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Abstract; An ultra-wideband (UWB) receiver that
jointly estimates and detects the received signal when
the channel is unknown and the transmitter and receiver
clocks are not synchronized is presented. Instead of
using a RAKE receiver, which requires knowledge of
the received monocycle, the entire receiver pulse is esti-
mated directly. By formulating the time-varying pulse
samples in each frame as the interpolated versions of a
fixed template pulse, an Extended Kalman Filter (EKF)
can be used to estimate the channel and the timing off-
set. Because the EKF is computationally demanding, a
simplified EKF with negligible loss in performance is
also proposed. The EKF operates jointly with a per-sur-
vivor processing (PSP) unit to detect the received signal.

1 INTRODUCTION

Ultra-wideband (UWB) radio systems are defined
as those with a 10dB bandwidth that exceed 20% of
their center frequency or with a total bandwidth of more
than 500MHz. Because of its large bandwidth, the UWB
signal can provide significant multipath diversity. The
large bandwidth, however, also implies that a digital
UWB receiver is highly sensitive to sampling time mis-
matches caused by the difference in the transmitter and
receiver clock frequencies. A key challenge in UWB
systems, therefore, is to accurately estimate the channel
in the presence of sampling time mismatches.

The most common UWDB receiver structure
described in the literature is the RAKE receiver, which
assumes that the received signal is a superposition of
known received monocycle waveform with different
amplitudes and delays. This assumption, however, is not
accurate, since the actual received monocycle waveform
may differ significantly from the expected one due to
distortions caused by the propagation channel, the
antennas including their orientations, and the receiver/
fransmitter implementation limitations [1]. The lack of
accurate knowledge of the received monocycle wave-
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form motivates us to abandon the RAKE receiver struc-
ture and to instead estimate the entire received signal
pulse directly.

The estimation of the received signal pulse is com-
plicated by the fact that in actual UWB systems, the
receiver and transmitter clocks are not synchronized.
Consequently, the sampled pulse changes from frame to
frame even in the absence of additive noise. A common
approach for correcting the timing mismatch is to
employ a PLL with a timing error detector [2]. Tt is
unclear, however, how the timing error detector (TED)
would operate, since most TEDs rely on a known struc-
ture of the received signal waveform. As described ear-
lier, such structure may not be available in an UWB
system. The PLL also takes a long time to synchronize.

In this paper, we present a receiver that rapidly
estimates and detects the received signal in the presence
of sample time mismatches and unknown channel. The
unknown parameters are estimated using the per-survi-
vor processing (PSP) technique [3]. The PSP operates as
in the standard Viterbi algorithm but uses the data
sequence associated to each survivor as the data-aiding
sequence for parameter estimation. These per-survivor
estimates are then employed in the computation of the
transition (or branch) metric. In our receiver, the per-
survivor estimates of the pulse response in each frame
are used to update the branch metric.

Since the transmitter and receiver clocks are not
synchronized, the received pulse in each frame is sam-
pled at different initial times. This causes the sampled
signal pulse to be time-varying, which complicates the
estimation of the pulse response. To minimize the num-
ber of parameters to estimate, the received pulses are
viewed as interpolated versions of a fixed template
pulse. The estimates of the fixed template pulse and the
timing offset, which will be defined later, are then used
to accurately estimate the pulse response in each frame.
The parameter estimation is achieved using the
Extended Kalman Filter (EKF) [4]. Since the EKF is
computationally demanding, a simplified version of
EKF with negligible loss in performance is also devised
by modifying the state-space model of the EKF and
making appropriate approximations.
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The organization of the paper is as follows. Sec-
tion 2 provides the signal model. The branch metric for
PSP is given in section 3. The parameter estimation pro-
cess is described in section 4. Section 5 presents simula-
tion results and section 6 draws conclusions.

2 SYSTEM MODEL

The UWB signal is a time-hopping pulse train. To
simplify the problem, we assume the pulse position in
each frame is fixed, although this work can be easily
extended to a tire hopping sequence. We will mention
wherever necessary how the current work could be
extended to time-hopping systems. A block of received
single user UWB signal using antipodal signaling is

N1

r(0) = % as(i—kT)+v(0) (0
k=0

where Ty is the frame time and Ny is the number of
frames in each transmission block. The transmitted
binary symbols a, are taken from {+1, -1}. w(?) is the
AWGN with two-sided noise variance N,/ 2 , and s(r} is
the received signal pulse, which is the result of the trans-
mitted pulse passing through a multipath channel and
the receiver. The channel is assumed constant within the
block, and the pulse duration is less than 7 so there is
no interference between frames,

The received signal is sampled at the samplmg fre-
quency f. Since the transmitter and the receiver clocks
are not synchronized, the frame period 7y and the sam-
pling period T (Ts = 1/f,) have an unknown relation;

= W- T, @
where ¥, represents the nominal integer number of sam-
ples between frames, which is known at the receiver,
and y is the timing offset, which is unknown at the
receiver and modeled as a random variable. In the ideal
case, the transmitter and the receiver clocks are synchro-
nized and the timing offset p = 0.

The receiver initiates sampling of the received sig-
nal in the th frame at time ¢ = &N;T; and collects N,
samples. Since p is generally nonzero, the sampling
times of the signal pulse in the kth frame shifts by Au7,
with respect to the sampling times of the signal pulse in
the zeroth frame. This shift in sampling times with
respect to the zeroth frame is subsequently referred to as
the timing shift. The maximum timing shift in a block is

(N DT .

The received signal samples collected in the kth

frame is

ri(n'T) = as(n'T 4+ kuT )+ v (n'T) (3)
where #' = 0, 1, ...,prl . Using vectors,
where
s(huT)
S((1+kw)T,) )
S((N,~1 + k)T,
ri{0) v (0}
r, = (1) v, vilTy) 6
rk((Np— DT vk((N l)T )

3 SIGNAL DETECTION

In this section, the branch metric based on maxi-
mum-likelihood (ML) detection for use in PSP is
described. Denote the data and received sample
sequence up to time & by a, and z,, respectively, where
a; = [ag, ..., ;17 and z; = [x{, ...,rkT]T. The opti-
mal decision rule at the kth frame is

ﬁk = arg maxP(aklzk) (7N

Using a similar procedure described in [5], the

recursion for the decision metric becomes

mi(ay) = Amy(a)+my_(a; 1) ®)
The branch metric Am,(a;) can be approximated as
Am(a,) =~ ”rk aksk k|- l“ @)

where sk k|k—1 is the one-step prediction of s;. The
followmg section describes how sk Kk—1 is obtained,

4 PARAMETER ESTIMATION

4.1 Model of Sampled Pulses

The estimation of s;, which is needed for the deci-
sion metric given in {9), varies from frame to frame
because the transmitter and the receiver clocks are not
synchronized, i.e., p#0. To minimize the number of
parameters to estimate, s; is viewed as an interpolated
version of a fixed template pulse. Defining the signal
pulse in the zeroth frame s as the template pulse, s, can
be interpolated by time shifting sq by Au7,.

Using the Cubic Lagrange Interpolator [5],
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qg q{‘ qf 0 .0
g%, ak af q, . 0
0 gk af af of .. O
=10 e - 0S0 (10)
0 .. 04q% gf af b
0 ... .. 0 qfl qé‘ q{‘
0 .. ... .. 0 qfl q{)f
where the interpolator coefficients are
1 1 1
gk, = -g(ku)3+§(ku)2—§ku (11)
i 1
af = 30y - (kn)? —Sku+ 1 (12)
1 1
gf = - 30ku)} +30ku)? +hp (13)
1 1
g5 = gk - chn (14)

Substituting (11)-(14) into (10) and rearranging, s can
be written as

k= (5103 gy + (B2 H ey + (k) H gy + Hig 5015)

2 H(ku)s,

where Hy, Hpp, Hpy and Hy, are the polynomial
coefficient matrices corresponding to different orders of
kp.

In the case of a time-hopping sequence, the timing
shift in the kth frame is (X + c(k))uT,, where c(k) is
the time-hopping code. Since ¢(k) is known at the
receiver, the analysis in this paper can be extended to
time-hopping systems by replacing all occurrences of
ku by (k+e(k))p.

4.2 Extended Kalman Filter Estimator

EKF is used to estimate the sampled pulse s, in
the kth frame given all the past received samples z;_;. To
remove the data dependency, the observed vector in the
kth frame is

y[k] = akrk (16)
where Ezk is the kth frame symbol of the survivor path,
The UWB communication system is modeled by the fol-
lowing nonlinear state-space equations:

x{k+1] = x[k] an
¥kl = c[4, x[£]]+ ;’k (18)
where the state vector is defined as
x[k] = H , (19)
5o

the measurement vector is

c[k, x(k]] = H(kp)s, (20)
and v, is measurement noise.
Using the following notation for state prediction at
the kth frame given z;

: = | H&lEe-1
Xy = |, @1
So, k|k -1
and linearizing (20) around the most recent state esti-
mate, the following matrix is constructed

-

Clk Fygp ] = el X)

X= xk|k—l (22)
= [C; H(kv-k|k-1)]
where
¢ = Ti8o, tpe-1 (23)
T, = 3k(k].1k|k_1)2HC3+2k(kuk|k,1)HC2+kHC]
24)

Based on the above equations, the standard EKF equa-
tions can be applied to estimate §0g kji—1 - This estimate
can then be used to interpolate s, ... _;, which is
needed in the decision metric given in’($)

Sk, k-1 = HOHg - 100 gp s (25)
Most interpolators, ‘including the Cubic Lagrange
Interpolator, are most effective when 0 <kp < 1. Thus,
if kp>1 or kn <0, we need to replace r, with a new
signal vector rj so that 0<kn<1. This can be
achieved by initiating the sampling in the kth frame a
few samples catly or late based on the estimate of
Mi|k—1 . More specifically, the sampling in the Ath
frame occurs N, — I_k}lk; P [J samples after the (4-1)th
frame instead of ¥, samples, where #; is the nominal
integer number of samples between frames dnd | X ] is
the largest integer not exceeding X. The new timing shift
in_ the _kth frame then becomes
(kpgpe—1— | kpepe—1 )T, This shifting of the
received samples can be accounted for in the EKF equa-
tions described above by replacing all occurrences of r,
and kpgjg-1 with ri and (kppg-1— |_k}1k|k—1J)a
respectively.

4.3 Simplified EKF Estimator

Solving the EKF directly is computationally
demanding as it requires a matrix inversion. This opera-
tions can be avoided by reformulating the EKF state-
space model and making appropriate approximations,
For notational brevity, we subsequently use r, and
kpgik—1 instead of ri and Chmsigie—1 — | Enee—1 )
respectively.

To reduce the computational requirements, the
nonlinear state-space equations are modified as follows:
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x'[k+1] = x'[£] (26)
ap = rfek (k][] +v,, 27
where v, is the measurement noise at the kth frame,

- 2wl e
0

and
c'[k, x'[k1] = H{kp)s', 29

By making the observation vector in (27) into a scalar,
the matrix inversion in the Kalman filter equations
becomes a simple scalar division. To further simplify
the EKF, the state-error correlation matrix K, which is
used to update the Kalman filter, is approximated by
keeping only the first row and column (i.e., the correla-
tion terms between the prediction errors of p and §'y)
and the diagonal terms. This simplification removes 2
mattix multiplication in the EKF update equations.

When using the simplified EKF, the branch metric
is slightly modified. Assuming the predicted signal
power U‘gk’k' k71”2 is approximately constant, mini-
mizing the branch metric (9) is equivalent to minimizing
the following branch metric:

Am' () = |ag— o5 |2 (30)
where 8 ., is the prediction of sp/s|?.
st Klk-1 i§ obtained by interpolating using the EKF
estimate of §'y Klk—1 38 in (25).

Table ! shows the required computational com-
plexity in a survivor path of a simplified EKF receiver
with simplified K and full K. All terms not related to N,
are ignored. The interpolators are all assumed to be
implemented with a Farrow structure [6]. Also for com-
parison purposes, the computational complexity of a
cubic interpolator is included. Except for the interpola-
tor, the number of each computational operation is
obtained directly based on the equation without assum-
ing a structure. The computational requirements of the
EKF with simplified K increases linearly with N, and is
comparable with the computational complexity of a
cubic interpolator.

TABLE 1. Computational Complexity

Cubic EKF with EKF with full
Interpolator simplified K K
Scale by 3Np SNP 5N‘!J
constant
Add/Subtract 114, 21N, 2
u N, p  LSN,+15.5N,
Multi 2
ultiply/ 3Np 16N, 15N%+11.5N,
Divide

5 SIMULATION

The received monocycle, which we assume is
unknown at the receiver, is the second derivative of a
gaussian pulse. The model used here is

w(t+1) = (1 —4n)exp(-2ntd) (31
The received noise free signal pulse is a superposition of
monocycles with different delays and amplitudes. The
multipath model used is the CM1 channel model recom-
mended by the IEEE P802.15-02/368r5-SG3a. The esti-
mation and detection are based on the samples for the
first 20 nanoseconds(ns) of each frame, which includes
about 50 paths. The energy in the 20ns occupies about
90% of the total energy of one frame. The sampling
period is T, = 0.167ns. The number of samples in
each frame is N, = 120.

The receiver works in PSP mode with four states.
The states in each time index represent two adjacent
non-overlapping bits. For example, for transmitted bits
{ag, aq, a3, a3, ...}, {ag, a1} represent the states in the
first time index, {a;, a3} the states in the second time
index, and so on.

The signal energy is defined as £, = E{”skH2} .
Unless stated otherwise, the following operating condi-
tions are assumed: p = 0.1, Nf= 100, and the first
eight symbols are known.
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Figure 1 and Figure 2 plot the estimation mean-
squared error (MSE) of 'y and the absolute value of
timing offset error (TQE) as a function of the number of
frames received for the simplified EKF receiver
(described in section 4.3) assuming E,/N, = 1048
and N;= 1000. Most of the estimation error of the tem-
plate pulse and the timing offset reduce rapidly in
approximately 20 frames,

The performance of the full EKF (FEKF) and sim-
plified EKF (SEKF) receivers described in sections 4.2
and 4.3, respectively, are plotted in Figure 3 as a func-
tion of Ej/Ny. For comparisen purposes, the Compari-
son PSP (CPSP) receiver is also plotted. The CPSP
receiver is defined as a receiver with no timing offset
{i.e., n = 0} and hence, only needs to average along each
survivor to estimate the signal pulse. The CPSP
receiver, therefore, represents approximately a lower
bound on the performance of receivers with unknown
channel and p # 0. The CPSP, FEKF, and SEKF receiv-
ers all have the same number of PSP states. The perfor-
mance of the ideal antipodal receiver is also shown as a
reference for comparison in Figure 3. The ideal antipo-
dal receiver assumes perfect knowledge of the signal
pulse and no timing offset (i.e., p = 0}.

--+- |deal Antipodal Receiver
107" | == FEKF - B training symbols
—7 SEKF - B training symbols
-4%- CPSP -8 training symbols, k=0

0 2

4 6
Ey/Ny(dB)
Figure 3 Bit Error Rate

The difference in performance between the FEKF
SEKF receivers is small, At some of low SNR values,
the SEKF receiver actually outperforms the FEKF
receiver. This occurs because when approximating the
state-error correlation matrix K as a sparse matrix in the
SEKF receiver, the effect of the noise in the off-diagonal
elements is climinated. At high SNR values, both the
FEKF and SEKF receivers approach the performance of
the CPSP.

In our simulation so far, we assumed that the first
eight symbols are known. Figure 4 plots the effects of
the number of training frames for the SEKF receiver. As
the number of training symbols increases, the perfor-

mance improves. However, the improvement is small
beyond eight training symbels.

107§ -+~ Ideal Antipodal Receiver

—&- SEKF - 2 taining symbols
4 [l =+ SEKF - 4 training symbals
10§ =+ SEKF - 8 training symbols
—=— SEKF - 12 training symbols
—&- SEKF - 16 training symbols

10

0 4 b
E,/Ny(dB)

Figure 4 BER with different number of training
symbols

6 CONCLUSIONS

Using the EKF and PSP, a UWB receiver that
jointly estimates and detects the received signal with
unknown channel and sampling time mismatches is pre-
sented. The use of the EKF to estimate both the channel
and the timing offset is made possible by formulating
the received pulse samples in each frame as an interpo-
lated version of the zeroth pulse samples. A simplified
EKF receiver with complexity that increases linearly
with the number of samples in each frame is also pre-
sented.
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