
An Ultrawideband Signal Design with Power
Spectral Density Constraints

(Invited Paper)

Terry P. Lewis∗†, Robert A. Scholtz†
∗Raytheon

Networked Centric Systems, Fullerton, California 92833–2200
Email: tplewis@raytheon.com

†Electrical Engineering Systems
University of Southern California, Los Angeles Ca 90089-2565

Email: terry@usc.edu, scholtz@usc.edu

Abstract— An UWB signal was designed and generated using
a zero order digital to analog converter. An efficiency measure
of filling the FCC spectral mask is developed and optimized
for various choices of digital-to-analog converter parameters and
waveform duration. The proposed optimization technique takes
into account filtering effects in the digital-to-analog converter as
well as a measured antenna transfer function characteristic.

I. A N INTRODUCTION TO THEFCC MASK CONSTRAINT

The FCC has imposed a maskM(f) (see Figure 1) to bound
the power spectral densitySEIRP(f) of the equivalent isotropic
radiated power (EIRP) of a UWB communication signal [1].
The detailed shape ofM(f) depends on the particular UWB
system application. For many modulation formats, the power
spectral density (PSD) of a modulated trainx(u, t) of pulses
p(t) factors as [2], [3]

Sx(f) = Sm(f)|P (f)|2, (1)

whereSm(f) is is a function only to the modulation process,
andP (f) is the Fourier transform of the UWB pulse shape
p(t), i.e.,

P (f) =
∫ τ

0

p(t) exp(−j2πft)dt. (2)

The transformation from the modulated pulse train in the
transmitter to the radiated electromagnetic far field on which
the EIRP mask is imposed, is a linear transformation which we
represent by system functionHeq(f). Hence the power spectral
densitySEIRP(f) which is bounded by the maskM(f) is of
the form

SEIRP(f) = Sx(f)|Heq(f)|2 = Sm(f)|P (f)|2|Heq(f)|2. (3)

We assume further PSD of the modulation process is approx-
imately a constant for allf of interest, and without loss of
generality we assume thatSEIRP(f) ≈ a1|P (f)|2|Heq(f)|2.
The constantac includes factors that convert the units of
|P (f)Heq(f)|2 (typically volts2/Hertz) to the units ofM(f)
(typically Watts/megahertz), in addition to scaling by the
constant spectral density of the modulation. Hence the FCC
requirement is that

ac|P (f)|2|Heq(f)|2 . M(f) (4)

Fig. 1. FCC Outdoor and Indoor PSD Constraints

for all f in the measurement range(Fmin, Fmax).

II. M ASK-FILLING EFFICIENCY

The mask-filling efficiencyη of a particular signal design
can be defined as the ratio of the power contained in the
resulting FCC-compliant PSDSEIRP(f) to the total power
that could be contained under the maskM(f), both being
evaluated in the measurement range. Hence we define

η ,
ac

∫ Fmax
Fmin

|P (f)|2|Heq(f)|2df∫ Fmax
Fmin

M(f) df
. (5)

This mask-filling efficiency measure for a pulse waveform
p(t), given the system functionHeq(f), also embodies the
effects of transmitter, antenna, and propagation on signals.
Let PPG be the set of possible pulse waveformspn(t) that
can be implemented in the pulse generator. Here the subscript
n simply indexes the elements inPPG.Furthermore for each
waveform inPPG, a scale factorAn can be chosen so that

p(t) = Anpn(t) (6)

and the FCC mask bound in (4) is satisfied byp(t) for all
f ∈ (Fmin, Fmax), and is achieved with equality for at least



one value off in this measurement range. This constantAn

can always be implemented in the transmitter as an all-band
amplification/attenuation.

Pulse Waveform Selection Procedure

1) For each possible waveformpn(t) ∈ P∗, find the
constantAn so that (4) is satisfied for allf and achieved
for somef in the measurement range. This computation
in dB form is equivalent to evaluating

(acA
2
n)dB = minf∈(Fmin,Fmax) [(M(f))dB

−(|Heq(f))|2dB − (|Pn(f)|2)dB
]
.

(7)

2) For each possible waveformpn(t) ∈ P∗, calculate the
mask filling efficiencyηn of the waveformpn(t) by
evaluating

ηn ,
acA

2
n

∫ Fmax
Fmin

|Pn(f)|2|Heq(f)|2df∫ Fmax
Fmin

M(f) df
. (8)

3) Find the waveformpnopt(t) with the highest efficiency
ηmax, i.e.,

ηmax = max
1≤n≤N

ηn.

and
nopt = arg max

1≤n≤N
ηn.

This procedure describes an exhaustive search, and hence is
applicable to situations in which the setP∗ is finite.

III. C OMMENTS ON PRIOR WORK

If there were no constraints on the pulse shapep(t), then it
may be possible to determine a waveformp(t) with 100%
mask-filling efficiency by solving

|P (f)|2 =
M(f)

ac|Heq(f)|2
(9)

for P (f). This assumes that the right hand side of (9) can
represent the squared magnitude of a finite energy waveform.
Factorizations of this type that recover a pulse shapep(t)
with time support[0,∞) can be carried out provided that
M(f)/|Heq(f)|2 satisfies Paley Wiener conditions. Then, the
optimal pulse waveformp(t) can be recovered by a Fourier
transform inversion ofP (f).

Slepian et al. studied methods to optimize the concentration
of energy in a band of frequencies for functions with finite
time support, using prolate spheroidal wave functions for
continuous time [4] and discrete time [5] systems. (see also
[6], [7], [8].) Slepian’s problem formulation differs from our
approach in the following respects:

1) HereHeq(f) is not an ideal all-pass filter. Any applica-
tion of this prior work to the problem stated here must
assumeHeq(f) = 1.

2) Here we are constrained by a PSD mask, while the prior
work only maximizes in-band power, without concern
for the shape of the in-band power density.

Fig. 2. System Diagram Model

3) The allowed waveform set in the prior work is different
from P∗.

The use of prolate spheroidal functions as UWB signals has
been suggested [9].

IV. A UWB PULSE GENERATOR

Viable UWB pulse generators with the ability to produce
complex pulse waveforms are difficult to construct. Here we
assume that the UWB pulse generator (see Figure 2) is a
zero-order digital-to-analog converter (DAC) which produces
a pulse signal of the form

pn(t) =
M−1∑
m=0

sm,nψ(t−mTs) (10)

from an inputM -tuple sm,n, m = 0, . . . ,M − 1. The ideal
elementary waveformψ(t) is a unit-energy rectangular pulse,

ψ(t) =

{
1/
√
Ts, if 0 < t ≤ Ts

0, otherwise,
(11)

that is reproduced at a rateT−1
s and scaled to produce a

staircase waveform with time supportMTs. Further filtering
of this signal form (11) within the DAC are included in the
model of Heq(f). The scaling coefficientssm,n are chosen
from a setQ of coefficients that are uniformly spaced. Hence,
the rangeR of this uniform quantization is given by

R = (|Q| − 1)∆step, (12)

where∆step is the magnitude of the difference between any two
adjacent elements ofQ. The numberN of distinct waveforms
of durationMTs that the DAC can produce is

N , |Q|M . (13)

In terms of the general problem construct,N = |P∗|.
The coefficientM -tuple sm,n, m = 0, . . . ,M − 1, used by

the DAC to generatepn(t) can be generated systematically for
a uniform symmetric quantization by representingn as a base



|Q| number and using the elements in this representation as
the coefficientM -tuple. That is,

sm,n =
{[

n

|Q|m

]
mod |Q|

}
∆step−

R

2
, (14)

where0 ≤ m < M, 0 ≤ n < N and [x] represents the integer
part of x. Choosing∆step = 2 insures for simplicity that the
coefficientssm,n are integers for both even and odd choices
of |Q|. We can view the coefficientssm,n as entries in an
M ×N matrix SM×N matrix whose row and column indices
range over0 ≤ m < M, 0 ≤ n < N respectively.

The DAC performs the mappingsn → pn(t) according
to (10) wheresn is the nth column of SM×N . The Fourier
transform ofpn(t) in (10), which is required to carry out the
waveform selection procedure, is

Pn(f) = F{pn(t)} = Ψ(f)
M−1∑
m=0

sm,n exp−j2πfmTs, (15)

whereF{ψ(t)} = Ψ(f).

V. THE SIGNAL -PATH SYSTEM FUNCTION

To complete the model for optimization, we must determine
the system functionHeq(f) of the signal path from the signal
generator outputpn(t) to the strongest portion of the radiated
electric far field ~ρE(t) at a distancer from the radiating
antenna. The power spectral density of the amplitudeE(t)
of this field is multiplied by4πr2 to produce the measured
isotropic radiated power spectral densitySEIRP(f). The system
function Heq(f) has several factors that can be identified in
Figure 2, each representing the effect of a portion of the signal
path from generated pulsepn(t) to the electric fieldE(t).

Filtering in the DAC: The output of the D/A converter filter
is

F{pn(t) ∗ hD/A(t)} = Pn(f)HD/A(f), (16)

In the sample computations done here, the system function
HD/A(f) was determined from a measured response of a real
UWB digital synthesizer. The step response of the signal
generator was measured and it was determined that the signal
generator had a 90% risetime of∼ 41 ps. The shape of the
leading edge of the response was found to fit well with the
shape of a Gaussian cumulative distribution function. Using
the properties of random variables to compute the parameters
of a zero mean gaussian density function, the filter’s impulse
response variance was calculated to beσ2

D/A
∼= 1.25E −

11 sec2, and thus the DAC filter is completely determined by

hD/A(t) =
1√
2πσ

e
−(t−µt)

2

2σ2 , (17)

where for simplicity, the meanµt = 0. The specified Gaussian
density filter has a 3 dB bandwidth of 10 GHz and the
normalized (at DC) transfer function ofhD/A(t) is

F{hD/A(t)} = HD/A(f)
= 1.0 exp[−7.8 · 10−23(2πf)2]. (18)

Transmission Lines: The transmission line to the antenna
exhibits a constant impedance (typically50Ω) across a wide
frequency band of operation. We assume in the sample com-
putations done here that the transmission line behaves like an
ideal all-pass filter across the measurement band and can be
ignored. Distortion of ultra fast pulses in transmission lines
has been studied [10] and results have shown that distortions
do occur if precautions are not taken.

Transmitting Antenna and Radiation: For most antennas the
transfer functions of interest may have to be measured or simu-
lated [11], [12]. Pozar has used analytical models for antennas
over wide bandwidths [13]. For the antennas considered, his
results indicate that the transfer function from the antenna
input to the radiated far field and to the receiving antenna are
not flat over the band of interest, and hence antennas can have
a significant spectral shaping effect on an UWB waveform.
This is true generally because of the wide bandwidths used
and the difficulty of constructing simple UWB antennas which
are relatively flat across the bandwidth of interest.

Three pairs of antennas were used in our sample computa-
tions:

• Transverse Electromagnetic Mode (TEM) Horn anten-
nas – TEM horn antennas were used in the experi-
ment because they exhibit relatively constant gain, good
impedance match and linear phase over several decades
of frequency. Their performance is very predictable using
mathematical models [14], [15], [16]. The features of
TEM horns are typically difficult to achieve in simple
antennas.

• small TEM Horn antennas – The small TEM horn an-
tennas were designed to have a slightly higher cut on
frequency relative to the larger TEM horm antennas.
Both types of TEM horns were designed with truncated
ground planes for compactness of size, causing somewhat
degraded behavior.

• diamond dipole antennas – The diamond dipole antennas
are relatively small antennas that were proposed for UWB
use but are too large for hand held use as well.

The measuredS2−1 responses shown in Figure 3, were
measured in an anechoic chamber by a calibrated network
analyzer. The calibration was performed up to the antenna
input terminals and 1601 uniformly spaced data samples
were taken from 50 MHz-20.05 GHz. In all cases, pairs of
identical antennas were used in the measurement process. A
relatively large reflection can be observed around 18 GHz. This
reflection is caused by the limitations of the SMA connectors
and were dampened for the analysis.

DefiningHmeas(f) , S2−1, it is possible to decompose this
measured function as

Hmeas(f) = Htx(f)Hch(f)Hrx(f), (19)

whereHtx(f),Hch(f) andHrx(f) are the system functions of
the transmit antenna, free space environment and the receiving
antenna respectively. The last factorHrx(f) is the transfer
function from the electric field in the vicinity of the receiving



Fig. 3. Antenna S21 plots

antenna to the receiving antenna terminals, and its effect
must be removed by calibration or analytically [16], [17].This
explains the use of the inverse receive antenna transfer function
in Figure 2.In summary,

Heq(f) = HD/A(f)HTxLine(f)Hmeas(f)H−1
rx (f), (20)

and all of these factors must be considered in the modelling
process.

VI. SEARCH SPACE REDUCTION

We implemented an exhaustive search for DAC-generated
pulse waveforms that have the highest efficiency. For a given
set of the parametersTs,Heq,M andN and assuming uniform
symmetric quantization in the DAC, this involves constructing
the coefficientSM×N , and for each columnsn of the matrix,
compute the correspondingAnpn(t), |AnPn(f)|2 and mask-
filling efficiency ηn.This chain of mappings fromsn to ηn is
many-to-one, We can construct an equivalence relation of the
form

sj ≡ sk ⇐⇒ |AjPj(f)|2 = |AkPk(f)|2 (21)

that creates equivalence classes of coefficient vectors which
produce the same EIRP density and hence the same mask-
filling efficiency. In the search for the coefficient vectors
sn that produce waveforms with the highest mask-filling
efficiency, the efficiency of only one coefficient vector from
each equivalence class needs to be evaluated. Under (21), two
coefficient vectorssj andsk will be equivalent if either

sj = csk (22)

for some (positive or negative) constantc, or

sj,m = sk,M−1−m for all m ∈ {0, 1, . . . ,M − 1}. (23)

The first condition (22) involves scaling which is compensated
in the search algorithm by adjusting the weightAn in step
1 of the selection procedure. The second condition (23) is

Fig. 4. Best result for TEM Horn m=1,2,...,7

based on the fact that reversing the order of the elements
in a coefficient vector time-reverses the real pulse waveform,
thereby conjugating its Fourier transform but leaving the EIRP
density unchanged. As an example, consider set of 2-tuples
represented by the coefficient matrixS. HereM = 2, |Q| =
2M ,Q = {−3,−1, 1, 3} andN = 16 (see (13)), where the set
Q was formed from (see (14)). Then the coefficient matrixS
is given by

S =
[
−3 −1 1 3 −3 −1 1 3
−3 −3 −3 −3 −1 −1 −1 −1

−3 −1 1 3 −3 −1 1 3
1 1 1 1 3 3 3 3

]
. (24)

Eliminating all but one of each set of equivalent column
vectors from the coefficient matrix produces a matrixS̃whose
columns are equivalence class representatives.

S̃ =
[
−1 −1 1 1
−1 −3 −3 −1

]
(25)

This matrix is not unique, the only requirement being that one
representative from each equivalence class should appear as a
column inS̃. Applying the pulse waveform selection procedure
to the set pulse waveforms generated by the columns ofS̃
will find the equivalence class representative of the set of
columns that produce waveforms with the highest mask-filling
efficiency.

VII. R ESULTS AND CONCLUSIONS

Results of searches for various sets of parameters are typical
of the results shown in Figures 4–6 where 4 shows the three
waveforms with the highest efficiency. Figure 5 indicates that
the optimal waveformpopt(t) ∈ P∗ are rare events. This was
typical of all antennas investigated. Figure 6 summarizes in 3D
space, the search results of the Large TEM Horn. Different
surface plots were observed for the small TEM horn and
diamond dipole antennas, using the same search parameters as
in the large TEM horn. It was observed that we get different
optimal designs for different parameters e.g., antennas and
in all cases low levels of efficiency were achieved. This



Fig. 5. TEM Horn efficiency histogram for m=6

Fig. 6. TEM Horn 3D efficiency summary (m=1,2...,7)

effort illustrates the complexity of the design space, and
the seemingly limitless variety of hardware representations
Heq(f) that can affect the optimal pulse generator design.
The efficiencies of the sample designs given here are low, but
there is room for significant improvement by decreasing the
reproduction timeTs, increasing the number of quantization
levels |Q|, increasing the time support of the pulse waveform
p(t), inserting high-pass filters in the signal path to assist in
staying below the mask forf < 3.1 GHz, etc.
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