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Abstract

One of the most important open problems in the communication society is to determine the
performance of iterative message passing algorithms over loopy graphs. Some recent work addresses
this problem for loopy Tanner graphs by introducing the concepts of stopping distance and stopping
redundancy. By analyzing the eigenvalues and eigenvectors of the normalized incidence matrix
representing a Tanner graph, we derive lower bounds on its stopping distance. Using these lower
bounds, an upper bound on stopping redundancy of the difference-set codes is derived as well.

I. INTRODUCTION
Considering an [n, k, dmin] binary linear code C specified by a p×n incidence matrix Hp

with columns representing bit variables, rows representing parity-checks and p ≥ n−k = p0,
the corresponding Tanner graph [1] G is:

G = (B ∪ Y,E) = ({b0, b1, ..., bn−1} ∪ {y0, y1, ..., yp−1}, E) (1)
where B is the set of variables, Y is the set of single parity-check constraints and E =
{(b, y) : b ∈ B, y ∈ Y } is the set of edges. It can be shown that the correspondence between
Hp and the traditional parity-check matrix representing C is one-to-one. Furthermore, as Y
may contain more than necessary parity-checks, we usually refer Hp as parity-check matrix
when p = n− k = p0, and redundant parity-check matrix otherwise.
Considering S ⊆ B, define bit variables in S as active bits and parity-checks in the

neighborhood of S as active parity-checks [2], respectively. We say that S is a stopping set
if all the neighbors of S, i.e., all active parity-checks, are connected to S at least twice. It is
known that, for binary erasure channels (BEC), the performance of iterative decoding over
G is completely determined by its stopping sets [3]. The size of the smallest stopping sets
was defined as stopping distance [4], which is usually denoted as s(Hp) to emphasize that
it is a function of the specific (redundant) parity-check matrix representing the code.
Previous investigations [3], [5] have considered the properties of random ensembles of

linear codes. In contrast, we focus on the parameters of an arbitrary linear code and will
analyze eigenvalues and eigenvectors of the “normalized” incidence matrix representing the
code. Using this technique, we will derive two lower bounds on stopping distance. Since the
stopping distance is always no larger than dmin, these lower bounds are also lower bounds
on minimum distance. In particular, if the graph is regular, they are Tanner’s bit-oriented
bound and parity-oriented bound [2], respectively, i.e., we demonstrate that Tanner’s bounds
are actually lower bounds on s(Hp) for regular Tanner graphs.
Also, these lower bounds can be used to derive upper bounds on stopping redundancy,

denoted as ρ(C), which is defined as the minimum number of rows in a (redundant) parity-
check matrixHp for C such that s(Hp) = dmin [4]. Previously, Schwartz and Vardy [4] proved



that stopping redundancy is well defined and provided bounds on ρ(C) for the family of binary
Reed-Muller codes, extended Golay Codes and maximum distance separable (MDS) codes.
In this work, we will provide an upper bound on ρ(C) for the family of simple difference-set
codes, i.e.,ρ(C) ≤ n, where n is the length of the code.
After introducing the elements of graphical representation of linear codes and the associated

matrices, we will prove a lemma by analyzing eigenvalues of the normalized incidence matrix.
Next, this lemma will be used to provide lower bounds on stopping distance for linear codes,
which will also lead to Tanner’s bit-oriented bound and parity-oriented bound on dmin for
regular Low-Density Parity-Check (LDPC) codes [6]. We continue in Section IV to show
connections between our work and the work of Schwartz and Vardy by providing an upper
bound on stopping redundancy of the difference-set codes. Conclusions and future work are
discussed in Section V.

II. GRAPH REPRESENTATIONS AND EIGENVALUE ANALYSIS
Let dv denote the degree of vertex v ∈ B ∪ Y , and S ⊆ B ∪ Y

ri = weight of row i of Hp = dyi 0 ≤ i ≤ p− 1 (2)
cj = weight of column j of Hp = dbj 0 ≤ j ≤ n− 1 (3)

N(v) = the set of neighbors of v = {u : (v, u) ∈ E or (u, v) ∈ E} (4)
N(S) = the set of neighbors of S (5)
vol(S) = the volume of S =

∑

v∈ S

dv (6)

Ad[ω, C] = number of weight ω codewords (7)
As[|S|,Hp] = number of size |S| stopping sets (8)

Furthermore, define

rmax = max
i

ri rmin = min
i

ri cmax = max
j

cj cmin = min
j

cj (9)

and the p× n normalized incidence matrix :

Ap = [aij]p×n =

[
hij√
ri · cj

]

p×n

(10)

It can be shown that AT
p Ap and ApAT

p share the same set of non-zero eigenvalues, among
which the unique largest single eigenvalue is 1 [7]. Ordering the eigenvalues of AT

p Ap as
1 = µ0 > µ1 ≥ µ2... ≥ µp−1 > µp = ... = µn−1 = 0 if p < n or 1 = µ0 > µ1 ≥ µ2... ≥ µn−1

otherwise, with corresponding orthonormal eigenvectors e0, e1, ...en−1, it can also be shown
that

e0 =
T1/2

d 1n√
vol(G)

(11)

where Td = [tij] is a n × n diagonal matrix with tjj = cj , 0 ≤ j ≤ n − 1 and all
entries of length-n column vector 1n are 1’s. Similarly, let e′0, e′1, ...e′p−1 be the orthonormal
eigenvectors of ApAT

p corresponding to eigenvalues 1 = µ0 > µ1 ≥ µ2... ≥ µp−1, then,

e′0 =
(T′

d)
1/21p√

vol(G)
(12)



where T′
d = [t′ij] is a p× p diagonal matrix with t′ii = ri, 0 ≤ i ≤ p− 1. Now we are ready

to present our first lemma. However, it should be noted that this normalization technique has
a long history and many applications in spectral graph theory. For more information about
spectral graph theory, we direct the interested reader to [7].
Lemma 1: For an arbitrary bipartite graph G = (B ∪ Y, E) with edges between B and Y

and a subset S of B (or Y ), we have
vol(N(S))

vol(S)
≥ 1

µ1 + (1− µ1)
vol(S)
vol(G)

=
vol(G)

µ1vol(G) + (1− µ1)vol(S)
(13)

where µ1 is the second largest eigenvalue of both AT
p Ap and ApAT

p
1.

Proof of Lemma 1: Considering S ⊆ B, define a n×1 column vector ψS as (ψ0, ψ1, ...ψn−1)T ,
where ψj = 1, if bj ∈ S and ψj = 0, otherwise. Expressing T1/2

d ψS as a linear combination
of the orthonormal eigenvectors of AT

p Ap,

T1/2
d ψS =

n−1∑

j=0

〈T1/2
d ψS, ej〉ej =

n−1∑

j=0

ajej (14)

and
a0 = 〈T1/2

d ψS, e0〉 =
ψT

S Td1n√
vol(G)

=
vol(S)√
vol(G)

(15)

n−1∑

j=0

a2
j = 〈T1/2

d ψS,T1/2
d ψS〉 = ψT

S TdψS = vol(S) (16)

where 〈·, ·〉 denotes the inner product of two column vectors, then

〈ApT
1/2
d ψS,ApT

1/2
d ψS〉 = ψT

S T1/2
d AT

p ApT
1/2
d ψS =

n−1∑

j=0

a2
jµj (17a)

≤ a2
0 + (

n−1∑

j=1

a2
j)µ1 (17b)

= (1− µ1)
(vol(S))2

vol(G)
+ µ1vol(S) (17c)

Furthermore,

〈ApT
1/2
d ψS,ApT

1/2
d ψS〉 =

∑

u∈S

∑

v∈S

∑

y : (v, y) ∈ E
and (u, y) ∈ E

1

dy
=

∑

y∈N(S)

∣∣∣∣∣
N(y) ∩ S√

dy

∣∣∣∣∣

2

(18a)

≥

(∑
y∈N(S)

|N(y)∩S|√
dy

√
dy

)2

∑
y∈N(S) dy

(18b)

=
(vol(S))2

vol(N(S))
(18c)

1Similar results can be found in [7] for the graphs of regular row/column weights. However, extensions to the irregular
case discussed in [7] are not fully developed and draw invalid conclusions. The proof of Lemma 1 is based on similar
techniques and can be considered as an extension of Chung’s work.



where (18a) is generalized from [7, Page 97] and (18b) results from Cauchy-Schwartz
inequality. Combining (17c) and (18c),

(1− µ1)
|vol(S)|2

vol(G)
+ µ1vol(S) ≥ 〈ApT

1/2
d ψS,ApT

1/2
d ψS〉 ≥

|vol(S)|2

vol(N(S))
(19)

and (13) is the direct result. Similarly, we can prove this lemma for S ⊆ Y by using e′i’s
and T′

d defined at the end of section II, and ψ′
S = (ψ′

0, ψ
′
1, ...ψ

′
p−1)

T , where ψ′
i = 1, if yi ∈ S

and ψ′
i = 0 otherwise.

III. LOWER BOUNDS OF s(Hp)

Using lemma 1,we will derive lower bounds on stopping distance of linear codes. Since
s(Hp) ≤ dmin, these lower bounds are also lower bounds on dmin. In particular, they lead
to Tanner’s results [2] when the underlying Tanner graph is regular. Thus, using Tanner’s
terminology, we call (20) and (21) bit-oriented bound and parity-oriented bound, respectively.

A. Bit-oriented and parity-oriented bounds on s(Hp)

Theorem 2: For the [n, k, dmin] linear code C defined by the Tanner graph G = (B∪Y, E)
with p× n incidence matrix Hp, define cmax, cmin and rmax as in (9), then the following are
true:

dmin ≥ s(Hp) ≥
(2/rmax)− µ1

1− µ1
· vol(G)

cmax
(20)

dmin ≥ s(Hp) ≥
1 + (2cmin − 2)/rmax − µ1cmax

(1− µ1)cmax
· 2vol(G)

cmaxrmax
(21)

where µ1 is the second largest eigenvalue of AT
p Ap and Ap as defined in (10).

The bit-oriented bound, i.e., (20), becomes meaningless if µ1 > 2/rmax. However, 1 +
(2cmin−2)/rmax−µ1cmax may still be positive which makes parity-oriented bound meaningful.
Proof of Theorem 2: Since stopping distance is always no larger than minimum distance [4],

we only need to prove the second inequalities of (20) and (21).
Let S1 ⊆ B be a smallest stopping set, N(S1) is then the set of active parity-checks and

s(Hp) = |S1|. Applying lemma 1,
|N(S1)|rmax

vol(S1)
≥ vol(N(S1))

vol(S1)
≥ vol(G)

µ1vol(G) + (1− µ1)vol(S1)
(22)

where µ1 is the second largest eigenvalue of AT
p Ap. Since any active parity-check in N(S1)

must be connected to at least two active bits, |N(S1)| ≤ 1
2vol(S1). Therefore,

rmax

2
≥ vol(G)

µ1vol(G) + (1− µ1)vol(S1)
(23)

⇒ s(Hp) = |S1| ≥
vol(S1)

cmax
≥ 2/rmax − µ1

1− µ1
· vol(G)

cmax
(24)

To prove (21), let S2 ⊆ Y be the set of active parity-checks of a smallest stopping set,
|N(S2)|cmax

vol(S2)
≥ vol(N(S2))

vol(S2)
≥ vol(G)

µ1vol(G) + (1− µ1)vol(S2)
(25)

Considering N(S2), it contains all active bits of the stopping set and some other bits that
are not in the stopping set. For those active bits, all their neighbors are included in the set
of S2, and for the rest bits, some of their neighbors are in S2 but others are not. Therefore,



let cavg(N(S2)) be the average number of edges connected to N(S2) that are counted in
vol(S2), i.e., |N(S2)|cavg(N(S2)) = vol(S2), then

(25)⇒ cmax

cavg(N(S2))
≥ vol(G)

µ1vol(G) + (1− µ1)vol(S2)
(26)

Also, among the ri neighbors of any node yi ∈ S2, at lease 2 of them are active bits and the
remaining ri − 2 bits have at least one edge connected to S2. In other words, assuming the
ri neighbors of yi are b1, b2, .., bri , among which b1 and b2 are active bits and b3, ..bri each
has at least one edge connected to S2, it can be shown that at least (c1 + c2 + ri − 2)/ri =
1 + (c1 + c2− 2)/ri ≥ 1 + (2cmin− 2)/rmax edges connected to a neighbor of yi are counted
in vol(S2) on average. Thus,

cavg(N(S2)) ≥ 1 + (2cmin − 2)/rmax (27)

(26) ⇒ cmaxrmax

2cmin + rmax − 2
≥ vol(G)

µ1vol(G) + (1− µ1)vol(S2)
(28)

⇔ vol(S2) ≥
1 + (2cmin − 2)/rmax − µ1cmax

(1− µ1)cmax
· vol(G)

Noting that s(Hp)cmax ≥ 2|S2| ≥ 2vol(S2)/rmax, (21) is obtained.
Lower bounds on minimum distance and stopping distance when the underlying graph

is regular can be considered as a special case of Theorem 2, which is summarized in the
following corollary.
Corollary 3: The dmin of regular LDPC codes defined by p × n parity-check matrix Hp

satisfies

dmin ≥ s(Hp) ≥
n(2c− η1)

cr − η1
(29)

dmin ≥ s(Hp) ≥
2n(2c + r − 2− η1)

r(cr − η1)
(30)

where n = |B| and η1 = µ1cr is the second largest eigenvalue of HT
p Hp.

Proof of Corollary 3: It can be shown that, if Hp is regular, i.e., c0 = ... = cn−1 = c
and r0 = ... = rp−1 = r, the n× n square matrix HT

p Hp has cr as its unique largest single
eigenvalue and η1 = µ1cr as its second largest eigenvalue, where µ1 is the second largest
eigenvalue of AT

p Ap and Ap is the normalized incidence matrix defined in (10). The proof
of Corollary 3 is then straightforward by plugging cmax = cmin = c, rmax = r, vol(G) = nc
and η1 = µ1cr into (20) and (21) respectively.
It can be seen that the part of (29) and (30) corresponding to dmin coincide with Tanner’s

bit-oriented bound and parity-oriented bound for regular LDPC codes [2, Theorem 3.1,Theo-
rem 4.1], respectively. We have also noted that Shin [8] generalized Tanner’s work by deriving
lower bounds on dmin for Quasi-cyclic LDPC codes, where some degree of regularity is still
necessary. Our contributions are the derivation of low bounds for general LDPC codes and
demonstrating that Tanner’s bounds are indeed lower bounds on stopping distance.
Considering Gallager’s (20, 3, 4) regular LDPC code [6, Figure 2.1], it has dmin = 6,

and the given redundant parity-check matrix has stopping distance of 6, r = 4, c = 3 and
µ1 = 0.5. The bit-oriented bound does not apply, the parity-oriented bound is, however, 4.



IV. AN UPPER BOUND ON STOPPING REDUNDANCY OF THE DIFFERENCE-SET CODES
Stopping redundancy was introduced by Schwartz and Vardy [4]. Lower and upper bounds

were also provided for binary and ternary extended Golay codes, the family of Reed-Muller
codes and Maximum-Distance Separable (MDS) codes. In this section, we will provide an
upper bound on stopping redundancy of the family of difference-set codes. Specifically,
assuming C is a difference-set code of length n and minimum distance dmin, we will show
that there exists a n×n redundant parity-check matrix Hn such that s(Hn) = dmin, therefore
ρ(C) ≤ n. Though there are relatively few codes in the family of difference-set codes, they
are nearly as powerful as the best known cyclic codes in the range of practical interest [9].
To analyze the algebraic properties of cyclic codes, the components of a row vector2

v = (v0, v1, ..., vn−1) are usually treated as coefficients of a polynomial, i.e., v(X) = v0 +
v1X + v2X2 + ...+ vn−1Xn−1. Since the correspondence between v and v(X) is one-to-one,
we use the terms “row vector” and “polynomial” interchangeably hereafter.
It is known that a cyclic code is uniquely specified by its parity polynomial [9], which is

of degree k and defined as:

h(X) = 1 + h1X + h2X
2 + ... + hk−1X

k−1 + Xk (31)

The corresponding parity-check matrix can be written as:

Hp0 =





h∗(X) mod (Xn + 1)
X h∗(X) mod (Xn + 1)

·
·

Xp0−1h∗(X) mod (Xn + 1)





p0×n

=





h∗(X)
X h∗(X)

·
·

Xp0−1h∗(X)





p0×n

=





h∗0
h∗1
·
·

h∗p0−1





p0×n
(32)

where p0 = n− k, h∗(X) = Xkh(X−1) is the reciprocal of h(X) and h∗i , 0 ≤ i ≤ p0 − 1,
are row vectors. A parity-check matrix of this form is called a cyclic parity-check matrix
because h∗i is the i-th cyclic shift of h∗0 to the right, 1 ≤ i ≤ p0 − 1.
It is also known that the parity-check matrix for a given cyclic code is usually not unique.

One interesting result is the following lemma.
Lemma 4: Assuming that h(X) is the parity polynomial of an [n,k,dmin] cyclic code C,

if there exists another polynomial z(X) = h(X)f(X) such that:
• f(X) is a non-zero polynomial of degree f < p0 = n− k;
• the greatest common divisor of f(X) and Xn + 1 is 1, i.e., GCD(f(X), Xn + 1) = 1;

then,

Hp0(z) =





z∗(X) mod (Xn + 1)
X z∗(X) mod (Xn + 1)

·
·

Xp0−1z∗(X) mod (Xn + 1)





p0×n

=





z∗0
z∗1
·
·

z∗p0−1





p0×n

(33)

is also a cyclic parity-check matrix for C, where

z∗(X) = Xk+fz(X−1) = Xkh(X−1)Xf f(X−1) = h∗(X)f∗(X) (34)

is the reciprocal of z(X).

2Different from previous sections, where column vectors are used, row vectors are used here.



Proof of Lemma 4: To show Hp0(z) is a valid parity-check matrix of C, it suffices to show
that its row vectors belong to the row space of Hp0 and they are linearly independent. Since
the row space of Hp0 is of dimension p0, the row space of Hp0(z) is then the same as the
row space of Hp0 . Therefore, Hp0(z) is a cyclic parity-check matrix for C.
Noting that z∗(X) = h∗(X)f∗(X) and GCD(f∗(X), Xn + 1) = 1, z∗0 is a non-zero row

vector and is a linear combination of the row vectors of Hp0 . Also, the cyclic property of
the row space of Hp0 guarantees that it contains all the cyclic shift of z∗0 to the right.
To prove part two, assuming that the row vectors of Hp0(z) are linearly dependent, thus

there exist a set of variables αi ∈ {0, 1}, 0 ≤ i ≤ p0 − 1, such that not all of them are zero
and

α0z
∗
0 ⊕ α1z

∗
1 ⊕ ...⊕ αp0−1z

∗
p0−1 = 0 (35)

where ⊕ is modulo-2 addition and 0 is a zero row vector. Equivalently,

α0z
∗(X)⊕ α1Xz∗(X)⊕ ...⊕ αp0−1X

p0−1z∗(X) ≡0 mod (Xn + 1) (36a)
f∗(X)

[
α0h

∗(X)⊕ α1Xh∗(X)⊕ ...⊕ αp0−1X
p0−1h∗(X)

]
≡0 mod (Xn + 1) (36b)

Noting that GCD(f∗(X), Xn + 1) = 1, thus

[α0 ⊕ α1X ⊕ ...⊕ αp0−1X
p0−1]h∗(X) ≡0 mod (Xn + 1) (37a)

⇔ α0h
∗
0 ⊕ α1h

∗
1 ⊕ ...⊕ αp0−1h

∗
p0−1 = 0 (37b)

contradicts with the fact that row vectors of Hp0 are linearly independent. Thus, row vectors
of Hp0(z) are linearly independent.

A. An upper bound on stopping redundancy of the difference-set codes
Definition 1: [9][Ch.5] Let D = {d0, d1, ..., dq} be a set of q + 1 non-negative integers

such that 0 ≤ d0 < d1 < ... < dq ≤ q(q + 1), and for each 0 < t < q(q + 1), there exist one
and only one ordered pair 0 ≤ i 0= j ≤ q such that di − dj ≡ t mod q(q + 1), then D is a
perfect simple difference set of order q.
It can be shown that, if D is perfect simple difference set, D′ = {0, d1 − d0, d2 −

d0, ..., dq−1−d0, dq−d0}, D = {q(q+1)−dq, q(q+1)−dq−1, ..., q(q+1)−d1, q(q+1)−d0}
and D

′
= {0, dq− dq−1, ..., dq− d1, dq− d0} are also perfect simple difference sets. It is also

known that perfect simple difference sets exist for order q = αβ , where α is prime and β is
any positive integer. However, the case of q = 2β corresponds to the most commonly studied
difference-set codes.
Definition 2: [9] Let D = {0, d1, ..., dq} be a perfect simple difference set of order q = 2β ,

define the polynomial z(X) = 1+Xd1 +Xd2 + ...+Xdq . Let n = q(q+1)+1 = 22β +2β +1,
k = 22β+2β−3β and h(X) be the greatest common divisor of z(X) and Xn+1, i.e., h(X) =
GCD(z(X), Xn + 1), the cyclic code defined by the parity-check matrix with p0 = n− k,

Hp0 =





h∗(X)
X h∗(X)

·
·

Xp0−1h∗(X)





p0×n

=





h∗0
h∗1
·
·

h∗p0−1





p0×n

(38)

is an [n, k, dmin = q + 2] difference-set code, where h∗(X) is the reciprocal of h(X).
Theorem 5: The stopping redundancy of an [n,k,dmin] difference-set code is less than or

equal to n, where n = q2 + q + 1, k = q2 + q − 3β , dmin = q + 2 and q = 2β .



Proof of Theorem 5: Since h(X) = GCD(z(X), Xn + 1), where polynomial z(X) cor-
responds to the perfect simple difference set D of order q = 2β , there exists a polynomial
f(X) such that z(X) = h(X)f(X) and GCD(f(X), Xn + 1) = 1. Using Lemma 4,

Hp0(z) =





z∗(X) mod (Xn + 1)
X z∗(X) mod (Xn + 1)

·
·

Xp0−1z∗(X) mod (Xn + 1)





p0×n

=





z∗0
z∗1
·
·

z∗p0−1





p0×n

(39)

is a parity-check matrix of C. By adding row vectors corresponding toX iz∗(X) mod (Xn+1),
p0 ≤ i ≤ n− 1, to Hp0(z), a n× n redundant parity-check matrix Hn(z) is formed,

Hn(z) =





z∗(X) mod (Xn + 1)
·

Xp0−1z∗(X) mod (Xn + 1)
·

Xn−1z∗(X) mod (Xn + 1)





n×n

=





z∗0
·

z∗p0−1

·
z∗n−1





n×n

(40)

which has both rows and columns weight q + 1. Then

An(z) =
1

(q + 1)2
Hn(z) (41)

Furthermore, 1 = µ̃0 > µ̃1 = µ̃2...µ̃n−1 = q
(q+1)2 are eigenvalues of An(z)TAn(z), which has

diagonal entries of 1
q+1 and off-diagonal entries of

1
(q+1)2 . Then, the bit-oriented bound is

s(Hn(z)) ≥
2

q+1 −
q

(q+1)2

1− q
(q+1)2

(q2 + q + 1) = q + 2 = dmin (42)

Therefore, the stopping distance of Hn(z) equals dmin of the code, and the stopping redun-
dancy of the family of difference-set codes, ρ(C) ≤ n = the length of the code.
Furthermore, for redundant parity-check matrix Hn(z), we can not only show that its

stopping distance equals the minimum distance, but also the number of smallest stopping
sets equals the number of minimum weight codewords, i.e.,
Theorem 6: For the family of [n, k, dmin] difference-set code,

Ad[dmin, C] = As[s(Hn(z)),Hn(z)] (43)
Proof of Theorem 6: To show (43), it suffices to show that, by letting variables in it be 1

and the rest be 0, every smallest stopping set corresponds to a minimum weight codeword.
Without loss of generality, assuming that {b1, b2, ..., bq+2} forms a stopping set and y1, y2,
... yq+1 are neighbors of b1, there exists at least one bj , 2 ≤ j ≤ q + 2, such that yi ∈
N(bj) because {b1, b2, ..., bq+2} is a stopping set. However, as |N(b1)

⋂
N(b2)| = ... =

|N(b1)
⋂

N(bq+2)| = 1 and |N(b1)| = q + 1, it can be shown that there is only one such bj

for each yi so that all neighbors of b1 are of degree two. Similarly, we can prove this for bj ,
2 ≤ j ≤ q + 2. Thus, let bj = 1 for 1 ≤ j ≤ q + 2 and bj = 0 otherwise, a minimum weight
codeword, which is of weight q + 2, is formed.
Using (43), we can argue that, when the erasure probability is small, the performance

of the iterative message passing algorithm can be very close to that of the ML decoding.
This can be verified using the [21, 11, 6] difference-set code C21 derived from the difference
set D = {0, 3, 4, 9, 11}, where h(X) = z(X) = 1 + X3 + X4 + X9 + X11, dmin = 6
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Fig. 1. Performance of iterative decoder as a function of p and Maximum-Likelihood decoder for [21, 11, 6] difference-set
code on BEC. Note that the curve of ML decoding and iterative decoding with p = 21 coincide.

and Ad[6, C21] = 168. It can be shown that ρ(C21) ≤ 12, and As[s(Hp(z)),Hp(z)] = 168
if p ≥ 15, where Theorem 5 and Theorem 6 provide bounds ρ(C21) ≤ 21 and p ≥ 21,
respectively.
Figure 1 evaluates the performance of iterative decoding for C21 on the erasure channel

as a function of p, the number of rows of the cyclic redundant parity-check matrix Hp(z)
in the form similar to (40). The general belief, that the iterative decoder will perform better
if redundant parity-checks are added to the Tanner Graph, is verified by this simulation. For
example, when the channel erasure probability is 0.12, the probability of block error is 0.001
if p = 10, but this number is 0.00048 if p = 15 and 0.00047 when p = 21. The performance
of ML decoding is also shown in 1 and is observed to be identical to that of the p = 21
iterative decoding algorithm.

V. CONCLUSION AND FUTURE WORK
Using techniques of spectral graph theory, we derived lower bounds on stopping distance

of linear codes defined by randomly generated parity-check matrices, and pointed out the
relationship between our bounds and Tanner’s bit-oriented bound and parity-oriented bound
on minimum distance for regular LDPC codes. Furthermore, using these lower bounds, we
derived an upper bound on stopping redundancy of the family of difference-set codes.
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