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Abstract

Rapidly acquiring the code phase of the spreading sequence in an ultra-wideband system is
a very difficult problem. In this paper, we present a new iterative algorithm and its hardware
architecture in detail. Our algorithm is based on running iterative message passing algorithms on a
standard graphical model augmented with multiple redundant models. Simulation results show that
our new algorithm operates at lower signal to noise ratio than earlier works using iterative message
passing algorithms. We also demonstrate an efficient hardware architecture for implementing the
new algorithm. Specifically, the redundant models can be combined together so that memory usage
can be reduced substantially. Our prototype achieves a combination of performance and complexity
not possible with traditional approaches.

I. INTRODUCTION

Pseudo-random or pseudo noise (PN) sequences play an important role in an ultra-wideband
(UWB) system. They are periodic sequences with long period in practical systems. In a direct
sequence ultra-wideband (DS/UWB) system, the transmitted signal is a train of very narrow
pulses with polarities determined by the product of a PN binary sequence and the incoming
binary source data sequence. For security reasons, it is often desirable to have PN sequences
of very long period, so that to an unintended receiver over a short time interval, the sequences
appear to be aperiodic and completely random [1], [2].

For a DS/UWB receiver, the received signal de-spreading is achieved by multiplying
the incoming samples by a local replica of the PN sequence. Therefore, the receiver must
determine the unknown PN code phase embedded in the transmitted signal by analyzing the
data collected from a short (compared to the PN code period) observation window so that it
can synchronize the local replica. This is termed PN acquisition and will be the focus of this
paper. Once the code phase is acquired, the receiver maintains the PN code synchronization
through code tracking.

Traditionally, PN acquisition is achieved by searching explicitly over possible code phases.
Reference signals corresponding to different code phases are correlated with the received
signal and the one with the largest correlation is selected. Algorithms based on this approach
include parallel search, serial search and hybrid search. For long PN sequences, parallel
search is too expensive to be practical, serial search is often too slow and hybrid searches,
at best, provides only a linear tradeoff between the speed and cost [3], [1].
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For a DS/UWB system, the receiver estimates the arrival time of the pulses (i.e., the frame
epoch), samples the incoming noisy signal and performs PN acquisition on these samples.
The above process is repeated until acquisition is declared. Letting Tf be the pulse repetition
period (frame time) and Tp be the pulse width, there are Tf

Tp
possible frame epoch values.

As explained in [4], ignoring multipath delay spread exploitation [5], the receiver has to
perform up to 100-1000 PN acquisitions to locate the correct frame epoch in low data rate
applications. For a UWB system, the PN acquisition has to be completed quickly. If it is too
slow, the correct code phase may never be acquired because the frame epoch may change
due to timing drift before the receiver finishes evaluating the current frame epoch estimate
[2]. In this paper, we focus on fast PN acquisition and frame acquisition is not considered.

Recently, iterative message passing algorithms (iMPAs) similar to the decoding algorithms
for low density parity check codes (LDPC) and turbo codes were proposed in [6], [2] for
fast PN acquisition in both direct sequence spread spectrum (DS/SS) and DS/UWB systems.
Similar approaches have also been proposed in [7], [8]. Our exposition most closely follows
that of [2]. These iterative algorithms offer the speed of parallel search and acquisition
performance similar to that of serial search at short block lengths. Unlike parallel search, it
is practical to implement the proposed algorithm in hardware to acquire PN sequences with
long period. There are two drawbacks of the algorithm proposed in [2]. First, the algorithm
converges slowly at low SNR. Second, the performance of the algorithm does not scale well
with observation length. Specifically, doubling the observation window length lowers the
operating SNR of the traditional approaches by 3 dB but only by 1-2 dB for the proposed
algorithm.

In this paper, we present a new improved iterative message passing algorithm and its
hardware architecture based on the algorithm proposed in [2]. Specifically, we introduce
multiple redundant models to mitigate the aforementioned drawbacks discussed in [2]. The
new algorithm converges faster and operates at lower SNR without increasing the hardware
complexity. We will also demonstrate how to aggregate these multiples models into a single
model to reduce memory usage. In our hardware prototype, the spreading sequence is of
period 222 − 1. Rapidly acquiring such a long sequence is impractical by both serial and
parallel search, but the logic design based on our architecture can be easily fit into a small
field programmable gate array (FPGA).

The remainder of this paper is as follows. In Section II, we introduce the theory of
operation. Section III gives a detailed account of our hardware implementations as well
as various techniques we used in the optimization. Section IV concludes the paper and gives
directions for future work.

II. THEORY OF OPERATION

A. Maximal-length Sequences
A maximal-length sequence or m-Sequence is a linear feedback shift register (LFSR)

sequence which has the maximum possible period for an r-stage shift register [9], [1].
Mathematically, the sequence can be expressed as

xk = g1xk−1 ⊕ g2xk−2 ⊕ ...⊕ grxk−r (1)

where ⊕ is the modulo-2 addition, g0 = gr = 1 and gk ∈ {0, 1} for 1 < k < r such that the
period of xk is 2r − 1. The generator polynomial is g(D) = Dr + gr−1D

r−1 + gr−2D
r−2 +

... + D0 where D is the unit delay operator. Because of their excellent auto-correlation and
cross-correlation properties, m-Sequences are widely used as spreading sequences in spread
spectrum systems [1].



B. Signal Model
For a DS/UWB system, a standard model for acquisition characterization is: [2], [1]

zk =
√

Ec(−1)xk + nk (2)

where zk, 0 ≤ k ≤ M − 1, is the noisy sample received by the acquisition module, xk,
0 ≤ k ≤ M − 1, is the spreading m-Sequence, Ec is the transmitted energy per pulse and
nk is additive white Gaussian noise (AWGN) with variance N0

2
. We also assume that xk

is generated by an r-stage LFSR and r � M � 2r − 1. This is a much simplified model
which assumes no data modulation and does not include the effect of jamming, oversampling,
etc, but it is widely used in the literature to benchmark the performance of PN acquisition
algorithms.1

The goal of the acquisition module is to estimate xk and the frame epoch simultaneously
based on zk 0 ≤ k ≤ M − 1. In our design, we obtain the estimate of xk, denoted by x̂k, by
running an iterative message passing algorithm. Because x̂k has to be consistent with (1),
once r consecutive x̂k are obtained, the rest of the sequence is determined by extrapolating
the estimate by (1). As the last step, zk is correlated with x̂k, 0 ≤ k ≤ M − 1 to check
whether the correlation threshold is reached.

C. Iterative Message Passing Algorithm (iMPA) for Fast PN Acquisition
In traditional PN acquisition approaches, i.e., parallel searches, serial searches and hybrid

searches, the received sequence zk is correlated with up to 2r−1 PN sequences generated by
different x0, x1, ..., xr−1 combinations for the whole observation window and the algorithm
chooses the phase corresponding to the highest correlation. The computation complexity is
of O(M ·2r) for all of them. Parallel search is a form of maximum likelihood (ML) decoding
of xk from (2) and serial/hybrid search can be regarded as approximations to ML decoding.
Based on this interpretation, we formulate the PN acquisition problem as a decoding problem
and apply an iterative message passing algorithm similar to turbo code decoding [10] or LDPC
decoding [11], [12].

Since the inception of turbo codes, iterative message passing algorithms have been widely
studied. They can be easily derived by constructing the corresponding graphical models for
the system and applying a standard set of rules. It is well understood that if the graphical
model has no cycles, the algorithm is equivalent to maximum likelihood decoding. Otherwise,
the algorithm is heuristic and sub-optimal [13], [14], [15], [16]. However, it is often a good
approximation to maximum likelihood decoding and offers near-optimal performance as in
the case of turbo code and LDPC decoding.

A detailed discussion of iterative message passing algorithms is beyond the scope of
this paper. In the remaining sections, we consider acquiring the m-Sequence with generator
polynomial g(D) = D22+D1+D0 and only the details relevant to our example are presented.
Interested readers can refer to [16], [17], [14], [18] for further details.

Our baseline decoding algorithm is based on a cyclic graphical model (Fig. 1) similar to the
polynomial g(D) = D15+D1+D0 presented in [2]. The decoding algorithm shows the same
performance characteristics as in [2] and suffers the same problems. The slow convergence
experienced by the algorithms is attributed to the weak constraints and the flooding activation
schedule. The SNR scaling problem is attributed to the existence of regular cycle structures
in the graphs in [2]. Qualitatively speaking, this is a “bad” graphical model to apply standard
iterative message passing algorithm. The problem is tackled in [2] by inverting the signs of

1As shown in [2], this model and the algorithms developed in this paper can be modified to work in sinusoidal carrier
systems such as direct sequence spread spectrum systems (DS/SS). In such systems, the model of (2) should be generalized
to account for an unknown carrier phase, θc. The approach suggested in [2] is to search over a finite set of carrier phase
values.
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Fig. 1. Tanner graph for g(D) = D22 + D1 + D0.
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Fig. 2. Forming the 2nd order graphical model using the primary model (g(D) = D22 + D1 + D0) and the 1st order
auxiliary model (g(D) = D44 + D2 + D0).

the set of messages corresponding to the least reliable decisions and rerunning the algorithm if
acquisition fails. This approach does improve sensitivity, but it still requires many iterations.
This motivates us to find a better graphical model on which we can apply the standard
iterative message passing algorithm and is more amenable to hardware implementation.

D. Graphical Models with Redundancy
To improve the performance of the iMPA, we introduce a new decoding graph for g(D) =

D22+D1+D0. It is constructed using multiple graphical models each of which fully captures
the PN code structure. In this sense, the model has redundancy. This is equivalent to adding
redundant parity checks to the standard parity check matrix. This technique has also been
applied in soft decoding of some of the classical codes [19], [20]. Fig. 2 shows the special
case of using two models. Each of the subgraphs is based on a different generator polynomial
to the same m-Sequence. Mathematically, we introduce different reducible polynomials to
generate the same sequence. It is shown in [4] that

g(D) = D22·2n

+ D2n

+ D0, n = 0, 1, 2, 3... (3)

all generate the same sequence. In this paper, we refer the graphical model based on (3) as
the nth order auxiliary model and the one based on g(D) = D22 + D1 + D0 as the primary
model. Also, we refer to the model that combines the primary model and the 1st, 2nd ...
(n − 1)th order auxiliary models as the nth order model. Our decoding graph for an nth

order model is formed by constraining the output of primary model and each of the ith order
auxiliary models 1 ≤ i ≤ n to be equal. As an example, the graph of the 2nd order model is
shown in Fig. 2. The performance improvement by combining multiple models is shown in
Fig. 3 and Fig. 4 where the curve for the algorithm in [2] is also included. Even though each
individual auxiliary model produces very unreliable decoding decisions, combining them
improves the convergence behaviour dramatically. We gain around 1 dB for each additional
auxiliary model introduced. Only 10 iterations are required for practical convergence for a
5th order model for g(D) = D22 + D1 + D0.
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Fig. 5. Block diagram of the acquisition module for g(D) = D22 + D1 + D0.

Our algorithm is summarized as follows. For each block of observation {zk}, we run the
iterative message passing algorithms based on graphical models such as those in Fig. 2 and
Fig. 6 for I iterations. At the end of each iteration, we compare Mdec with 0: x̂k = 0 if
Mdec ≥ 0, x̂k = 1 otherwise. We then divide {x̂k} into non-overlapping 22-pulse segments
and choose the segment corresponding to the maximum

∑22·j+21
k=22·j |Mdec[k]| and set x̂k equal

to the extrapolated value of the chosen segement by (1) for 0 ≤ k ≤ M − 1. Finally we
correlate zk with x̂k: c =

∑k=M−1
k=0 zkx̂k. If c > threshold, we declare acquisition. Note that

this last step is required since, in the UWB model considered, an incorrect frame epoch
estimate will yield a noise only observation {zk}.

The complexity of both the decoding and correlation operations is of O(M), therefore our
algorithm is also of O(M) complexity. There is substantial complexity reduction compared
to the traditional approaches. Also, our new algorithm offers better performance with no
additional complexity compared to the approach in [2] since we reduce the number of
iterations dramatically.

III. HARDWARE ARCHITECTURE

In this section, we consider the case of decoding the PN sequence g(D) = D22 +D1 +D0

over an observation window of M = 1024 using the 2nd order model architecture. The block
diagram of our acquisition module is shown in Fig. 5.
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A. 4-State FSM Decoder
As shown in Fig. 5, instead of using a 2-model PN estimator architecture based on Fig. 2,

we combine the two models together using a single 4-state FSM based on Fig. 6. The new
FSM captures all the information of the original FSMs and lowers the memory requirements
from 6M messages to approximately 3M messages plus state metrics as demonstrated below.
Moreover, by using a single FSM, we save routing resources by lowering the bandwidth
requirement for the channel metrics (Mch[k] = zk) memory since it is now accessed only by
one FSM soft-in soft-out (SISO) module. Using the 4-state FSM does require more logic in
the FSM SISO implementation, but this increase is justified by the the additional savings in
memory and routing.2

Our 4-state FSM decoder is based on the forward backward algorithm. We define the state
as Sk = {xk−1, xk} and the corresponding explicit index diagram (i.e., the Tanner-Wiberg
graph) is shown in Fig. 6(a). The messages passed are shown in detail in Fig. 6(b). The
update equations are obtained by applying the standard message passing rules [16] on Fig.
6. For complete listing of the state transition table, the implicit index diagram, the detailed
decoder structure and the update equations, interested readers can refer to [4].

Simulation results shows that the 4-state FSM decoder implementation improves the per-
formance by 0.2 dB in Ec

N0
as compared to the architecture based on Fig. 2.

We can continue to combine multiple auxiliary models to form a single FSM. For example,
we can implement a 3rd order model using a 16-state FSM. However, the exponential growth
in state metric memory may outweigh any savings in the message memory for larger n.

B. Forward Backward Algorithm Architecture for Multiple Index Segments
To reduce the internal FSM state metric memory, we divide the observation window into

multiple segments and run the forward backward algorithm (FBA) segment by segment. This
is a standard approach for implementing turbo decoders [21], [22].

2The decoder can also be based on a three FSM model which is discussed in further details in [4].
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Fig. 7. Processing and memory access pipeline for the 4-state decoder.

In our prototype system, we divide the observation window (1024) into 8 segments. There
is one forward unit and one backward unit running 15 iterations. During each iteration,
the forward unit updates the state metric sequentially from pulse 0 to 1023. The backward
unit computes the state metric in the following order: 127→0, 255→128, ..., 1023→896.
Such a sequence of calculations results in one problem: we do not know the backward
metric B128[i], 0 ≤ i ≤ 3 when computing 127 → 0, B256[i], 0 ≤ i ≤ 3 when computing
255 → 128, etc. Instead of running the backward unit for an additional “warm-up” period as
in [21], [22] which requires an additional backward unit for a full-speed design, we copy the
B128[i] values from the previous iteration. This is feasible because the warm-up period is only
required if we are trying to approximate an FBA-SISO in isolation. For an iterative system,
starting the backward recursions based on earlier iteration values is equivalent to a change in
the activation schedule for the iMPA on the cyclic graph, and as such does not significantly
affect the performance. This is a known architecture for implementing iterative decoders with
forward-backward based SISO decoders (e.g., see [23], [24]). Once both the forward and
backward state metrics become available, LI 0k, LI 1k, RIk and Mdec[k] are computed and
the FSM state metric memory is released immediately. The processing pipeline is shown in



Fig. 7 which shows the update sequence as well as the corresponding memory access.

C. Bit Width
The bit widths in our system are determined by simulations in two steps. First, we fixed

LI 0k, LI 1k, RIk to be of 16 bits and determine that 4 bits of ADC output is sufficient.
Compared to floating point, there is a performance loss of only 0.2 dB. For each ADC
bit width, we have optimized the scale q that sets the ADC dynamic range (ADCout =
quantize(q · zk)) for performance. For a 4-bit ADC, qopt is found to be 1.65 by simulation.
We then determine the bit width of the messages LI 0, LI 1 and RI. Simulation shows that
they can all be clipped to 5 bits after each (FBA/=) SISO activation with little performance
degradation for a 4-bit ADC. For the performance curve of various bit width combinations,
the readers can refer to [4, Fig. 12].

For the state metrics, it is shown in [4] that 8 bit is sufficient for 5-bit messages if we
normalize Fk[i] and Bk[i] 1 ≤ i ≤ 3 against Fk[0] and Bk[0]. Though the normalization
approach reduces the memory usage by one-fourth, it impacts the frequency scaling of our
circuit by requiring three additional subtractions in the critical path of the forward and
backward recursions. Therefore, we do not perform normalization and use 9 bits to represent
the state metric instead of 8 bits. This additional 1-bit approach is commonly used in Viterbi
decoders and is proven to be correct with two’s complement arithmetic [25], [16].

D. Internal Memory Organization
The message memories (LI 0, LI 1 and RI) are divided into two banks, one for the odd

FBA segments and the other for the even segments. The channel metric memory is divided
into 2 banks each comprising 1024 entries. By carefully scheduling the access sequence as
shown in Fig. 7, we can use 2-port memories without contention problems. Readers can
refer to [4] for further implementation details. The design can be easily ported to single
port memory only architecture by doubling the bus width and time division multiplexing the
access.

E. Verification Unit
Our verification unit, shown also in Fig. 5, consists of two parts, a PN sequence extrap-

olation unit and a correlator unit. The extrapolation unit extends the 22-bit PN estimate it
receives to the whole observation window. The correlation unit then correlates this sequence
with the channel metric. To improve efficiency, the correlator output is checked every M

4
pulses and it must exceed the check point threshold before continuing. If the final correlation
value exceeds the final threshold, acquisition is declared. The final threshold is chosen to
be 0.65 · q · 1024, which was found by simulation. This yields good acquisition performance
as shown in Fig. 3 and the frequency of false alarm is 0 in 5000 trials when the signal is
absent.

F. Hardware Implementation
We implemented the architecture using Verilog HDL. The code is synthesized by Syn-

plicity, then mapped by Xilinx Foundation to a Xilinx Virtex 2 device (XC2v250-6). The
number of bits implemented in block RAM is 28160, the number of 4-input LUTs used is
2433 and the number of slices used is 1481. The design can run at 91 MHz. These figures
show that memory is the main component of the circuit and justify our decision to trade off
logic for memory reduction.

Our baseline design can decode Freqclk

15
pulses per second. Assuming a 60 MHz clock, our

prototype generates a PN code phase decision every 15
60 MHz

· 1024 = 2.56 µs. The decode
process has to be repeated for each frame epoch estimate until the correct frame epoch is
found. Assuming the frame time Tf = 250 ns (i.e., pulse rate = 4 Mpulses/s) and pulse



width Tp = 1.6 ns, the approximate average acquisition time of our prototype system is
Tacq = 2.56 µs · Tf

Tp
· 0.5 = 20 ms with Pacq = 0.95 at Ec

N0
= −8.9 dB. This assumes that half

of the frame epoch values are searched on average.
As a comparison, to achieve the same average Tacq, hardware based on parallel search

and running at the same frequency requires approximately 5.6 × 105 correlators, 5.6 × 105

14-bit comparators and 5.6× 105 4-bit registers. For serial search, the hardware is trivial if
we assume a one addition per clock architecture. However, it takes an average of 5.6× 103

s (approximately 1.5 hours) to acquire the PN sequence if running at the same frequency.
To further lower Tacq, we can instantiate multiple forward and backward units to process

multiple data segments in parallel. We expect that the increase in logic will be approximately
linear when the speed up factor does not exceed 8 because we already divide the observation
window into 8 segments in our iterative decoder and each of them can be run in parallel. For
lower speed applications, our design can be further simplified to using single port memory
and running the update sequentially. Such a design can save in the number of adders and
reduce the routing resources. Therefore we expect the logic gate count will scale linearly for
target pulse rate varies from 500 kpulses/s to 32 Mpulses/s.

Our design can also be directly extended to operate at even lower SNR. This requires
adding auxiliary model decoders as well as memories for saving the messages from the
additional decoders. Since a 6th order model is approximately three times more complex
than a 2nd order model, we estimate that the operating Ec/N0 can be lowered to -13 dB by
tripling the gate count or alternatively, increasing the acquisition time by 3 times and tripling
the message memory.

IV. CONCLUSION

In this paper, we present a new hardware architecture for fast PN acquisition in UWB
systems based on iterative message passing on a graphical model with redundancies. Our new
algorithm improves sensitivity significantly via the introduction of multiple redundant models.
Hardware based on the algorithm is economical to implement and can rapidly acquire very
long PN sequences. There is no known way to accomplish this with traditional approaches
using similar hardware resources.

We examined in detail the design trade-offs in choosing an appropriate architecture for
the main component: a forward backward algorithm based decoder. We then demonstrated
how to combine multiple redundant models into a single model to reduce memory usage.
Finally, we gave a detailed account on our hardware implementation and discuss various
implementation techniques. Our design can be fit to a small FPGA while full parallel search
is impractical to implement and serial search is five orders of magnitude slower than our
design.

Future work will be focused on designing hardware for a more realistic system model
which incorporates oversampling, interference and multi-path channel distortions.
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