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Abstract —Iterative message passing algorithms (MPAs) have found ap-
plication in a wide range of data detection problems because they can pro-
vide near optimal performance and significant complexity reduction. In
this paper, we demonstrate that they can be used to efficiently solve the
pseudo random code acquisition problem as well. To do this, we repre-
sent good pseudo-noise (PN) patterns using sparse graphical models, then
apply the standard iterative message passing algorithm over this graph
to approximate maximum likelihood synchronization. Simulation results
show that this algorithm achieves better performance than traditional se-
rial search code acquisition in the sense that it works at low signal-to-noise
ratios (SNRs) and is much faster. Compared to full parallel search, this
approach typically provides significant complexity reduction.

I. INTRODUCTION�
CHIEVING and maintaining code synchronization be-
tween the transmitter and the receiver is critical to all

spread spectrum systems because even a small misalignment
can cause serious signal-to-noise ratio (SNR) degradation. Typ-
ically, this task is performed in two steps: code acquisition
and code tracking. Our focus here is to apply iterative mes-
sage passing algorithms (MPAs), generalizations of the fa-
mous Turbo Decoding Algorithm[3], to the acquisition of m-
sequences, wherein the ultimate goal is to bring two codes into
coarse time alignment (i.e.,within one code-chip interval).

For years, there have been two major acquisition strategies:
parallel search and serial search. The former is generally useful
for theoretical analysis only because, while it provides Maxi-
mum Likelihood (ML) detection of the initial state, it is usually
too complex to be implemented. The latter has good perfor-
mance, in the sense of probability of acquisition, even for low
SNR, but it is slow.

In some applications, it may be desirable to use very long
pseudo-noise (PN) patterns and still acquire the sequence epoch
based on relatively few observations (i.e.,a small fraction of the
PN period). Ultra-Wideband Radio (UWB) systems provide a
good example. A sample waveform for a low-duty cycle UWB
signal is shown in Figure 1(a), where the time between wide-
band pulses is referred to as the frame time. The PN acquisition
problem is also diagrammed in Figure 1(a) in terms of a search
over potential bins. Note that this problem is more difficult
than the corresponding classical spread-spectrum PN acquisi-
tion problem for two reasons. First, the frame epoch must be ac-
quired simultaneously with the PN pattern. This implies that for
each resolution bin on the frame epoch, there is a complete PN
search space (i.e.,“PN phase wheel”). Second, for a given hy-
pothesized frame epoch, there are typically more resolution bins
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Fig. 1. A sample waveform and diagram of the associated PN acquisition prob-
lem for two spread spectrum systems. (a) a low duty cycle UWB system
the frame epoch and PN code phase must be determined and (b) a direct
sequence system where on PN code phase need be acquired. Note that the
DS system is modelled as its complex baseband equivalent signal.

to search in the UWB case because the larger bandwidths em-
ployed imply finer time resolution. The direct sequence spread-
spectrum ( DS/SS) case is shown in Figure 1(b). Note that the
acquisition uncertainty is only in the PN code phase because the
DS waveform has a 100% duty cycle.

If long PN patterns are to be used in covert UWB systems, ex-
tremely fast PN acquisition is required. This is not only due to
the high level of timing uncertainty as described above, but also
the fact that the true frame epoch will certainly drift due to oscil-
lator imperfections and/or platform mobility. More specifically,
if the bins in Figure 1(a) were tested sequentially and the frame
epoch was drifting, it is possible that the search will never lo-
cate the true epoch – i.e.,this may result in a “chasing one’s tail”
situation.

This UWB example provides the motivation for the proposed
approach. Specifically, it would be desirable to search all pos-
sible PN pattern phases for a fixed, hypothesized frame epoch
in parallel. It is also desirable to complete this search based on
a relatively small number of observations and with reasonable
implementation complexity. The method presented in this pa-
per provides an attractive solution to this problem that cannot be
achieved using traditional PN acquisition strategies.

We describe the m-sequences and associated graphical rep-
resentations in section II. Section III contains a short review of
traditional methods. Section IV defines the message passing al-
gorithm. Simulation results are provided in section V. Section
VI contains conclusions and suggestions for future work.
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II. M-SEQUENCES AND GRAPHICAL REPRESENTATIONS

A. M-sequences

Linear feedback shift register (LFSR) sequences having the
maximum possible period for an r-stage shift register are called
maximal-length sequences or m-sequences[6]. They have been
successfully employed in a wide range of spread spectrum sys-
tems and many other spreading codes can be derived from them.
If the LFSR sequence is binary, the maximum achievable period
of is �����	� . To achieve this maximum value, two conditions
must be satisfied. First, the generating polynomial, which is de-
fined as:
��������
�����
������
��� � � �!�"�#��
 ��$ �� �%$ � �&
 �  � (1)

where  is the unit delay operator, is primitive. Second, the
shift-register is loaded with non-zero initial state. The (infinitely
long) periodic sequence ' generated then can be written as

' ���"�!�"( ' $ ��( ' $ ��( ' �)( ' �*( ' �)(��!�"� ',+ $ �*( '-+ (��!�"�
where . � � � �/� is the period of the m-sequence so that' +1032 � ' 2 . The goal of code acquisition is to find the phase
of the sequence present in the received signal, where ' ,  ' , � ' , ...,  + $ � ' are defined as phases of ' .

In most practical scenarios, we can only observe part of this
long sequence to acquire the initial phase, so the problem can
be stated as: for a given number of 4 observations, 5#6�7)8*9 $ �� ,
estimate the initial state 5;:<2=8 ��$ �� . Usually, >@?A4 ?A. . If no
data modulation is present,

6 7 ��B CED#� �F� �=G*H;I $KJMLON ��P 7 (RQTSVUWS 4&�X� (2)

where P 7 is white gaussian noise with one-sided power spec-
trum density of . � and Y D is the carrier phase. This general
model can be applied to both to UWB and DS/SS systems. In a
UWB system, as there is no carrier, Y D �ZQ . In DS/SS system, if
the phase of the RF carrier is known, Y D �	Q as well. However,
in practice, Y D is typically unknown at the point of PN acquisi-
tion because the SNR before despreading is too low to enable
carrier synchronization. This implies non-coherent PN acquisi-
tion. In this case, Y D is modelled as random variable uniformly
distributed over [ Q\( ��]<^ which is constant over the period of 4
observations.

An r-stage LFSR is shown in Figure 2. At any given time U ,
let _1` 2"a7 , QbSdceS >f� � , be the value of the chg�i register and '<7
be the output, the following feedback equation is satisfied.

Q � 
�� _ ` � a7kj 
�� _ ` �%$ � a7 j �!�!� j 
 ��$ � _ `
� a7kj 
 � _ `

� a7 (3)

'<7 � _ ` � a7 (MQlS�UWS 4&��� (4)

where j is modulo � addition.
As _ ` 2"a7 � _ ` 2 $ � a7�0 � , � S�cmS > , and 
��e�n
 � � � when 
���W� is

primitive,

_ ` � a7 � _ ` � a7kj 
�� _ ` �%$ � a7 j �"�!� j 
 �%$ � _ `
� a7 (5)

Define S 7 �o� _ ` � a7 ( _ ` � a7 (��!�!�"( _ ` ��$ � a7 � as the state, and let the
initial state S � be u �p� : � ( : � (;�"�!�"( : ��$ � � , then (4) and (5) to-
gether define the transition qR7 �/� S 7 ( '<7 ( S 7�0 �;� . This is a finite
state machine, whose evolution is determined entirely by its ini-
tial state.
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Fig. 2. An r-stage LFSR

B. Graphical representations of m-sequence

Graphical models are powerful tools to formalize joint proba-
bility distribution problems as they can represent those problems
compactly and intuitively, and can yield efficient algorithms.
The trellis representation along with the well known Viterbi al-
gorithm is an excellent example.

There are a number of conventions for representing system
graphically [1], [2], [7], [11], [12]. Given a graphical model or
block diagram, there is standard message passing algorithm [1],
[2], [4], [8]. The most important aspect of the graphical model is
whether it contains undirected cycles. If cycles do not exist, the
standard MPA will find the optimal solution (i.e.,ML detection)
given a loose requirement on the message passing schedule. If
cycles do exist, one may still apply the standard MPA, but in
this case optimality is not assured. This results in an iterative
MPA (iMPA), which is an effective heuristic. For many prob-
lems, an iMPA resulting from a loopy graph will be significantly
less complex than the optimal MPA resulting from a cycle-free
graphical model. Thus, the value of the iMPA heuristic is that
it can provide a good (not optimal) solution with relatively low
complexity. The standard turbo decoding algorithm is an exam-
ple – i.e.,the iterative decoder is an iMPA that results in near-
optimal performance at a fraction of the complexity required for
ML decoding.

Extracting a graphical model from an input-output relation-
ship is a difficult problem. Some approaches exist for cycle-free
representations [1], [2], [5], however, extracting loopy graph-
ical models resulting in effective iMPAs remains largely an
art. Specifically, the art is to identify the proper local struc-
ture and establish sparse connections between these local struc-
tures. Equivalently, one must identify appropriate hidden vari-
ables (i.e.,the art), after which a number of conventions can be
used to establish the loopy graphical model [1], [2], [7], [11],
[12].

Consider an example related to the problem at hand. Given
the generating polynomial for an �#r -stage LFSR as ["��s Q)Q�Q)Q �%^ ,
i.e., 
�����t�Z �=u �v � �v � , then,

Qw� _ ` �Ou a7 j _ ` �=x a7 j _ ` � a7zyl{ ' 7 � ' 7 $ � j ' 7 $ �=u (6)

One way to represent this system is to label state vertices,
transition vertices and output vertices by sets 5 S 7|8 , 5#qO7�8 and' 7 , respectively, and connect any pair of vertices by an edge if
the intersection of those two vertices is non-empty. A cycle-
free graphical representation is shown in Figure 3. Running the
optimal MPA on this cycle-free graph is complex, with the stan-
dard parallel search strategy viewed as a simplification to this
approach. We call Figure 3 “full-state representation”.

A loopy representation can be found by defining S }7 as� '<7 $ �#� , t }7 as � S }7 ( '-7 $ �Ou)( '-7 ( S }7�0 � � , and then use them to la-
bel state vertices and transition vertices and connect t }7 with S }7 ,
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Fig. 3. Cycle-free graphical representation of an r-stage LFSR, i.e.,full-state
representation
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Fig. 4. Sparse Loopy Representation of the 15-stage shift-register with ~������K��e�������e�,�@�1� .
S }7�0 � , ' 7 and t }7�0 �Ou . This is a “sparse loopy representation” and
is shown in Figure 4.

Another possible, but not so straightforward, way to find the
loopy representation is to define S }7 as � '<7 $ ��( '-7 $ �#� instead.
This graph has the same topology as shown in Figure 4, but
with different vertex labels. Though ' 7 $ � does not appear in
equation ���)� so that it contributes nothing explicitly, introduc-
ing it improves the performance and speeds up the rate of con-
vergence of iterative MPAs running over sparse loopy graphs. It
is also possible to introduce more variables into the definition
of S }7 . However, the complexity of the iterative MPAs grows
exponentially to the number of bits of S }7 and no significant im-
provement of the performance can be observed.

III. TRADITIONAL ACQUISITION ALGORITHMS

As uniform a priori probability is assumed for the initial
state, both full parallel search and serial search calculate p � z � u � ,
the likelihood of u, where u= � : � ��Q)��( : � ��Q)�%(��!�"�!( : ��$ � ��Q)�R� and z=� 6 �)( 6 �*(;�"�!�"( 6 9 $ ��� . In the former, p � z � u � for all candidates is cal-
culated, and the estimated initial state is �u � arg �@��� u p � z � u �
This provides ML estimation of initial state. However, since
full parallel search has memory requirements exponential to the
length of the LFSR, it is often impractical.

Though p � z � u � is calculated in serial search as well, the whole
set of possible states is not necessarily searched. Instead, a
threshold is set and the whole set of candidate states is divided
into a number of cells. Cells are examined serially by corre-
lating the corresponding local sequence with the channel obser-
vations over the “dwell time”, �#� . If a correlation larger than
the threshold is observed, a successful “acquisition” is declared.
Otherwise, current observations are discarded, correlation over
another � � is computed to test another cell. This process is con-
tinued until acquisition is declared.

Though this approach can significantly reduce the memory
requirements, and works well at low SNRs, it is slow. Without
a priori information on the phase, the mean acquisition time for
the simple single-dwell serial search [10] is:

�������� � [ � �Z� ���&��� �%��� ��� ��� � �v� �¡  � ���� � ^K¢;�;� (7)

where � � is the probability of detection for a single-dwell test,�   � is the probability of false alarm, � is the penalty time for
a false alarm, and � is the total number of cells. Consider the

Degree Octal representation of generating polynomial
15 [100003],[140001],[100021],[104001]
17 [400011],[440001],[400041],[410001]
18 [1000201],[1004001],[1000077],[1760001]
29 [4000000005],[5000000001]
31 [20,000,000,011],[22,000,000,001]

TABLE I
EXAMPLES OF SPARSE GENERATING POLYNOMIALS FOR M-SEQUENCES.

best case, where �£� � � and �¡  � �¤Q , that is, whenever
the right cell is reached, acquisition is declared and declaring
an acquisition at the wrong cell never happens. Also assuming
the total number of cells is the total number of possible states,
then � � � � �¥� and ¦§*¨�©|ª«O¬ �¤���T� � �R � � � ��$ � . If both
the observation length in parallel search and

« ¬§ N of serial search
are 4 , only 4 observations are needed for parallel search and it
can acquire the initial state in time 4 � D , but on average at least`!® 0 � a 9� � � ��$ � 4 observations are needed for serial search and
it takes `¯® 0 � a 9 § N� � � �%$ � 4 � D to acquire.

IV. ITERATIVE MESSAGE PASSING ALGORITHMS

Message passing algorithms have been studied intensely since
the invention of Turbo Codes[3]. It is well known that once the
graph is given, the standard processing is well defined and only
schedule needs to be specified. The standard message passing
algorithms referred to in this paper are well defined in [1], [2],
[4], [7], [8], [11], [12], and iterative message passing algorithms
or iMPAs refer to MPAs on loopy graphs.

To apply message passing techniques to solve joint probabil-
ity distribution problems, we usually start by formalizing the
problems using graphical models, defining the messages passed
along edges and specifying the schedule. If the graphical repre-
sentation is not loopy, optimality can be achieved. The full-state
graphical representation is acyclic, (i.e.,it is a tree), so maxi-
mum likelihood decisions are obtained by running a standard
message passing algorithm on it. On the other hand, there are
many cycles of some fixed length in the sparse loopy one, such
as Figure 4, optimal decisions may not be achieved using iM-
PAs. However, the complexity of the MPA is a function of the
underlying graph. The former has complexity exponential in > ,
the shift register memory, whereas the latter has complexity ex-
ponential to the number non-zero coefficients of 
���W� .

Our approach tries to approximate the full parallel search
when the generating polynomial 
���W� is sparse, i.e., there are
only a few, compared to > , isolated �*° s. An interesting obser-
vation for m-sequences of long period is that, many have sparse
generating polynomials which directly provide sparse loopy rep-
resentations. In Table I, some examples are given[9]. In Fig-
ure 4, one sparse loopy representation for [±�;s Q)Q�Q�Q �%^ of degree�#r is presented.

Messages passed over Figure 4 are obtained following the
standard rules [1], [2], [4], [7], [8], [11], [12]. Specific expres-
sions of the messages that are passed in this scheme in terms of
the channel observations are given in the Appendix.

There are many different schedules for MPAs on acyclic
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graphs that all converge to the same (optimal) solution [1], [2].
However, scheduling can significantly affect the performance of
MPAs on loopy graphs. Furthermore, when MPAs are running
on loopy graphs, convergence to a local optimum is not guaran-
teed, but is usually observed empirically.

Referring to Figure 4, the schedule used for the iMPA in this
paper is as follows. First, messages are sent along the edges con-
necting t }7 and t }7�0 �Ou . Then, messages are passed forward along
the edges connecting S }7 , t }7 , and S }7�0 � , sequentially staring fromUn�oQ . Next, messages are passed backward along the edges
connecting S }7�0 � , t }7 , and S }7 , sequentially staring from U²� 4 .
This defines one iteration. The forward and backward process-
ing can be viewed as running the standard forward-backward al-
gorithm (FBA) on the trellis defined in the absence of the edges
from t }7 and t }7%0 �=u . Thus, the algorithm may be viewed as alter-
natively running the FBA and passing messages over the loops
defined by the edges connecting t }7 and t }7�0 �Ou . Each successive
run of the FBA differs because the messages passed over the
loops alter the effective state transition metrics.

After running iMPA over the loopy graph for a number of
iterations, the iMPA is stopped and soft-output information of
the first �#r bits is calculated and thresholded to obtain a hard
decision for the initial state. The appendix contains brief short
pseudo-code for this iMPA.

V. SIMULATION RESULTS

Computer simulations are done for both UWB (pulsed) sys-
tems, where there is no carrier, and traditional DS system, where
the effect of unknown carrier phase must be considered. In both
cases, we use the m-sequence generated by an 15-stage shift
register with generating polynomial of [1400001].

A. UWB (pulsed) Systems

A.1 Evaluating the algorithm

We evaluate our algorithm using the probability of acquisition
v.s. chip SNR, C D  . � , the acquisition time and the complexity.

The acquisition probabilities of different acquisition schemes
are plotted in Figure 5. It can be seen that the s -state min*-sum
iMPA with is about � � ��³�´ worse than the ML exhaustive search
due to the regular structure and short fixed-length cycles in the
graphical representation, and Q\� µ ³)´ better than the simple se-
rial search. The s -state min-sum iMPA has the performance very
close to the simple serial search.

The acquisition times of these algorithms are shown in Fig-
ure 5 as well. Both full parallel search and iterative MPAs
can achieve code acquisition with time duration comparable to�#��¶ � D . On the other hand, the mean acquisition time of simple
serial search is � � Q)· ¢�� Q)¸ � D . Thus, the iterative MPAs are � �)Q�Q)Q
times faster than the simple serial search. Since the penalty time
was assumed to be zero when

� �����
is calculated, � ��Q�Q)Q is a

conservative estimate.
To compare the complexity of these algorithms, both memory

requirements and the total number of arithmetic operations, de-
noted by ¹�º and ¹�» respectively, are considered. Those num-
bers, along with acquisition time, are summarized in Table II.
Values in parenthesis correspond to numerical results obtained
using 4 � �*��¶ , . D�� � Q)Q and > � �*r .
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Fig. 5. Probability of acquisition (from left to the right): full parallel search,¼O½�½
-iteration min*-sum iMPA,

¼O½�½
-iteration min-sum iMPA, where S ¾¿ ��"À ¿�Á ��Â À ¿�ÁÄÃ � , and simple serial search. The number of observations of

both parallel search and the iterative detectors is
¼OÅ�Æ

, and the dwell time of
serial search is

¼OÅ�Æ
chip intervals.

Parallel Serial iMPA������� 4 � D � ��$ � � D 4 � D
( �#��¶ � D ) ( � � Q)· ¢)� Q)¸ � D ) ( �*��¶ � D )¹�º � � ( µ �)Ç µ�� ) � � Q 4 ( �#��¶ Q )¹ » � � 4 � � 4 µ ��4m. D

( s � � · ¢�� Q�¸ ) ( s � � · ¢�� Q)¸ ) ( s � � Q ¢�� Q u )
TABLE IIÈ)ÉKÊKË

, Ì�Í AND Ì�Î OF FULL PARALLEL SEARCH, SIMPLE SERIAL SEARCH

AND PROPOSED ITERATIVE MPA. BOTH FULL PARALLEL SEARCH AND

IMPA HAVE Ï OBSERVATIONS, ÐOÑ��ÒÏ È�Ó FOR SIMPLE SERIAL SEARCH,
AND Ô Ó IS THE NUMBER OF ITERATIONS THAT IMPA RUNS.

To evaluate the iMPA, we would also like to know the perfor-
mance gain when increasing the number of iterations. For the
min-sum iMPA with 4 � �*��¶ , when . D is increased from � Q)Q
to � Q)Q , Q\� µ ³)´ is gained. There is another QK� �1³�´ gain achieved
by increasing the number further to s Q�Q . No significant iteration
gain is achieved after that.

As illustrated in Figure 6, doubling the length of the observa-
tion ( 4 ) provides approximately µ ³�´ improvement for the tra-
ditional serial and parallel search approaches. This is to be ex-
pected since doubling the number of observations roughly dou-
bles the ratio between the partial period correlation under the
correct (in-phase) and out-of-phase alignments. However, the
performance of the iterative MPA is limited by the cycles, which
are of the length of �#r in this example. Thus, direct application
of this method is most attractive for short observation intervals,
as motivated in section I. However, this iMPA could potentially
be used sequentially or in parallel over multiple time windows
of size �#��¶ in order to capitalize on the additional observations.

A.2 Improving the performance

The performance of the proposed iMPAs over Figure 4 can
be improved. One way to do that is to use a soft information
filter [4], which simply filters out large variations in the soft
information of a particular quantity from one iteration to the
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Fig. 6. The performance of full parallel and serial search, and iMPA when Ï is¼O½�ÅÖÕ
and
Å�×�Ø

, Ù Ó � ½
next. In this case, let the label of the edge connecting t }7 and
t }7�0 �Ou be ÚÄ7 , the standard extrinsic information after P itera-
tions _tÛ `"Ü a [ ÚÄ7#^ is filtered by a low-pass filter 
 ¢)Ý � 6 � whereÝ � 6 ����Þ<���XÞ,� 6 $ � � ßà ß)á 0 ` � $ ß a á

� � $ ßà ß)á 0 ` � $ ß a á ¢*6 $
�

is a

unit-gain low-pass filter, and 
 is the gain. The actual messages
that are passed along edges are:

_mÛ `"Ü aâ [ Ú 7 ^ ��
 ¢ ��Þ � ¢#_mÛ `"Ü a [ Ú 7 ^ �XÞ � ¢*_tÛ `"Ü $ � aâ [ Ú 7 ^ � (8)

where _tÛ `"Ü aâ [ ÚÄ7#^ is the filtered soft-out information. The pa-
rameter ã is used to adjust the bandwidth of the filter. Specifi-
cally, when ã � � , there is no filtering.

It can be observed from Figure Ç that QK� µ ³)´ is gained by
filtering when 4 � �#��¶ . This number is � � Q ³�´ when 4 � ��r � .
Filters with different ã and different gain 
 were simulated. Forã �äQK� ¶ and 4 � �#��¶ , 
�� � � Q is the empirically optimal
scaling.

B. Traditional DS/SS systems

Since reliable estimation of the carrier phase is not possible
prior to PN acquisition, a practical algorithm must operate with-
out phase knowledge. It is assumed that there exists an unknown
deterministic phase which changes slowly so that it is constant
over the duration of 4 observations. Our approach is based on
generalized likelihood [4] where only a finite number of can-
didate Y D -value are considered. Specifically, ¶ candidate phase
values are considered, the MPA is run for each separately and
the best epoch of these ¶ phases is selected.

Simulation results of the � Q�Q -iteration MPA for this approach
are shown in Figure · along with the curve of the ideal case
where Y D is known. The ¶ -phase quantization approach works
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well, at the cost of an increasing in complexity by a factor of ¶ ,
whereas an additional �E³)´ degradation is observed for s -phase
quantization.

VI. CONCLUSION AND FUTURE WORK

Iterative techniques are well known to be applicable in a wide
range of applications, and in this paper we applied this prin-
ciple to solve the code acquisition problem. Simulation re-
sults showed that the iterative message passing algorithm on the
sparse graph worked by itself, for it can achieve acquisition at
low SNRs and it works much faster than serial search. This ap-
proach is especially favorable when the block size is relatively
small.

In practice, hybrid search is usually used as a compromise
of full parallel search and simple serial search. However, hy-
brid search compromises linearly between memory requirement
and acquisition time and it does not necessarily reduce the num-
ber of arithmetic operations, ¹ » , needed for an successful ac-
quisition. Since the iterative message passing algorithm over a
sparse graphical model can approximate full exhaustive search
with significant reduction on both ¹�º and ¹�» , it is a promising
approach for code acquisition problem.

“Data blind acquisition”, i.e., to acquire the initial state of the
PN code while data modulation is presented, designing spread-
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ing codes with “good” autocorrelation property (not necessarily
two value) and sparse generating polynomials are some of the
interesting future research problems.

APPENDIX

To help clarify the messages passed along edges in Figures , transition vertex t }7 and all connected edges are re-drawn in
Figure 10. Also, specific labels are given to messages passed
along different edges, as shown in Figure 10.

Define soft-in information in terms of channel observations
as: èdé

7 [ ' 7 ^ � � à C D 6�7 � �F� � G*H. � (9)

Also, letè
9 $ �� [ q }7 ^ � �lê"ë g�ìH ��í 7 [ S }7 ^ �

èdé
7 [ ' 7 ^ � ¹

é
7 [ ' 7 ^ (10)� 4

é
7Ä[ '-7 $ �=u ^ � ´�7%0 � [ S }7�0 � ^ �

Then, the min-sum messages passed in this iMPA are:è
Ûe7\[ '<7#^ � min g ìH#î G#H

è
9 $ �� [ q }7 ^K�

èdé
7Ä[ '-7#^ (11)í 7�0 � [ S }7�0 � ^ � min g�ìH;î ï ìHOð|ñ

è
9 $ �� [ q }7 ^-�ò´�7�0 � [ S }7�0 � ^ (12)

´�7\[ S }7 ^ � min g�ìH#î ï ìH
è
9 $ �� [ q }7 ^-� í 7Ä[ S }7 ^ (13)

4�Û 7 [ ' 7 $ �Ou ^ � min g�ìH î G ìHÖó�ñ�ô
è
9 $ �� [ q }7 ^,�&4

é
7 [ ' 7 $ �Ou ^ (14)

¹FÛ 7 [ ' 7 ^ � min g ìH î G ìH
è
9 $ �� [ q }7 ^K�&¹

é
7 [ ' 7 ^ (15)¹

é
7\[ '<7*^ � 4�Û�7�0 �Ou [ '-7�^ (16)4

é
7\[ '<7 $ �Ou ^ � ¹FÛ�7 $ �Ou [ '-7 $ �Ou ^ (17)

where the notation :dõ÷ö means all : consistent with ö , '�7vø5 QK( ��8 and S }7 øò5 Q)Q\(RQ � ( � Q\( ����8 . Similarly, min*-sum messages

can be obtained by replacing min operators in equations (10)-
(15) by min*, where min* � ' (Rù\�t�núûchPt� ' (Rù\� �ýü!ë � � ��I $¡þ G $-ÿ�þ � .

PSEUDO-CODE OF THE PROPOSED ITERATIVE MESSAGE
PASSING ALGORITHM

1. Initialization. èdé
[ '<7#^�� � à C D 6�7 � �F� � G*H. � (

4
é
7Ä[ '-7 $ �Ou ^��

èdé
[ '-7 $ �Ou ^ ( ¹

é
7Ä[ '-7*^��

èdé
[ '<7�0 �Ou ^í � [ S }� ^ ( ´ 9 [ S }9 ^ ( . 2 g�� � » g 2�� Ü � Q

2. Forward-backward algorithm: updating í 7\[ S }7 ^ and ´�7Ä[ S }7 ^ ,QlS�UWS 4&�X� , sequentially using (12) and (13), respectively.

í � [ S }� ^�� í � [ S }� ^�� �!�!� í 7 [ S }7 ^ �"�!� � í 9 [ S }9 ^
´ 9 [ S }9 ^�� �"�!� ´�7�0 � [ S }7�0 � ^�� ´�7Ä[ S }7 ^ �"�!� � ´ � [ S }� ^

3. Updating 4�Û 7 [ ' 7 $ �=u ^ and ¹FÛ 7 [ ' 7 ^ , QûS U S 4v��� , using
equation (14) and (15) respectively. Then,

. 2 g�� � » g 2�� Ü ���V. 2 g�� � » g 2�� Ü � �4
é
7Ä[ '-7 $ �=u ^����V¹�Û�7 $ �=u [ '<7 $ �Ou ^ ( ¹

é
7Ä[ '-7#^����V4�Û�7�0 �Ou [ '-7*^

4. If . 2 g�� � » g 2�� Ü is less than ¹�» , go back to step � ; otherwise,
estimating the initial state using

è
[ : 2 ^ �

è
[ ' 2 ^ �

èdé
2 [ ' 2 ^ �è

Ûe2R[ ',2�^ , Q	S c S ��s . The decision rule is: :�2 � Q whenè
[ :-2 ^
	 Q , and :<2 � � otherwise.
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