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Abstract

Timing equations can be exploited to distinguish between LOS and reflected signals in an RF emitter location system.
For this purpose, some algorithms will be given. The first algorithm extracts the group of the signals coming from the
same source from all the first arrivals at the omni-directional sensors. This algorithm can be generalized for the directive
sensors. Then an algorithm is given to distinguish between the transmitter and other located sources (reflectors). Finally
a method is introduced to locate the transmitter when there are not enough LOS signals but at least four reflectors of
the first type have been located in the first algorithm.

I. Introduction

Ranging and positioning are expected to play a main role in the advanced design of wireless com-
munication networks in the coming years [1]. One of the advantages of Ultra-Wide-Band (UWB)
technology, is having very short pulse widths. Therefore the multipath and interference issues can be
resolved and precision location systems is a natural application of UWB signals.
Measurement error and Non-Line-of-Sight (NLOS) error are two major sources of localization error
in location systems. Of these two sources of error, it has been remarked ([2] that NLOS error usually
causes more degradation in localization accuracy and is quite common in all environments [2].
The previous works on hyperbolic positioning (which is based on Time Difference of Arrival (TDOA)
measurement) have not focused on omitting or mitigating NLOS error in localization process.
In this paper, we address the problem of distinguishing between LOS and NLOS signals, for two
techniques, TDOA and AOA, exploiting the timing relations between the arrivals and the estimated
location. For the TDOA technique, there is one transmitter and n omni-directional receivers. The
receivers are considered to be connected in order to have a common clock available. Only NLOS error
is considered and all other kind of the errors are ignored here.

II. Determining the groups of the signals for an array of omni-directional
antennas for 3-D

To locate every source in 3-D, there must be at least four source signals received by the sensors that
are not coplanar. Therefore, to be able to locate the transmitter, the assumptions are
1. There is a transmitter in the area and there are at least four omni-directional receiving antennas
around the area as the receivers (Fig. (1)).
2. All the first incoming signals to the receivers are LOS or first reflection signals.
3. All the sensors in the arrays are connected in order to have the same clock.
4. At least four non-coplanar receive LOS signal.
Assuming that (at least) four known signals are received from a source, it can be localized by the
hyperbolic method. Thus, the propagation time tp between the source, i.e. the transmitter or a
reflector, and the receivers can be found as below

tp = R/C. (1)

in which R is the range of the source of the signal from the sensor obtained by the hyperbolic method
and C is the propagation velocity.
If the located source is the transmitter, the difference between the clock of the transmitter and clock
of the receivers can be easily obtained as below

tpi
− tri

= ∆t i = 1, 2, ...,m, (2)

in which tpi
is the propagation time of the transmitter signal to the ith sensor obtained by (1), and tri

is the signal relative receiving time to the receivers’ clock. Fig. 1 shows a case in which four signals
S1, S2, S3 and S4 from the transmitter are received by four sensors (non-coplanar), and signal S6, S7,
S8, S9 and S11 are received from reflectors. Fig. 2 shows the timing diagram of the signals in Fig. 1.
If the located source is a reflector (e.g. Ref1 in Fig. 1), the timing equation for signal S6, S7, S8 and
S9 is



tpi
+ tmid = tri

+ ∆t i = 6, 7, 8, 9, (3)

in which tpi
is obtained from (1), tri

is available in the receiver and ∆t and tmid (the propagation
time between the transmitter and the reflector) are unknown. Equation (3) can be rewritten as

tpi
− tri

= ∆t − tmid i = 6, 7, 8, 9. (4)

As is evident from (2) and (4), for all the the signals in a group (i.e., coming from the same source)
the difference between tp and tr is constant

tpi
− tri

≈ K, (5)

where K depends on the source location and not on i (the index of the signals in a group). There
is an assumption here that the reflector behaves like a point source, and this approximation may be
valid only in limited situation.
If a wrong location is obtained, forming the timing equations (4) does not provide a constant for
all the signals in the group. This property can be exploited to determine the group of the signals
coming from the same source. For this purpose, the signals in a group can be guessed and then the
conjecture can be checked by forming the timing equations and checking (5). More details are given
by the example shown in Fig. 1 in the next section.
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Fig. 1. Example 1: source localization with arrays of
omni-directional sensors
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Fig. 2. Timing diagram of example 1

A. Algorithm

In this section the algorithm is described with the example shown in Fig. 1.
Step 1: Guessing the signals constructing a group
It is guessed that signals S1, S2, S3 and S4, that are the first coming signals to the sensors, are a
group coming directly from the same source (that is a correct guess).
Step 2: Localization
The hyperbolic method is applied to the group signals in the above conjecture and the source location
is found (If the localization process does not give any answer, the conjecture in step1 is wrong.).
Step 3: Checking the validity of Localization I
The validity of the source location solution (from step 2) in the accessible area is checked. If the guess
is correct, the location is valid. (However if the conjecture is not correct, the source location may or
may not be valid and the guess could be rejected or passed in this step.)
Step 4: Finding the propagation time
Then tpi

s and K are obtained by (1) and (5).
Step 5: Constructing the timing matrix
In this step, matrix A is constructed as below

A =




tp1 tp2 tp3 tp4

tr1 tr2 tr3 tr4

K K K K




T

. (6)

As seen, since a correct guess was made, all Ks are the same. Every row of this matrix is related to a
signal in the group. The first column of the matrix is contained tp , the second column is tr and the
third column is K obtained by (5).
Step 6: Checking the validity of Localization II



Now it is checked if the following equation is being held or not

A
[

1 −1 −1
]T ≈ 0. (7)

With correct grouping, (7) holds, therefore, the signals in the group come from the same source (here
the transmitter) and a correct location for the source has been obtained in step2.
It is shown (omitted here) that a wrong guess can not pass through step 6.
Because there is measurement noise in the real world, the right hand side (RHS) of (7) for a correct
guess is not exactly a zero vector, but a vector with small elements close to zero (their statistical
characteristics depend on the the noise). When a wrong guess passes through step 6, since a wrong
location has been found for the source, RHS of (7) is a vector with non-zero elements that are far
from each other. A rejection threshold test must be developed to make step 6 practical.
When there are n ≥ 8 sensors in the area (Fig.1), multiple group signals may be distinguished in
the algorithm. Therefore, multiple sources may be located in which one of them is the transmitter
and the others are reflectors. Later, another algorithm will be introduced to distinguish between the
transmitter and the reflectors in this situation.
Algorithms for separation of LOS signals from the reflections can be generalized to the directive
sensors, but are omitted here.

III. An algorithm to distinguish between the transmitter and reflectors

To distinguish between the transmitter and the located reflectors when there are L > 1 sources located
by the previous algorithms, once more the time equations can be used. Note that for the known and
located transmitter and reflectors, the distance between the transmitter and the ith reflector can be
determined by

−→
Rmidi

= −→
Rx −−→

R refi
i = 1, 2, ...,m − 1, (8)

in which Rx denotes the position vector of the transmitter, and Rrefi
is the the position vector of the

ith reflector in a global coordinate system. Therefore the propagation time between the transmitter
and other sources are

tmidi
= |−→Rmidi

|/C i = 1, 2, ..., L − 1, (9)

where C is the propagation velocity. The time equation for the reflectors signals is

tpi,j
+ tmidi,j

− tri,j
− ∆t = 0 i = 1, 2, ...,m

j = 1, 2, ..., L − 1,
(10)

where index i, j are related to the ith signal in the group of the jth reflector respectively. If the
transmitter can be guessed, the conjecture can be checked by verifying the time equations. In the
next section, the procedure is described by the example shown in Fig. 1.
Example
After applying the algorithm described in II-A, two sources Source1 and Source2, that is the trans-
mitter and Ref1, are located. The groups related to these sources are S1, S2, S3, S4 and S6, S7,
S8, S9, and their related timing equations are (2) and 10 (with m = 3, L = 2 ) respectively. The
algorithm is described in the following.
Step 1: Guessing the transmitter
Assume that among two sources located in Fig. 1, it is guessed that Source1 is the transmitter.
Therefore Source2 is the reflector (that is a correct guess).
Step 2: Obtaining ∆t
By (2), ∆t is obtained from one of the signals (e.g. S1) of the group signals of the assumed transmitter
(that are signals S1, S2, S3 and S4). Thus ∆t is obtained as below

∆t = tp1 − tr1 . (11)

Step 3: Finding the propagation time between the assumed transmitter and other sources
Assuming point o (Fig. 1) as the center of a global coordinate system, the distance between the
assumed transmitter and Ref1 is found by

−→
Rmid1 = −→

Rx −−→
R ref1 (12)

in which Rx is the position vector of the assumed transmitter. Therefore the propagation time between
the assumed transmitter and Ref1 is



tmid1 = |−→Rmid1 |/C. (13)

Step 4: Constructing the timing matrix
Using the time equations (2) and (10), matrix B is constructed as below

B =




tp1 tp2 tp3 tp4 tp6 tp7 tp8 tp9

0 0 0 0 tmid1 tmid1 tmid1 tmid1

tr1 tr2 tr3 tr4 tr6 tr7 tr8 tr9

∆t ∆t ∆t ∆t ∆t ∆t ∆t ∆t




T

. (14)

Step 5: Check the guess
Now it is checked if the following equation is being held or not

B
[

1 1 −1 −1
]T ≈ 0. (15)

With the conjecture in Step 1 , (15) holds, and therefore it is a correct guess.
It is proved (omitted here) by contradiction that a wrong guess can not pass through Step 5 .
If the last assumption in section II is not satisfied, some groups of signals may be distinguished in
the algorithm of II-A, but the algorithm in III can not determine a transmitter since all the groups
of signals are related to reflectors. However, if at least four reflectors are located (by the algorithm
in II-A), the transmitter can still be localized. In the next section another algorithm is introduced to
locate the transmitter in the case that there are insufficient LOS signals from the transmitter but at
least four reflectors are located.

IV. Locating the transmitter without having LOS by at least four reflectors

Assuming that there are at least four first reflectors detected by the algorithms described in II-A,
the timing equations introduced in (3) can be used to locate the transmitter even when there are
not enough LOS signals from the transmitter (i.e., four and two LOS signals for omni-directional and
directive sensors respectively). When the algorithm of section III can not determine the transmitter
among the sources detected in section II-A, it implies that all the detected sources are reflectors.
Assuming that the located sources are first reflectors, they can be considered as the known secondary
sensors receiving LOS signals from the transmitter. Therefore, subtracting the propagation time tp
from the receiving time tr for each reflector yields the difference of tmid, that is the propagation time
between the transmitter and these secondary sensors, and ∆t.

tri
− tpi

= tmid − ∆t i = 1, 2, .... (16)

This equation implies that the relative time difference between these secondary sensors and transmitter
is available. Thus, the transmitter can be localized by the hyperbolic method regardless of the type
of sensors (i.e. directive or omni- directional). The algorithm described here can be extended for this
purpose.

V. Experimental Results

An experiment was done by UWB pulses with 1.6 nsec width and arrays of omni-directional anten-
nas. The hyperbolic method described in [3] was applied to the group signals for localization. The
correctness of part of the algorithm described in section III was verified.

VI. Conclusions

The study showed that the timing equation is a strong tool to distinguish between LOS and reflections.
In transmitter localization applications, the timing equation can also be used to locate the transmitter
even without LOS signals assuming that at least four reflectors can be located.
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