and
its checksum are transmitted through the link under test to the
destination FPGA, where the data word is extracted and its
checksum recomputed and compared with the transmitted
checksum. If the two checksums are not matched, an external
LED indicator is lighted. The inter-FPGA links are registered on
both the source and destination FPGA, and the registers are
packed into the I/O block to minimize the effect of on-chip
routing on the inter-chip link speed. The designs on both the
transmitter and receiver side are capable of running at over 158
MHz on-chip as reported by the Xilinx post placement and
routing timing analysis. Since each FPGA only directly connects
to one LED, several sets of tests are needed to cover all the links
on the MPB, each exclusively covering a portion of the links on
the board.

As summarized in Table 2, using the 12 mA slow LVTLL I/O
buffers, the internal link speed on all BPUs can achieve at least
60 MHz. The relatively large speed variations on the same BPU
is largely due to the link trace length differences. In general, the
adjacent FPGAs have much higher link speeds than the longer
range links, such as between XBARs. Illustrated in Figure 8, the
link speed profiles for each BPU look very different from each

other; however, the mean and standard deviation only varies less
than 5% among different BPUs.

Figure 8: Internal link speed histogram

Table 2: Internal link speed statistics

 BPU1 BPU2 BPU3 BPU4
Mean (MHz) 90.2 95.1 92.7 98.1
STD (MHz) 16.3 19.1 17.2 19.1
Min (MHz) 60.3 62.5 63.5 65.5
Max (MHz) 116 136 137.5 145.8

The connection speed between a FPGA and a SRAM can be
determined by first writing a sequence of random words to the
SRAM and then reading them back for comparison. Since the
connection is always less then 5 cm and routed similarly
throughout the board, the maximum speed of above 110 MHz is
achieved consistently throughout all FPGAs on all BPUs.

4.3 External Connections
External link speeds can also be determined using similar
methods as internal links. In this case, an external cable is used
to link between any two SCSI connectors on either the same or
different riser cards. The data link loops through the riser I/O
card and the external cable, then back through the riser I/O card
and connector to either another FPGA or back to the same
FPGA. In addition to the LVTTL standard, external links can use
LVDS standard. Due to the addition of riser I/O cards and the
external 1 meter long cable, when using LVTTL, the maximum
external links speed is between 30 MHz to 50 MHz; when using
LVDS, the maximum speed is between 160 MHz and 210 MHz.

4.4 System Configuration
Another important performance factor is the run-time
configuration and read-back speed. As explained in Section 2.5,
the configuration bus originates from the SBC, and is then
multiplexed by the configuration FPGA to the rest of the 20
FPGAs. The same bus is used at run-time for communication

between the SBC and the FPGAs. Between the configuration
FPGA and the rest of the chips, the bus has been verified to
operate at 10 MHz. However, due to the Linux kernel overhead
and the StrongARM GPIO (General Purpose Input and Output)
speed limitations, the link between the SBC and the
configuration FPGA can only achieve up to 2 MHz. Furthermore,
due to the 10-base-T Ethernet link interface, the connection
between the SBC and client workstation is limited to 10 megabits
per second, which in practice is typically 7 Mbps. Given the
above limitations, the entire process of downloading a bit file to
the SBC and then programming it onto the FPGA, takes about 2
seconds, which is substantially faster than using the JTAG
interface, which takes about 30 seconds. At run-time, the
communication between the client PC and the FPGA on the
MPB is limited to about 1 MByte per second.

4.5 System Design Capacity
Performance of the system can also be measured with its
capacity in terms of the maximum number of operations per
second. To verify the capacity, a benchmark design was
constructed to fully utilize all resources available on the main
processing board. The benchmark design is a 10,240-tap 16-bit
fixed-coefficient FIR (Finite Impulse Response) filter. Depicted
in Figure 9, each filter tap is implemented with one 16-bit adder,
one 12-bit constant multiplier, and one tap-delay register.
Multiple taps are cascaded along with additional registers to
reduce input fan-out and pipeline inter-chip connections. Each
FPGA implements 512 taps, and all 20 FPGAs aggregate to
10240 taps.

Figure 9: A single FIR tap implementation

As summarized in Table 3, this benchmark FIR design illustrates
that each BPU is capable of operating at full capacity with a
throughput of up to 600 billion operations per second, while
emulating an 8 million ASIC gate equivalent design. Since the
FIR design does not utilize any of the on-chip dedicated 640
Kbit RAM components, the total capacity upper bound
including memory is at least 10 million gates per BPU.

Table 3: 10,240-tap FIR filter design statistics

FPGA utilization 99% of 19200 slices
[In all 20 FPGAs]

Max Clock Rate 28.5 MHz
System Operations per Second
(addition & multiplication)

583.68 billion

ASIC equivalent gates (per
FPGA)

401000

ASIC equivalent gates total 8 million
Power consumption 2.5 W per FPGA

5. DESIGN FLOW
In order to take full advantage of the large design capacity
offered by BEE, an automated design flow using high abstraction
level description is essential to the practical usefulness of such
system. Figure 10 illustrates the current BEE design flow.

Simulink Dessign
& Test Vectors

Matlab
Simulink

Hardware
Blockset
Library

System
Design
MDL

BEE
Partition?

Manual
Partition

Annotation

BEE_COMPILER

INSECTA

Chip-level
VHDL

Synopsis
MC Script

MC
Script
Library

Chip-level
BitStream &

Conf File

FPGA
Structural

Netlist

ASIC Structural
Netlist

BEECONFIG

Po
st

 P
AR

FP
G

A
Ar

ea
 /

Ti
m

in
g

R
ep

or
t VHDL

Simulation
Files

ModelSim

Design Area/
Speed/Power

Gauge

ASIC Place &
Route Tools

Figure 10: BEE design flow

The main goal of the BEE design flow is to enable
communication algorithm designers to use system-level design
tools to create hardware designs that can be both implemented
rapidly on a BEE system and eventually taped out as an ASIC
chip. The chosen system design tool is Simulink from
Mathworks with the Xilinx System Generator toolbox [15]. On
the system-level, the user is provided with a set of hardware-like
components that model the cycle-to-cycle behavior of the
hardware and simulate using fix-point numbers. The block
library includes low-level components, such as an adder and a
multiplier, and high-level components, such as FIR filter and
FFT block. Hardware specific issues, such as word-length,
quantization effects, and latency, can be controlled directly by
the system designer. In addition, different system
implementation architectures can be conveniently explored.
High-level performance estimates, such as the speed, area, and
power, allow different architectures to be compared. After
constructing the design in Simulink, the BEE compiler is used to
generate VHDL structural netlist that is functionally equivalent,
bit-true, and cycle-accurate with the original Simulink design.
The same VHDL netlist is used for both FPGA and ASIC
implementations, but with each block implemented with either
FPGA or ASIC optimized cores depending on the target
technology. Therefore, the functionality of each library block can
be maintained between the FPGA and ASIC implementation,

while the block-level performance is not sacrificed for either
technology.

Using the BEE design flow, a design of 400,000 ASIC
equivalent gates can be generated and implemented on the BEE
hardware in less than an hour. Therefore, rapid design changes
are practical and the impact of a change on the performance can
be verified directly on the BEE hardware, which shortens the
design cycle of a typical communication system. Furthermore,
when connected to radio front-ends, the entire system can be
tested at the target clock rate, and the system performance
metrics, such as bit error rate, can be directly measured and
verified.

6. CONCLUSION
Fully exploiting the design space available to the contemporary
designer of digital signal processing systems is difficult with
traditional design automation tools. Particularly, if design time
is to be minimized, the use of algorithm level design capture is a
necessity. Furthermore, the run-time through the design flow
from top to bottom usually directly affects the amount of design
space exploration that is practical. The BEE hardware emulator
allows rapid prototyping for direct-mapped communication or
DSP designs. Running low-power applications in real-time
facilitates the verification of complete systems instead of just
verifying the functionality of sub-systems, one at a time. This
provides more ASIC implementation choices to be explored
without sacrificing time-to-market.

A component library targeted for signal processing is used for
BEE designs to accelerate the design process and capture
application domain specific information. By constraining the
application domain to low-power signal processing, reasonable
assumptions can be made about the required optimizations.
Moreover, the components guarantee that the design can be
implemented on both FPGA and ASIC technologies with
identical functionality.

The BEE hardware architecture is tailored to accommodate a
class of wireless communication applications. The sub-designs
are assumed to connect primarily locally, thus emphasizing the
fast links between the FPGAs. Similarly, future radio systems
are thought to require increasingly complex digital computing to
replace some of the analog signal processing. This contributed to
the emphasis on the I/O channel capacity currently implemented
on BEE.

Currently, four BEE systems have been constructed, and several
radio designs are under development. For example, a 2.4 GHz 1
Mbps narrow band radio has been demonstrated on BEE. In
addition, an ultra-wide band radio front-end has been developed.
The operation speed and capacity of BEE has exceeded the
original design goal of 100 to 200 giga-operations per second at
50 MHz. Also, the system has been used for more general
purpose computing applications, such as high-level
communication network simulation, wireless channel modeling,
and image compression. The real-time emulation capability
along with the easy-to-use fully integrated design flow make the
BEE system a indispensable tool in the next generation
communication system design.

The future work in this project includes the construction of
larger communication environments based on multiple BPUs
and radio front-ends. These environments allow system-level
issues to be examined on top of the configurable wireless
communication network.

7. REFERENCES
[1] M. Courtoy, “Rapid system prototyping for real-time design

validation,” Proc. Ninth International Workshop on Rapid
System Prototyping, pp. 108-112, 1998.

[2] A. Agarwal, J. Babb, and R. Tessier, “Virtual wires:
overcoming pin limitations in FPGA-based logic
emulators,” Proc. IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 142-151, Apr. 1993.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, Low
Power CMOS Digital Design, Kluwer, 1995.

[4] www.mathworks.com
[5] S. Hauch, G. Borriello, and C. Ebeling, “Mesh Routing

Topologies For Multi-FPGA Systems,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, Vol. 6 No. 3, pp.
400-408, Sept. 1998.

[6] M. Butts, J. Batcheller, and J. Varghese, “An Efficient
Logic Emulation System,” Proc. 1992 IEEE Int’l Conf.
Computer Design: VLSI in Computers and Processors, pp.
138-141, Oct 1992.

[7] M.A.S. Khalid and J. Rose, “A Novel and Efficient Routing
Architecture for Multi-FPGA Systems,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, Vol.8, No.1, pp.
30-39, Feb. 2000.

[8] M.A.S. Khalid and J. Rose, “Experimental Evaluation of
Mesh and Partial Crossbar Routing Architectures for Multi-
FPGA Systems,” Proc. 6th IFIP Int’l Workshop on Logic
and Architecture Synthesis, pp. 45-54, Dec. 1997.

[9] C. Kim and H. Shin, “A Performance-Driven Logic
Emulation System: FPGA Network Design and
Performance-Driven Partitioning,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, Vol.15,
No.5, pp. 560-568, May 1996.

[10] M.A.S. Khalid and J. Rose, “A Hybrid Complete-Graph
Partial-Crossbar Routing Architecture for Multi-FPGA
Systems,” ACM/SIGDA Int’l Symp. Field Programmable
Gate Arrays, pp. 45-54, Feb 1998.

[11] J. Brunetti and B. V. Herzen, “Virtex-E LVDS Drivers &
Receivers: Interface Guidelines,” Xilinx Application Note
232 (v1.0), Oct. 1999.

[12] Mark Ng and Mike Peattie, “Using a Microprocessor to
Configure Xilinx FPGAs via Slave Serial or SelectMAP
Mode,” Xilinx Application Note 502 (v1.2), June 2002.

[13] “Configuration and Readback of Virtex FPGAs Using
(JTAG) Boundary Scan,” Xilinx Application Note 139
(v1.4), Apr. 2002.

[14] “Packages and Thermal Characteristics,” Xilinx Application
Note (v2.1), Feb. 2000.

[15] www.xilinx.com

