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Abstract—Optimal performance of delay tracking loops in
a binary linearly-modulated system is investigated, which is
compared with the Cramer-Rao lower bound and the per-
formance of a tracking loop suggested by the maximum-
likelihood timing estimation.

I. Introduction

Synchronization is an essential part of all communication
systems. The synchronization process is usually divided
into two steps, namely, coarse acquisition and fine track-
ing. In this paper, we shall focus on the tracking part of
synchronization. In [1, 2], Sampaio-Neto and Scholtz ad-
dressed the problem of code-tracking loop optimization for
both unmodulated and antipodally modulated DSSS sys-
tems. The optimal tracking loops they found turn out to
be exactly the same as those suggested by the maximum-
likelihood timing estimation (MLTE), which states that
the optimal structure suggested by an open-loop estima-
tion theory (MLTE) coincides with the optimal closed-loop
tracking device.

In recent years, there has been a great interest in the re-
search of Ultra-Wideband (UWB) systems for short-range
communications or ranging applications. Among other
signaling methods, binary pulse-position modulation (B-
PPM) is one of the possible modulation waveforms [3]. In
terms of signal representation, one interesting aspect about
B-PPM is that it is not antipodal. However, for UWB sys-
tems which use pulses of nano-second durations to commu-
nicate, timing accuracy is critical to the system operations,
which motivates this research on the optimization of delay
tracking loops for binary modulated systems. In this pa-
per, we shall generalize the results in [1] to an arbitrarily
binary linearly-modulated system (i.e., not necessarily an-
tipodal) and optimize the delay tracking loop for such a
system. In addition, we will compare the optimal perfor-
mance with the Cramer-Rao lower bound (CRLB) and that
of other commonly-used tracking loops, including the one
suggested by MLTE.

The received baseband waveform for a binary-modulated
system on a colored additive Gaussian noise channel can be
expressed as

y(t) =
√

P
∑

i

sbi(t− iTf + τ(t)) + n(t) (1)
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Fig. 1. Geometrical illustration of signal decomposition

where i denotes the frame (or symbol) index, P the aver-
age power, bi ∈ {±1} represents the binary data symbols,
and sbi(t) the corresponding received waveforms with unit
power over one frame time Tf . τ(t) is the time-varying
delay between the transmitter and the receiver that is to
be estimated. n(t) represents the possibly colored additive
Gaussian noise process.

To facilitate the analysis in the following, we define the
mean and modulation parts of the received noise-free sig-
nals as

m(t) , 1

2
[s+1(t) + s−1(t)], u(t) , 1

2
[s+1(t)− s−1(t)]. (2)

This formulation decomposes the arbitrarily binary
linearly-modulated signal into a data-independent mean
signal m(t) and an antipodally modulated signal u(t).
With the definition of m(t) and u(t), we can write
s±1(t) = ±u(t) + m(t), or simply sbi(t) = biu(t) + m(t).
Also, when ||s+1|| = ||s−1||, the mean and modulation
parts are orthogonal, i.e., < m,u >= 0. This is illustrated
geometrically in Fig. 1. Within this general signal model
for binary modulations, we have two special cases: (i) when
the signal is unmodulated, u(t) = 0; (ii) when the signal is
antipodally modulated, m(t) = 0.

II. Maximum-Likelihood Timing Estimation

In this section, we first consider the maximum-likelihood
timing estimation of the delay τ over AWGN channel and
assume τ is a constant for the time being. Then we derive
a closed-loop implementation suggested by it for binary
modulated systems. Suppose we have observations of y(t)
over N frames. Following the approach in [2] and using



the signal decomposition in (2), the log-likelihood function
of τ averaged over the random data bi with equal prior
probabilities is given by

L(y, τ) =

N−1X

i=0

2
√

P

N0

Z Tf

0
y(t + iTf )m(t− τ)dt

+

N−1X

i=0

ln cosh

(
2
√

P

N0

Z Tf

0
y(t + iTf )u(t− τ)dt

) (3)

where the terms independent of τ have been dropped. The
ML estimate of τ is the value that maximizes (3). MLTE
leads to an open-loop structure which tests different possi-
ble values of τ and determine the ML estimate τ̂ML.

Comparing (3) with previous results in [2], the first and
the second terms in (3) correspond to the mean signal m(t)
and the modulation part u(t), respectively. This simple
formulation of the average log-likelihood function for an
arbitrarily binary-modulated system is possible only if we
use the signal decomposition in (2).

A necessary condition for ML estimate τ̂ is that
L̇(r, τ̂) = 0 where L̇ denotes the derivative of L with re-
spect to τ . The derivative of the log-likelihood function is
given by

L̇(y, τ) =

N−1X

i=0

Z Tf

0
y(t + iTf )[ṁ(t− τ) + b̃iu̇(t− τ)]dt

=

N−1X

i=0

Z Tf

0
y(t + iTf )ṡb̃i

(t− τ)dt

(4)

where sb̃i
(t) = m(t) + b̃iu(t) and

b̃i , tanh

{
2
√

P

N0

∫ Tf

0

y(t + iTf )u(t− τ)dt

}
. (5)

The argument of tanh(·) in (5) is actually the
matched-filter output for binary data detections. Also,
| tanh(·)| ≤ 1. Hence the MLTE is interpreted to first make
a soft decision about bi and then remove the effect of ran-
dom data by multiplying the soft decision back to the mod-
ulation part u(t).

Observing (4) indicates that the MLTE suggests using
the derivative of the incoming noise-free signal as the lo-
cal reference waveform to perform cross-correlation, then
driving this quantity to zero in order to obtain an estimate
of τ . If the signal is modulated, soft decision should be
made first to remove the modulation and then synthesize
the reference waveform.

Note that in general the estimated signal sb̃i
is not in the

signal alphabet, i.e., sb̃i
/∈ {s+1, s−1} as shown in Fig. 1,

which may impose some difficulties in implementation of
the MLTE. A common practice is to use high SNR approx-
imation by making tanh(x) ≈ sgn(x) [5] or low SNR ap-
proximation tanh(x) ≈ x [1]. Observations about (5) also
indicate that the MLTE suggested structure explicitly de-
pends on

√
P/N0.

Although the MLTE gives the optimum open-loop so-
lution, the closed-loop structure suggested by it may not
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Fig. 2. The tracking loop suggested by MLTE with pre-correlation
filters

be optimal among all closed-loop tracking devices. In the
following section, we will consider the tracking loop opti-
mization in the framework of filter optimization and see
how well a tracking loop can perform compared with the
Cramer-Rao lower bound.

III. Filter Optimization for Tracking Loops

In [1], Sampaio-Neto and Scholtz cast the problem
of tracking loop optimization in the framework of pre-
correlation filter design. Here, we continue their effort
to find the optimal tracking loop for a binary linearly-
modulated (not necessarily antipodal) system over colored
Gaussian noise channel. From (4) and following the ap-
proach in [2] we are able to obtain a closed-loop structure
which approximates the MLTE at low SNR. The derived
tracking loop is shown in Fig. 2 which consists of linear pre-
correlation filters Gi(f)’s. The lower branch corresponds to
the mean signal m(t)-related terms in (4), while the upper
and middle branches correspond to the modulation part
u(t)-related terms, which includes the soft-decision signal
synthesis. G1(f), G2(f), and G3(f) filter the received sig-
nal y(t) and then the filtered signals are correlated with
locally generated references consisting of u(t) and m(t)
shaped by G4(f), G5(f), and G6(f). These filters replace
the possible differentiators in (4) and are to be optimized
to obtain optimal tracking performance. With the addi-
tion of these filters in the loop, we are also able to deal
with colored interference which the loop without the filters
was not derived for. Also, the integration devices have been
replaced by low-pass filters L(f) with bandwidth roughly
equal to the frame rate. Furthermore, we have replaced
tanh(2

√
P

N0
x) in (5) simply by x. The unit disagreement due

to the omission of 2
√

P
N0

is compensated for by the amplifier

with gain 2
√

P
N0

on the lower branch. Also, F (s) denotes the
low-pass loop filter and VCO controls the timing of m(t)
and u(t).

To ensure that the S-curve of the loop in Fig. 2 is an odd
function of the timing error and that the noise process in
the loop has zero mean, we impose the following conditions
on the filters Gi(f)’s:



• G∗1(f)G4(f) is real and even for all f.
• G∗2(f)G5(f) is imaginary and odd for all f.
• G∗3(f)G6(f) is imaginary and odd for all f.

Before we proceed, we define some useful functionals
which make the analysis more compact.

Γ1(f) , G∗1(f)G4(f)
p

Sn(f)Eu(f)

Γ2(f) , G∗2(f)G5(f)
p

Sn(f)Eu(f)

Γ3(f) , G∗3(f)G6(f)
p

Sn(f)Em(f)

A(f) ,
s

Eu(f)

Sn(f)
, Ap(f) , −j2πfτmA(f)

B(f) , E∗mu(f)p
Sn(f)Eu(f)

, Bp(f) , −j2πfτmB(f)

C(f) ,
s

Em(f)

Sn(f)
, Cp(f) , −j2πfτmC(f)

(6)

where Sn(f) is the PSD of the colored Gaussian noise n(t).
Em(f) and Eu(f) are the energy spectral densities of m(t)
and u(t), respectively, while Emu(f) denotes their cross-
energy spectral density. τm is a normalization constant
with unit second to make the results scalable.

We now define ε , (τ − τ̂)/τm as the normalized timing
estimation error. In linear analysis of tracking theory [4],
the two most important quantities are: (i) s′(ε = 0): the
derivative of the mean signal of z(t) (the S-curve) with
respect to ε at ε = 0; and (ii) Sne(f = 0, ε = 0): the PSD
of the noise (mean-free) component of z(t) at frequency
zero (f = 0) and zero estimation error (ε = 0). We then
define Neff , the effective noise PSD (at D.C.) in the loop,
as follows.

Neff , Sne(0, 0)
[s′(0)]2

(7)

After lengthy derivations which are omitted here, these two
quantities are given by

s′(0) =
2P

Tf N0
< Γ3, Cp > +

αP

Tf
2

< Γ1, A >< Γ2, Ap >

+
P

Tf
2

< Γ1, Bp >< Γ2, B >

Sne (0, 0) =
4P

Tf N0
2

< Γ3, Γ3 > +
α′P
Tf

3
< Γ1, A >2< Γ2, Γ2 >

+
β′

Tf
3

< Γ1, Γ1 >< Γ2, Γ2 >

+
4P

Tf
2N0

< Γ2, B >< Γ3
B

C
, Γ1 >

+
P

Tf
3

< Γ2, B >2< Γ1, Γ1 >

(8)

where
α ,

Z ∞

−∞
Sd(f)|L(f)|2df ≤ 1,

α′ ,
Z ∞

−∞
Sd(f)|L(f)|4df ≤ 1,

β′ , Tf

Z ∞

−∞
|L(f)|4df.

(9)

and Sd(f) is the PSD of the NRZ data sequence∑+∞
i=−∞ biΠ(t− iTf ) with Π(t) being the rectangle func-

tion with duration Tf .

The timing error variance σε
2 , E[(τ − τ̂)2/τ2

m] of the
tracking loop is equal to 2BLNeff where BL is the equiva-
lent one-sided loop bandwidth. Therefore, to minimize the
timing error is equivalent to minimize Neff through opti-
mizations of Γi(f)’s (and hence Gi(f)’s). Before we start
to optimize these pre-correlation filters, let’s look at two
special cases which have been considered in [1, 2], namely,
the unmodulated and anti-podally modulated systems.

A. Unmodulated System

When the signal is not modulated, we have u(t) = 0. The
effective noise PSD (7) can be simplified by eliminating all
terms involving u(t). The result is given in (10) and can
be minimized using Schwartz’ inequality as follows.

Neff =

4P
Tf N02 < Γ3, Γ3 >

[ 2P
Tf N0

< Γ3, Cp >]2
≥ Tf

P < Cp, Cp >
(10)

where equality holds when Γ3 = k3Cp and k3 is an ar-
bitrary positive constant; that is when G∗3(f)G6(f) =
−k1j2πfτm/Sn(f), which means we should put a whiten-
ing filter in front to whiten the colored noise process and use
a differentiator to generate the derivative of the noise-free
signal as the local reference. Therefore, the optimal filters
in AWGN are those suggested by the MLTE and hence
the MLTE gives the optimal delay tracking loop among all
closed-loop tracking devices.

B. Antipodally Modulated System

When the signal is antipodally modulated, we have
m(t) = 0. Similarly, the Neff in the case can be derived
by eliminating all terms involving m(t) in (7). The result
is given below and again using Schwartz’ inequality we can
minimize Neff easily.

Neff =

α′P
Tf

3 < Γ1, A >2< Γ2, Γ2 > + β′
Tf

3 < Γ1, Γ1 >< Γ2, Γ2 >

[ αP
Tf

2 < Γ1, A >< Γ2, Ap >]2

≥ 1

< Ap, Ap >

�
α′Tf

α2P
+

β′Tf

α2P 2

1

< A, A >

�

(11)
where equality holds when Γ1 = k1A and Γ2 = k2Ap

and k1 and k2 are arbitrary positive constants; that
is when G∗1(f)G4(f) = k11/Sn(f) and G∗2(f)G5(f) =
−k2j2πfτm/Sn(f), which means we should set G∗1(f)G4(f)
as a whitening filter and make a soft decision (small SNR
approximation) about bi and using G∗2(f)G5(f) to whiten
and differentiate the signal to generate the local reference.
Again, MLTE suggests the optimal delay tracking loop in
AWGN among all closed-loop tracking devices for an an-
tipodally modulated system.

C. Arbitrarily Binary-Modulated System

We now consider a more general case when the signal
is arbitrarily binary-modulated, that is when neither m(t)
nor u(t) is zero. The effective noise spectrum Neff is given
in (12). The first and second terms in the denominator cor-
respond to the slope of the S-curve at ε = 0 in the unmod-
ulated and antipodally modulated cases, while the third



Neff =

4P
Tf N02 < Γ3, Γ3 > + α′P

Tf
3 < Γ1, A >2< Γ2, Γ2 > + β′

Tf
3 < Γ1, Γ1 >< Γ2, Γ2 > + 4P

Tf
2N0

< Γ2, B >< Γ3
B
C

, Γ1 > + P
Tf

3 < Γ2, B >2< Γ1, Γ1 >

"
2P

Tf N0
< Γ3, Cp > + αP

Tf
2 < Γ1, A >< Γ2, Ap > + P

Tf
2 < Γ1, Bp >< Γ2, B >

#2 (12)

term results from the cross-correlation between m(t) and
u(t) related terms. Similarly in the numerator, the first
term corresponds to the noise PSD at f = 0 and ε = 0 in
the unmodulated case, while the second and third terms
the anti-podally modulated case. The rest (fourth and fifth
terms) comes from the cross-correlation between them.

In the following analysis, we will not show the depen-
dence of functionals on frequency f for conciseness. To
find the optimal pre-correlation filters Gi’s, we first resolve
Γi’s into components as follows.

Γ1 = g1A + g2Bp + D

Γ2 = g3Ap + g4B + E

Γ3 = g5Cp + F

(13)

Γ1 is resolved into components on a non-orthogonal basis
{A,Bp} and D is the part of Γ1 that is orthogonal to A
and Bp. g1 and g2 denote the projections of Γ1 onto them.
Similarly for Γ2, E is the part of Γ2 that is orthogonal to
Ap and B. Also, F is the part of Γ3 that is orthogonal to
Cp. Therefore, to find the optimal Γi’s, we have to optimize
D, E, F , and gi’s.

To minimize Neff , we begin by finding the optimal E.
We notice that E only appears in the second and the third
terms of the denominator in (12). After grouping together
terms involving E and discarding the rest, we have an ob-
ject function J(E) to minimize, which is given by

J(E) =

"
α′P
T 3

f

< Γ1, A >2 +
β′

T 3
f

< Γ1, Γ1 >

#
< E, E > (14)

Recognizing that the coefficients in the brackets are all pos-
itive, to minimize Neff , we should make E = 0.

Next, we find F that minimizes Neff . Similarly, F only
appears in the first and the fourth terms of the denomi-
nator in (12). After grouping together terms involving F
and discarding the rest, we have an object function J(F )
to minimize subject to the constraint < F,Cp >= 0. The
object function J(F ) is given by

J(F ) =
4P

Tf N0
2

< F, F > +
4P

Tf
2N0

< Γ2, B >< F,
B∗
C

Γ1 > (15)

Using the method of Lagrange multiplier, the optimal F
can be found and is given by

F =
−N0

2Tf

< Γ2, B >

2
4g1

B∗
C

A + g2
B∗
C

Bp +
B∗
C

D − g2
< Bp, Bp >

< Cp, Cp >
Cp

3
5

(16)
Note D in the above equation has to be replaced by the
optimal one to be determined in the following.

Similarly for D which only appears in the denominator,
grouping together terms involving it and discarding the
rest, we have the following object function to minimize to

obtain the optimal D.

J(D) =
4P

Tf N0
2 < F, F > +

β′

T 3
f

< Γ2, Γ2 >< Γ1, Γ1 >

+
4P

Tf
2N0

< Γ2, B >< F,
B∗
C

Γ1 > +
P

T 3
f

< Γ2, B >
2
< Γ1, Γ1 >

(17)
Minimizing J(D) subject to the constraints < D,A >= 0
and < D, Bp >= 0 gives the optimal solution: D = 0.

Plugging the optimal D, E, and F into (13), we have the
following equations of Γi’s with gi’s to be optimized.

Γ1 = g1A + g2Bp

Γ2 = g3Ap + g4B

Γ3 = g5Cp −
N0

2Tf

< Γ2, B >

�
g1

B∗
C

A + g2
B∗
C

Bp − g2
< Bp, Bp >

< Cp, Cp >
Cp

�

(18)
Substituting the above equations into (12) gives Neff as a
function of gi’s. The minimal Neff and the optimal gi’s
can be found by numerical search using math package soft-
wares, which in turn gives the optimal pre-correlation filters
Gi’s.

IV. Bounds on the minimal Neff

Although the optimal Γi’s and hence the optimal Gi’s
can be found using the method described in the previous
section, we are still interested in how close the optimal per-
formance of a tracking loop is compared to the theoretical
Cramer-Rao lower bound. Also, the set of pre-correlation
filters Gi’s found in the unmodulated and antipodally mod-
ulated cases seems another reasonable choices. We’d like
to see how well the tracking loop performs using that set
of filters.

The set of filters that minimizes Neff (and are also sug-
gested by MLTE) in the unmodulated (10) and antipodally
modulated (11) cases are given here again for clarity.

G∗1(f)G4(f) = k1
1

Sn(f)

G∗2(f)G5(f) = −k2j2πfτm · 1

Sn(f)

G∗3(f)G6(f) = −k3j2πfτm · 1

Sn(f)

(19)

Note that the optimality of these filters in their respective
case is independent of SNR. Although this set of filters is
not the optimal one in a closed-loop implementation for ar-
bitrarily binary-modulated system, MLTE makes soft deci-
sion about bi and removes the modulation effectively hence
the performance is expected to be close to the optimal one.
Therefore, we have an upper bound for Neff as follows.

min Neff ≤ Neff |MLTE filters (20)

where Neff denotes an upper bound for Neff and the
MLTE filters are those in (19).
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Fig. 3. Performance of different tracking loops and upper/lower
bounds for optimal loop

For the lower bound on Neff we consider the CRLB of
ε. due to the space limitation, we omit the derivations here
and only plot the results in the following section.

V. Numerical Example

Suppose Binary-PPM (non-antipodal) is employed over
an AWGN channel and s−1(t) = s+1(t− δτm). Let
s+1(t) = w2(t) where w2(t) is the second derivative Gaus-
sian waveform with unit power within one frame given by

w2(t) =

s
8Tf

3τm

"
1− 4π

�
t

τm

�2
#

exp

"
−2π

�
t

τm

�2
#

(21)

and δ = 0.45 in the example.
The upper bound using MLTE filters (with k1 = k2 =

k3 = 1 in (19)), the CRLB, and the minimal Neff using the
optimal filters are plotted in Fig. 3. ρf is the frame SNR
defined by ρf , PTf/N0. Along with them, we also pro-
vide the performance curve of the decision-directed (DD)
system which makes hard decision about bi and remove the
modulation from the signal using this estimate.

We first notice that performance with optimal filters Gi’s
always lies between the upper and lower bounds, which
demonstrates the validity of these bounds. Also, the in-
distinguishable performance curves of the optimal track-
ing loop and CRLB demonstrates its close-to-optimal per-
formance. For low SNR region, the optimal loop outper-
forms DD and MLTE loops by a few dBs. At moderate
to high SNR (ρf > 0dB) where the linear theory is valid,
the MLTE removes the modulation effectively by making
correct decisions about bi, hence the bounds are tight as
expected. Also, the performance of the optimal loop and
DD converge at high SNR as DD is designed for high SNR
region. Usually, we require the rms timing jitter to be
less than 10% of the pulse width. At this range, the opti-
mal loop provides about 7dB gain over traditional decision-
directed tracking loop.

We now look at the optimal filters Gi’s and see how they
differ from those suggested by the MLTE in (19). In con-

trast to the cases of unmodulated and antipodally modu-
lated systems in (19), the optimal values of gi’s (and hence
the optimal Gi’s) are functions of ρf . For example, at
ρf = 5dB, the optimal gi’s are found to be

{g1, g2, g3, g4, g5} = {1.00,−0.06, 0.96, 0.40, 1.02}. (22)

The optimal pre-correlation filters Gi’s are then given by

G∗1(f)G4(f) = 1.00 · 1

Sn(f)
+ 0.06 · j2πf

E∗mu(f)

Sn(f)Eu(f)

G∗2(f)G5(f) = −0.96 · j2πfτm · 1

Sn(f)
+ 0.4 · E∗mu(f)

Sn(f)Eu(f)

G∗3(f)G6(f) = −1.02 · j2πfτm · 1

Sn(f)
− 1.03 · Emu(f)

Sn(f)Em(f)

(23)

Note the filters in (23) are quite different from those sug-
gested by MLTE in (19).

VI. Conclusion

In this paper, the optimal performance of a tracking loop
is investigated through pre-correlation filter optimization in
an arbitrarily binary linearly modulated system. In partic-
ular, this optimal performance is compared with the CRLB
and those of decision-directed tracking loop and a track-
ing loop suggested by MLTE. Numerical results show the
optimal loop provides about 7dB gain relative to decision-
directed tracking loop in the range of interest, and the per-
formance is indistinguishable from the CRLB.
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