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Abstract— This paper derives the bit error probability (BEP)
of the conventional and average correlation receivers of the ultra-
wideband transmitted reference system by exploiting the concept
of the orthogonal expansion, and the central limit theorem is
not needed in the derivation. The effects of using different
lengths of the integration time in the conventional correlation
receiver in a single user multipath environment are also discussed.
Three optimization criteria are evaluated, and the average BEPs
adopted the optimal integration time based on these criteria do
not differ significantly from each other. In the interested BEP
range, about 2dB can be gained by using the optimal integration
time instead of the channel delay spread in the correlator.1

I. I NTRODUCTION

Ultra-wideband (UWB) impulse radio systems transmit data
by modulation of subnanosecond pulses. These narrow pulses
are distorted by the channel, but often can resolve many
distinct propagation paths (multipath) because of their fine
time-resolution capability [1]. However, a Rake receiver that
implements tens or even hundreds of correlation operations
may be required to take full advantage of the available signal
energy [2]. On the other hand, a receiver using a single
correlator matched to one transmission path may be operating
at a 10 - 15dB signal energy disadvantage relative to a full
Rake receiver.

A Transmitted reference scheme, which can ease the strin-
gent receiver requirement of the synchronization, channel
estimation, and a Rake reception has attracted lots of attention
[3]. In this TR modulated system, a reference waveform
is transmitted before each data-modulated waveform for the
purpose of determining the current multipath channel response.
The proposed conventional correlation receiver correlates the
data signal with the reference signal to acquire all the energy
without requiring additional channel estimation and Rake re-
ception. One major drawback of this simple receiver structure
is the transmitted reference signal used as a correlator template
is noisy. One method to clean the correlator template is to
use the average correlation receiver, which average reference
waveforms in one bit duration as the template with the
penalty of increasing the receiver complexity. The bit error
probabilities (BEPs) of these two receiver were evaluated with
the help of the central limit theorem [3], [4]. This evaluation,
although an approximation, can assess the BEPs accurately
when the noise bandwidth×time dimension is large enough
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which is usually the case in a UWB system. The BEPs of
correlation receivers with an ideal front-end bandpass filter
are evaluated in this paper by exploiting the concept of the
orthogonal expansion in section II.

The original idea of the conventional receiver is to capture
all the energy available in a UWB multipath channel. But
for the BEP performance, the correlator adopting the channel
delay spread as the integration time is not the best choice.
The received signal energy is small in the tail of the channel
response, and the receiver can get more noise power than the
signal energy through the excessive integration. This paper
optimizes the integration time under three criteria which are
minimizing the average BEP, maximizing the average decision
signal energy to the noise power ratio (SNR), and maximizing
the average decision SNR in which the received signal energy
is replaced by its mean value (Section III). The results of these
three criteria are compared in Section IV. Section V draws the
conclusion.

II. UWB TR M ODULATION AND CORRELATION

RECEIVERS

The transmitted signal of a conventional UWB TR system
with antipodal modulation is

str(t) =
∞∑

i=−∞
gtr(t− iTf) + bbi/Nscgtr(t− iTf − Td). (1)

Here gtr(t) is a transmitted monocycle waveform that is
non-zero only fort ∈ (0, Tp), and Tf is the frame time.
Each frame contains two monocycle waveforms. The first
is a reference and the second,Td seconds later, is a data-
modulated waveform. The data bitsbbi/Nsc ∈ {1,−1} with
equal probability, andbi/Nsc is the integer part ofi/Ns. Hence
each bit is transmitted inNs successive frames to achieve an
adequate bit energy in the receiver, and the channel is assumed
invariant over this bit time.

In this TR system,Td is greater than the multipath delay
spreadTmds to assure that no interference between reference
signal and data signal exists. The frame time is designated
to be Tf = 2Td > 2Tmds so that no interframe interference
exists. Because the single user case is considered here, the
time-hopping and/or direct sequence modulation which is used
to reduce multiuser interference is eliminated for simplicity,
but without loss of generality.



We model the received TR signalr(t) of bit b0 in a
stationary channel over a bit time by

r(t) =
Ns−1∑

i=0

[g(t− iTf)+bbi/Nscg(t− iTf−Td)]+n(u, t), (2)

where n(u, t) represents band-limited white Gaussian re-
ceiver noise with one-sided power spectral densityN0 and
bandwidthBw, and g(t) is the received waveform which is
the convolution of a transmitted monocycle waveformgtr(t)
and channel impulse responses including effects of antennas
and the front-end bandpass filter. A conventional correlation
receiver correlates the received data-modulated waveform with
the reference waveform, which is receivedTd seconds earlier,
and sums theNs correlator outputs that are affected by a single
data bit to be the decision statistic. The decision rule of bitb0

is

Ds =
Ns−1∑

j=0

∫ jTf+Td+Tcorr

jTf+Td

r(t− Td)r(t)dt
1

≷
−1

0, (3)

whereTcorr ≤ Tmds is the correlator’s integration time.
With an ideal bandpass filter, the BEP can be evaluated

by applying the orthogonal expansion technique as well as
Appendix 9A in [5]. Without actually implementing it in the
conventional receiver, we use the concept that both the band-
pass signal and noise have complex lowpass equivalence. The
energy in the lowpass equivalence of the received waveform
ĝ(t) is twice the energy ing(t). The lowpass equivalence of
the bandlimited noisên(u, t) has power spectral density2N0

from −Bw/2 to Bw/2, and zero elsewhere. In addition to the
lowpass equivalence, another useful theorem states that a time-
limited (Tcorr) band-limited (Bw) signal has dimensionBwTcorr

at most, and can be represented by{bk(t)}BwTcorr
k=1 , a complete

orthonormal set with∫ Tcorr

0

bj(t)b∗k(t)dt =
{

0 j 6= k
1 j = k,

(4)

where b∗k(t) is the complex conjugate ofbk(t). Thus the
lowpass equivalence of the filtered signal and noise with
time durationTcorr can be represented by the complete set
{bk(t)}BwTcorr

k=1 . The complex lowpass equivalence of the re-
ceived waveform is now written as

ĝ(t) =
BwTcorr∑

k=1

ĝkbk(t), (5)

where the weights are

ĝk =
∫ Tcorr

0

ĝ(t)b∗k(t)dt,

and

ηEp =
∫ Tcorr

0

g2(t)dt =
1
2

BwTcorr∑

k=1

ĝ2
k (6)

with Ep =
∫ Tmds

0
g2(t)dt being the total energy in a receiver

waveform, andη being the efficiency factor. The noise covari-
ance function of̂n(u, t), Kn̂n̂∗(t1, t2), satisfies

2N0bk(t1) =
∫ Tcorr

0

Kn̂n̂∗(t1, t2)bk(t2)dt2 (7)

for k = 1, 2, . . . , BwTcorr and t1 ∈ [0, Tcorr], namely
{bk(t)}BwTcorr

k=1 are eigenfunctions of̂n(u, t) with same eigen-
values2N0. The noise fort ∈ [0, Tcorr] is represented as

n̂(u, t + iTf) =
BwTcorr∑

k=1

n̂r,i,kbk(t), (8)

n̂(u, t + iTf + Td) =
BwTcorr∑

k=1

n̂d,i,kbk(t) (9)

for i = 0, 1, . . . , Ns− 1, in which

n̂r,i,k =
∫ Tcorr

0

n̂(u, t + iTf)b∗k(t)dt,

n̂d,i,k =
∫ Tcorr

0

n̂(u, t + iTf + Td)b∗k(t)dt

It can be computed from (4) and (7) thatE{n̂r,i,k} =
E{n̂d,i,k} = 0, E{n̂r,i,kn̂∗r,i,k} = E{n̂d,i,kn̂∗d,i,k} = 2N0 for
any i, k, and any two of{n̂r,i,k, n̂d,i,k}i,k are uncorrelated.

By defining

ĝ , [ĝ1, ĝ2, . . . , ĝBwTcorr]
t,

the received signal for the0th bit can be represented as

r̂ = r̂ s + n̂ = [ĝt, b0ĝt, ĝt, b0ĝt, . . . , ĝt, b0ĝt]t

+ [n̂t
r,0, n̂t

d,0, n̂t
r,1, n̂t

d,1, . . . , n̂t
r,Ns−1, n̂t

d,Ns−1]
t,

where

n̂r,i = [n̂r,i,1, n̂r,i,2, n̂r,i,3, . . . , n̂r,i,BwTcorr]
t,

n̂d,i = [n̂d,i,1, n̂d,i,2, n̂d,i,3, . . . , n̂d,i,BwTcorr]
t.

By denoting

X = [Xt
0, Xt

1, . . . , Xt
Ns−1]

t with Xi = ĝ + n̂r,i, (10)

Y = [Yt
0, Yt

1, . . . , Yt
Ns−1]

t with Yi = b0ĝ + n̂d,i, (11)

the decision rule in (3) is equivalent to

Ds =
1
2
(XHY + YHX)

1
≷
−1

0, (12)

whereXH denotes the complex conjugate transpose ofX. Now,
(12) can be equated to (9A.1) and (9A.2) in Appendix 9A in
[5] by letting A = 0, B = 0, C = 1

2 and L = NsBwTcorr.
The BEP of this conventional correlation receiver is Pr{Ds <
0|b0 = 1} due to the symmetry of the transmitted data and
receiver noise, and can be computed by utilizing (9A.15) in
[5]. The value ofa and b needed in computing the BEP can
be calculated using (6) as well as (9A.4) and (9A.5) in [5],

which result ina = 0 andb =
√

ηEb
N0

with Eb = 2NsEp. The
BEP of a conventional correlation receiver conditioned on the
channel responseg(t) is

P s
bit =

1
2

+
1

22NsBwTcorr−1

NsBwTcorr∑

l=1

(
2NsBwTcorr− 1
NsBwTcorr− l

)
(13)

×
[
Ql

(
0,

√
ηEb

N0

)
−Ql

(√
ηEb

N0
, 0

)]
,



where g(t) is implicitly imbedded inEb. It is obvious now
that the orthogonal expansion only helps to calculate the
BEP without really implementing it in the receiver. Because
Ql(b, 0) = 1 for all l, b, and

Ql(0, b) =
l−1∑
n=0

exp
(
−b2

2

)
(b2/2)n

n!

if l is an integer, (13) is further simplified to

P s
bit =

1
22NsBwTcorr−1

NsBwTcorr∑

l=1

(
2NsBwTcorr− 1
NsBwTcorr− l

)
(14)

×
l−1∑
n=0

1
n!

exp
(
− ηEb

2N0

) (
ηEb

2N0

)n

.

One method to improve the BEP performance of the con-
ventional correlation receiver is to average theNs reference
waveforms in one bit time to be a noise reduced correlator
template. The decision statistic of this average correlation
receiver is

Da =
Ns−1∑

j=0

∫ jTf+Td+Tcorr

jTf+Td

r̂(t)


 1

Ns

Ns−1−j∑

i=−j

r̂(t + iTf − Td)


 dt

with Da

1
≷
−1

0. The BEP conditioned on each channel realiza-

tion g(t) can be computed by employing the same method
as for the conventional correlation receiver, but nowX =∑Ns−1

i=0 Xi andY = 1
Ns

∑Ns−1
i=0 Yi instead of the definitions in

(10) and (11). Equation (9A.1) and (9A.2) in [5] are equated
to Da by lettingA = 0, B = 0, C = 1

2 andL = BwTcorr. The
BEP of this average correlation receiver conditioned on the

channel realizationg(t) by substitutinga = 0 andb =
√

ηEb
N0

into (9A.15) in [5] after simplification is

P a
bit =

1
22BwTcorr−1

BwTcorr∑

l=1

(
2BwTcorr− 1
BwTcorr− l

)
(15)

×
l−1∑
n=0

1
n!

exp
(
− ηEb

2N0

)(
ηEb

2N0

)n

.

The average BEP of the conventional and average cor-
relation receivers over channels can be obtained if
E{exp(− ηEb

2N0
)( ηEb

2N0
)n} exits, i.e., the moment generating

function of ηEb
2N0

exists.

III. I NTEGRATION TIME ANALYSIS

The integration time of the correlatorTcorr affects the BEP
which can be seen in (14) and (15). Conditioned on a channel
realization, the efficiency factorη increases asTcorr increases,
therefore exp(−ηEb/2N0) decreases but(ηEb/2N0)n in-
creases. In addition, the number of terms in the summation also
increases asTcorr increases. Thus the BEP has its minimum at
some value ofTcorr, and starts to raise asTcorr diverges from
this value. In the following, the optimalTcorr of a conventional
correlation receiver is discussed, but can be easily generalized
to different kinds of correlation receivers.

Due to the simple receiver constraint and that it is difficult
to implement an adaptive algorithm using analog devices, the
value of Tcorr is fixed once the receiver is implemented. The
best choice ofTcorr is to minimize the average BEP which is
immediately seen a difficult task from (14) because frequency
selective UWB channels with random path arrival times make
finding the distribution of ηEb

2N0
difficult. By defining the

decision SNR

fs(Tcorr) =
Ns(ηEp)2

N0ηEp + BwTcorrN2
0

2

,

which is the ratio of the signal energy to the noise power in the
decision statisticDs, another choice to optimize the integration
time is to maximizefs(Tcorr). This criterion is equivalent to
minimizing Nsf

−1
s (Tcorr)

Nsf
−1
s (Tcorr) =

N0

ηEp
+

BwTcorr

2

(
N0

ηEp

)2

, (16)

which indicates that the optimal integration time based on
this criterion depends on the energy per pulseEp instead of
energy per bitEb. Minimizing Nsf

−1
s (Tcorr) is still difficult to

manage theoretically. By exploiting the average power profile
of the received signal which is assumed exponential decays
here without loss of generality [6], then

E{g2(t)} = Ωa exp(−at)

whereΩ = E{Ep} and 1
a is the power decay time constant.

Under the exponential power decay profile assumption,

E{ηEp} = Ω[1− exp(−aTcorr)]. (17)

In the following three subsections, we are going to replace
ηEp in fs(Tcorr) by E{ηEp}, and investigate the effects of
choosing different values ofTcorr. Note that fs(Tcorr) with
this substitution does not equal the average decision SNR
over channel statistics, and the observations we obtain will be
justified in the next section by evaluating the average decision
SNR and average BEP numerically.

A. Minimal integration time

A special case in which the noise power is extremely large
is considered. Under this condition,

(
N0

ηEp

)2

À N0

ηEp
,

and the quantity we want to minimize is approximate

Nsf
−1
s (Tcorr) ∼= BwTcorr

2

(
N0

ηEp

)2

. (18)

By replacingηEp with E{ηEp}, we now want to minimize

BwTcorr

2
×

(
N0

Ω

)2

×
[

1
1− exp(−aTcorr)

]2

, (19)

which is a convex function ofTcorr ∈ (0,∞), and has an
unique minimum. After differentiating (19) with respect to
Tcorr and equating it 0, the equation which determines the
optimal value ofTcorr is

ln(1 + 2aTcorr) = aTcorr, (20)



which does not depend on the receiver bandwidthBw and
Ω/N0. In this extremely high noise power case, the value of
Tcorr only depends on the power decay time constant1

a . The
solution of (20) isaTcorr = 1.2564, and

Tcorr =
1.2564

a
= 1.2564× time constant. (21)

This high noise power case represents the minimum value
of Tcorr for a conventional correlation receiver, andTcorr in a
general situation should be larger than this value. For another
special case that the received signal power is extremely high,
it is not really meaningful because the integration time then
should be as long as possible, i.e., the channel delay spread.

B. Optimal integration time

For the normalEp/N0 case,ηEp in (16) is replaced by (17),
and the quantity to be minimized is

Nsf
−1
s (Tcorr) =

N0

Ω
× 1

1− exp(−aTcorr)
(22)

+
BwTcorr

2

[
N0

Ω
× 1

1− exp(−aTcorr)

]2

.

The right hand side of (22) is differentiated with respect to
Tcorr to achieve

(
2Ω

BwN0
+ 1 + 2aTcorr

)
exp(−aTcorr)

− 2Ω
BwN0

exp(−2aTcorr)− 1 = 0. (23)

Equation (23) shows that the optimal integration time depends
on Bw, 1/a, and Ω/N0. Given Bw and Ω/N0, the value of
aTcorr which makes (23) sustained can be computed numeri-
cally. For a specific BEP, the required pulse energy increases
and the optimal integration time decreases asBw increases
because of the increasing incoming noise.

C. Performance degradation V.S. excess or lack of integration

The optimal integration time changes according to appli-
cation environments, but the value adopted by the receiver
is difficult to change once the correlator is implemented.
How much the performance degrades because of the excessive
or short integration should be considered before choosing
the adequate value. In (16) withηEp replaced byE{ηEp},
Nsf

−1
s (Tcorr) includes two portions

gs(Tcorr) =
N0

Ω
× 1

1− exp(−aTcorr)
, (24)

hs(Tcorr) =
BwTcorr

2

[
N0

Ω
× 1

1− exp(−aTcorr)

]2

.(25)

Equation (24) indicates thatgs(Tcorr) decreases asTcorr in-
creases forTcorr ∈ [0,∞). Equation (25) shows thaths(Tcorr)
also decreases asTcorr increases forTcorr ∈ [0, tB) with some
valuetB, then starts to increase asTcorr increases forTcorr ≥ tB.
The value oftB is determined byBw, N0/Ω and1/a, and the
optimalTcorr is greater than or equal totB. Another observation
from (24) and (25) is thatgs(Tcorr) for Tcorr ∈ (0,∞) as well
ashs(Tcorr) for Tcorr ∈ (0, tB) decrease roughly exponentially

cm1 cm2 cm3 cm4
1
a

(ns) 4 8 12 16
λ (1/ns) 3.5 3.5 3.5 3.5
η : mean 0.85908 0.83218 0.82051 0.81577
η : std 0.0432 0.041828 0.039349 0.038193

TABLE I

CHANNEL PARAMETERS AND THE EFFICIENCY FACTORη.
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Fig. 1. Average BEP and average decision SNR forEp/N0 = −23dB
(Eb/N0 = −10dB) with Ns = 10.

as Tcorr increases, andhs(Tcorr) for Tcorr ∈ [tB,∞) increases
roughly linearly. Therefore, under integration degrades BEP
performance more than over integration.

IV. N UMERICAL EXAMPLES

This section uses a channel model in (26) to analyze the
average BEP and average decision SNR versusTcorr numer-
ically to verify the analysis and observations in Section III.
The model is

h(t) =
L∑

l=0

αlδ(t− Tl), (26)

where αl and Tl are the amplitude and arrival time of the
lth path. The magnitude ofαl has lognormal distribution, and
the polarity of it can be+1 or −1 with equal probability.
In addition, αl and αj are independent forl 6= j. The
energy of a single transmitted pulse is normalized to 1,
and E{α2

l } = c exp(−aTl) with some constantc such that∑
l E{α2

l } = Ep. The channel delay spreadTmds is defined
as the interval containing 99% of the energy in the average
received waveform. The probability that a path arrives at
time Tl has poisson distribution with the path arrival rateλ.
The receiver bandwidth is equal to 4GHz, and 100 channel
realizations are generated to get the numerically average BEP
and decision SNR. The parameters used in this numerical
analysis are listed in Table I. The resolution of searching the
optimal Tcorr is equal to 1ns.



Figure 1 shows the average decision SNR and BEP for the
extremely large noise power case. Crosses in the figure, which
mark the positions of the optimal integration time (T opt

corr) for
each channel model, indicate thatT opt

corrs acquired by using
these two criteria are the same and fit the results predicted
by (21). This figure also shows that for a fixedNs, Bw and
Eb/N0, the value ofT opt

corr increases as1a increases but with
worse performance because the incoming noise power also
increases. This figure verifies that excessive integration harms
the performance less than short integration.

Figure 2 and 3 showT opt
corrs acquired through minimizing

the average BEP, maximizing the average decision SNR, and
fining the solution of (23), as well as the corresponding
performance. In Figure 2, the values ofT opt

corr obtained through
different criteria are close at smallEf/N0, but could be dif-
ferent at largeEf/N0. Minimizing the average BEP produces
largerT opt

corr than maximizing the average decision SNR, and the
value ofT opt

corr increases asEf/N0 increases. The value ofT opt
corr

obtained by solving (23) is the largest one among the three
because the received waveform energy acquired by integrating
an exponential function can be overestimated. Even divergence
resulted from different criteria is demonstrated, Figure 2 and 3
display that the influence of this divergence on both the aver-
age BEP and the average decision SNR is small, which allows
us to acquireT opt

corr easily through solving (23) or maximizing
the average decision SNR instead of minimizing the average
BEP. Figure 2 also shows that compared to integrating over
the channel delay spread, the correlator adopting the optimal
integration time can have approximate 2dB gain at BEP=1e-4.
As Ef/N0 increases,T opt

corr approachesTmds. Table I includes
the mean and the standard deviation of the efficiency factorη
over the 100 channel realizations with the optimal integration
time for the average BEP=1e-4 andNs = 10. The mean value
of η decreases as1a increases, and small standard deviations
show that the value ofη for every channel realization is close
to each other.

V. CONCLUSIONS

The BEP of UWB conventional and average correlation
receivers are analyzed with the help of the orthogonal ex-
pansion theorem. The optimal integration time of a UWB
conventional correlation receiver is also analyzed. It shows
that the integration time has a minimal value which is not
related to the receiver bandwidth and the bit repetition time.
This minimal value corresponds to an extremely small SNR
case, and the real operational value should be greater than
this one. It also shows that excessive integration harms the
performance less than short integration. With the parameters
used in those numerical examples, about 2dB gain can be get
by using optimal integration time instead of channel delay
spread in the correlator in the interested BEP range.
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