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Abstract—A parametric model for indoor Ultra-wideband  standard approach for narrowband applications, UWB signals
(UWB) impulse response at the receiver is derived analyti- typically occupy multi-Gigahertz bandwidth which result a
cally based on diffusion phenomenon and stochastic differential fine time resolution and therefore, hundreds or thousands of

equations (SDE). This novel approach considers the channel in ltinath t il b ted. The | b
continuous space instead of characterizing the discrete multi- multipath- components will bé generated. € large number

path components. It was hypothesized that the multiple wave Of multipath components usually lead to large number of
reflections in the rich scatter indoor environment cause diffusion- parameters in the channel model which should be estimated

like behavior in the received signal. Our analysis suggested a for different environments. Alternatively, we can consider the

geometric Brownian motion with exponential decaying factor as cpanne| model in the continuous signal space. By this, we
the channel stochastic impulse response. The simple closed form.

of the model has parameters that can be adjusted for different !mply _that the Iarge ”Um?er of specular and diffused reflgctlons
indoor channel behaviors, i.e., match the power delay profile in @ rich scattering environment can be better approximated
and channel statistics. The model parameters were estimated with a continuous received impulse response model. Therefore,
for an office building, and its statistics were compared to the the analysis will be done in the continuous space and the
statistics of a set of data from experiment. The IEEE channel garjyeq closed form solution of the statistical model will

model (CM3) was used for comparison purposes. The results tai | f t d th th del will b
have shown that our proposed model performs closely to dense contain only a tew parameters an us, the model will be

multipath experimentally collected data. reduced in complexity.

|. INTRODUCTION In this paper, first we hypothesized properties of the UWB

Ultra-wideband (UWB) signal propagation in the indoothannel and then analytically derived the stochastic channel
environment is a topic of great interest. The propagatigmpulse response from a set of stochastic differential equations
complexities in the indoor environments with dense multipalgDE). In the absence of precise information about the channel
make the analytical characterization of the channel impulgeg., object locations and materials in the building) the exact
response properties more challenging. There are valuable dggalytical solution from Maxwell equations or ray tracing
umented resources based on extensive measurements (€.gmEthods [5] can not be determined. As an alternate approach,
[2] [3] [4]) for modelling the channel path loss, the frequencywe can develop simplified tractable stochastic models to
domain response and analysis of the statistics of the relatgtkcribe the channel behavior. Note that it is impossible to
channel parameters. Some previous studies has providegb@nstruct the continuous channel impulse response from
thorough statistical description of multipath components (i.ehe channel pulse response, since the pulse waveform has
wave reflections, angles-of-arrival and times-of-arrival, e.gimited bandwidth and performs lowpass filtering. The primary
[1]). Frequency domain channel sounding is considered in [ghjective of our analysis was to derive analytically a simple

Some channel models that have been proposed for ¥4 accurate stochastic impulse response for the indoor UWB
indoor UWB environments are Comp”catEd or have too maiannel with few adjustab|e parameters_

parameters which should be estimated. Therefore, the use of
these models are limited. The experimentally proposed IEEEThe organization of the paper is as follows: Section II
channel models [3] are widely used for simulation purposefscusses the UWB signal estimation and formulates the cor-
but it's not apparent how different parameters of the model cagsponding stochastic differential equation (SDE). From basic
be matched to different buildings and environments. Compleifysical assumptions and channel properties, in section Ill, we
characterization of the UWB channel can help engineers 4gjust the mathematical assumptions to physical realities and
design optimum UWB system components like receivers agdtermine the corresponding SDE parameters. The solution to
optimum codes. the proposed SDE will be also presented in section Ill. In
Most of the proposed channel models are based on chargction 1V, the stochastic impulse response of the channel is
terizing the discrete multipath components. Although this isqrived. Finally, in section V, the accuracy of the new proposed

This work was supported by the Army Research Office under MURI graHPOde! is verified by comparing the model statistics to that of
No. DAAD19-01-1-0477. experimentally collected data.



1. UWB SIGNAL ESTIMATION AND SDE FORMULATION  represents the prediction error, or the mean square unpre-

Consider a building consisting of at least two rooms. Aflictable part of the incremeniX;. By definition, dU; is
UWB transmitter exists in one room. We partition the entiréalled the innovation part of the procesX (¢). The innovation
building into two regions. Suppose that region 2 consists Bfocess is unbiased, i.€&{dU;} = 0. Integrating (5) along
the room with the transmitter in it. Assume there are enoudine results
objects in the building so that there exists a large number t t
of multiple diffused and specular reflections which produce a X(t) = /0 dY; +/O dU:.

(6)
diffusion-like propagation characteristic [6]. This is true for _ . : .
most buildings with objects in them. In the average sené@?te thatX(0) = 0 since the recelved power is a continuous

while the energy in region 2 diffuses to region 1, the energg;ﬁsgcal pr;enomenon.k Hgnce ©6) can be written as the so
in region 1 diffuses back to region 2. We showed [6] that tHe? € Doob-Mayer-Fiske decomposition
following differential equation holds for the spatial average Xt)=Y@t)+U(®) 7)

power profile of the two regions ) ) . . .
. whereY (¢) ia a continuous physical process predictable with

P(t) = AP(1), (1) X(t). It turns out thatU(t) is always a (Gaussian) Wiener

where P(t) = [Pi(t) pQ(t)}t, and P,(t) and P,(t) are process and also is & —Martingale withU (0) = 0 [7], i.e.,
the spatial average power profiles of the impulse response in X
regions 1 and 2 respectively(t) = <P(t) andA is a known EUMIFT} = Uls),s <t ®
matrix of constant coefficients which its elements depend df* is the c—algebra generated by collections of random
the building structure. The solution to (1) for region 1 is ofariablesX, i.e., 77X = o{X(s);0 < s < t}.
the form Alternatively, it is known that under certain regulatory

_ _ ot oot conditions, a finite variance continuous procését);t > 0

E{X O} = Pi(t) =k (e —° )’ ) can be decomposed in to a smooth signal cgr)nponent and

where X () is the instantaneous received power profile of continuous but highly erratic noisy component which is a
the impulse response at a sample point in region 1 andtignsformation of the standard Wiener process [8], i.e.,
proportional to the square of the received signal envelope,

a1, az (functions of elements of matriXA) and k; are X(t) :/ta(ﬂX(T))dTJr/t b(r, X(7))dW,  (9)
parameters which are selected to adjust the model to the 0 0

specific environment (constant values for each region of thgere 1 (¢) is the standard Wiener process adil; is
building). E{-} averages over the space of one region. For thige official differentiation of the Wiener process, i.e., white
purposes of this paper, the stochastic proc&¥ss) for one gaussian processi(t, X (t)) and b(t, X (¢)) are continuous

location is of the prime interest. The model (2) was proposefemoryless transformations of the procesgt). Taking the
for the power profile of the impulse response, so that thgrivative of (9) we obtain

infinite bandwidth of the transmitted impulse does not force
any limitation on the shape of the average power profile. { dX; = a(t, X(t))dt + b(t, X (¢))dW;
The finite variance continuous proceXs¢);¢ > 0 consists X(0)=0
of two parts: the average (deterministic) part as shown iX,, a process written as linear combination of ordinary
(2), and the stochastic part, i.e., random variationsX () finite variance process (Gaussian or non-Gaussian) and white
is considered as the received power at a specific locationgaiussian noise, is called generalized process. Comparing (10)
time ¢, then at timet + dt the power will be given by and (5), we find that the predictable part @#X;, i.e., dY;
X(t+dt) = X () + dX,. 3) ?n (5) has thg form ofa(t, X (t))dt in (10) anddU; wh_ich
is the unpredictable part of (5) holds the same statistics of
dX; should be estimated at each timegiven the observation b(t, X (t))dW,.
X(t');0 <t < ¢. In other words, by observing the history | (10), the white Gaussian componehi¥’; is independent
of the process up to time, the minimum mean squaregs the past ofX andW (i.e., independent ok (#/);0 < ¢/ < ¢
error (MMSE) estimate of future values fox(-) should be znq W(t);0 < ¢ < ). SincedX(t) = X(t + dt) — X(t)
calculated. It is known that the MMSE estimation @K is s a forward increment equation and as a result of (10), the
its the conditional mean. Denote the conditional mean rand@gnditional distribution ofX (t-+dt), given the past and present
variable, which is a function of the pathX (#);0 <t <1}, x(#);0 < # < ¢ depends only on the present value of
by dY, i.e., X (t). But this is the definition of Marcov property. Therefore,
dY, 2 E{dX,|X(t');0 <t <t}. (4) X(t) is a Marcov process, meaning that the probability law

. . ... of the entire future of the process is completely determined
dY, is the predictable part ok (¢) (The orthogonal projection hy the present value, and hence is independent of the past.

of X(t) ip the case of Gaussian_, or in .th_e. case of Iir_lear eSPhe processX (¢) does not have independent increments since
mation with a squared loss function definition). The dn‘ferencc?Xt depends orX (¢) througha(t, X (1)) andb(t, X (t)). Not

dUy = dXy — dYs (5) a surprise thaf (¢) need not even be a Gaussian process.

(10)



problem, it should be mentioned that for meas
a(t,z) andb(t,x), if there exist constant¥; a

that the f0||0W|ng conditions are satisfied for ¢ Fig. 1. Received signals at different times are reflected probably from
different materials with unrelated reflection and absorption coefficients.

a(t, X (t)) and b(t, X (t)) should be calcula
dense multipath channel and then (10) shi
Before adjusting the above functions with the tthz

la(t, z) — a(t, y)|| + [b(t, z) — b(t, y)|| < K|
lla(t, )|l + [[o(t, 2)|| < Ka(1 + [=]]) o R,
larger variations in the received signal is higher. Hence
then a unique solution to SDE (10) exists [7] ¢ _
has the following properties: Uy = o X (t)dW; (12)
1) X is 7V —adapted, i.e.X(t) € F/V:Vt > v siewmy Whereo is a constant which depends on the environment. Fix-
that for each fixed the process valu& (t) is a function ing X (¢) in the environment, the larger valuesctorrespond
of the Wiener trajectory on the intervél, . to the stronger (specular) reflected waves and produce larger

2) X is a Markov process with continuous trajectorieS. Unpredictable Variation&Ut. Ta.k|ng the eXpeCted values from

. : (5) results
Therefore SDE (10) is a transformation of the spétde, o)
into itself, i.e., a Wiener trajectory¥ (-) is mapped into the B{dX:} = E{dY;} + E{dU+}. (13)
corresponding trajectorX () as the solution. As mentioned earlier, by definition the innovation process
has zero mean. In fact, the mean of the procd&s is
I1l. UWB CHANNEL PHYSICS AND SDE SOLUTION considered in its predictable part. From (4), for agy> t;:
A PROBABILISTIC VIEW A
Yy, 2Y, — Y, =E{dX,, | X(t):0<t <t}
The physics of UWB signal propagation phenomenon =B{X(ts) — X(t1) | X(£);0 < t < t1} (14)

should be used to find the corresponding functiefts-) and

b(-,-) for UWB channel. To adjust (10) to the UWB channelGiven X (¢);0 < ¢ < t;, X(t1) is a constant, therefore

we consider thqt fqr the perfectly smoo'th. reflection_ surfac.es, dY,, = E{X(t2) | X(£);0 <t <t} — X(t1) (15)

specular reflection is the only type of existing reflection, while

irregular surfaces (relative to wavelength, as it is for almost Considering the Marcov property ok (t), all the infor-

all surfaces for UWB signal) contribute in both diffused anghation in X (¢);0 < t < t; for estimating E{X (t2) |

specular reflections. As a result, in most cases a combinati8ift);0 < ¢ < ¢} is in X(¢1). In other words, since

of specular reflections together with diffused reflections exigt{ X (t2) | X (1);0 <t <t} = E{X(t2) | X(t1)}, X(t1) is
Based on different diffused and specular reflection coegufficient statistic to estimat&{ X (tz) | X(¢);0 <t < #;}.

ficients (material dependent), multiple reflections of wavek0r simplicity purposesE{X (t¢z) | X(¢:)} which should be

different absorption coefficients and different angles of reflegstimated was denoted k¢ Apparently¢ is a function of

tions, also considering the impulse signal spreading in timé(t1). The pdf f(X(t1)|#) can be written as

due to frequency dependent reflection coefficients and accord-

ing to central limit theorem (CLT), the difference between the f(X(t1)[f) = f(9|X(t})()9§(X(t1)) = f(X(t1)) (16)

actual and predicted power at the receiver is Gaussian, that _ ) )

complies with the previously discusseti; = b(t, X (t))dW,. Which is a delta function wherX (¢,) is known. Since no

In the weak form of CLT, the assumption of finite varianc&nction of X' except the one that is identically zero with

is the essential necessity for the convergence to normalijobability one for all¢ satisfiesEq{g[X(t1)]} = 0;V0,

The CLT convergence in distribution gives us a useful general(t1) is @ complete sufficient statistics fer [9]. Eo{-} is

approximation, though the goodness of this approximation 3¢ €xpected value of its argument with the known parameter

a function of original distributions and must be checked cafe Reference [9] has shown that'if is a complete sufficient

by case. In section V, the accuracy of this hypothesis witfatistic for a parametef, and o (T') is any estimator based

be investigated by comparing the analytical results with ttfly on 7', theny(T') is the unique best unbiased estimator

results from the experiment. of its e_xpected value. Consequently, for the Mc_':lrkov process
dU, also has independent increment property, since diffef(t) With E{Z(t)} = Ke®, when Z(to);to < ¢ is known,

ent reflections at different times are probably reflected frofje best unbiased estimator fd#{Z(?)|Z(to)} would be

different objects and materials with unrelated reflection ar%(to)ea(tfm'

absorption coefficients (Fig.1). In addition, the difference in E{Z(t)}

powerdU, is proportional to the existing instantaneous power

in the environmentX (¢). The larger the instantaneous power

in the environment, the higher the probability of strongespecifically this is true for a constant coefficient equation, i.e.,

reflections from the objects, and therefore the probability fevhen K is not time varying.

E{E{Z(t)|Z(t0)}} = E{Z(to)}e ("""
_ Keatoea(t—to) — Kot (17)



E{X(t)} in (2) consists of two exponential terms, eaclexists. For now, we assume thgtis a strictly positive solution
with constant initial valuetk;. We consider X(t) as the to (24). Taylor expansion and partial derivative rule gives

summation of two processeXi(¢) = X;(t) + X2(t) so that aZ(t) aZ(t)

E{X1(t)} = kiem! andE{X,(t)} = —kqe®". If the values Az, = — Tdt+ o5=dX,

of X1 (t1) and X, (1) are known, the best unbiased estimator 1 (02 2(1) ! P22(1)

of the conditional expected valuB{X (t2)| X1 (t1), Xa2(t1)} + = ( 5 dt? + 5 dX12> +... (25)
would be 2\ ot 0Xi

- _ Sincelt — 0, dt*> can be disregarded as the second order
E{X(tip(ilglz’)(?(tl)} _a(ft()g ()tl>’X2(ﬁ1)) (18) {finitesimal value. ButY, contains a white Gaussian process
= Xu(t)e" T 4+ Xo(ty)e™ 2 Vi, T 3t < t2 which may vary rapidly and hendéX,]? can not be neglected

where£{-} is the orthogonal projection. By definingt = [dX,])? [aX 1 (t)dt + o X, (t)dW;)?

to —t1 — 0, (15) giVES ~ UQX%(t)(th)2 (26)
dYp = Xi(t)e™™ 4 Xo(tr)e®? — (dW,)? which is quadratic variation process of the Wiener pro-
[(X1(t1) + Xa(t2)]- (19) cess converges tét in L? almost surely, thereforglX;]? =
. _ _02X2(t)dt, and hence (25) can be rewritten as
dYy is the estimated value ofY;;. The Taylor expansion ) )
approximation will result dz, = — — 1dX.]?
A © T xe™ T o™
dYp =~ a1 Xq1(t1)dt + asXo(t1)dt 20 1
" Pt e ) 0) = adt +odW; — So%dt 27)

Therefore, (5) can be rewritten as ] ) )
therefore, the following equations were obtained

dX, = a X1 (t)dt + as Xo(t)dt + o X ()dW,.  (21) { i, = (a— Lo®)dt + adW¥,
2 2

zo = In(xg)

28
SubstitutingX (t) = X1 (¢) + X2(t) we get (28)
. Solving (28) is not complicated, since the right hand side
X1+ dXo = a1 Xa () dt + a; Xa(t)dt + does not includeZ(-) and can be integrated directly(t) =

g X1(1)dW: + 0 X (t)dW, 22) In(x0) + (a — Lo?)t + oW (t), which implies

The first and the second terms in the right hand side of
(22) come from the conditional expected values of Markov
processes with exponential mean and are independent of epghefore
other. Terms 3 and 4 in the right hand side of (22) should

X1(t) = zoexp{(a1 — %az)t +oW(t)} (29)

have the same Gaussian procé®g, which has been divided X(t) = woe”W Wz (et — ) (30)

into tvyo parts. Equatior.1 (22) was considered as two separater expected value off(f) can be calculated to be

equations to be solved: E{X(£)} = x0 (e™! — e%2!). Equation (30) shows tha (1),
dX1(t) = a1 X1 (t)dt + o X1 (t)dW; the UWB instantaneous power at one point, consists of
dX5(t) = ax Xo(t)dt + 0 Xo(t)dW; (23) three multiplicative components. The average tergfe®:?t —
X1(0) = —X5(0) = x¢ e?2t) which exists because of the average energy diffusion

phenomenon in the environment [6], the exponential term
The third equation comes from the fact that the procé&s  «xp[51¥(¢)], which contains all the random variations in the
always starts from zero. Equation (2) also resBfsX1(0)} = form of log-normal process with increasing variance and an
—E{X5(0)} = k1. The value ofz, depends on the power of exponentially attenuation term with timexp[— 102, It is
transmitter and physical characteristics of the channel, e@teresting to note that larger, which is corresponding to
the distance between the transmitter and the receiver, objegi$nger specular reflections, results larger power variations
in the room and their locations, etc. Assume that ,somehoyad faster decay in power, as long @s and a» are fixed.

can be considered as the materials in the environment are the same but their surfaces
X1 (t) = [ay + oW (£)] X1 (t) are smoother. The reason may be that the specular reflections
(24)  do not contribute in th diffusi d
X1(0) = 0 o not contribute in the average power diffusion process, an
) although these specular reflections cause larger variations in
whereW (-) is the white Gaussian process. the instantaneous power according to #i& (Y term, but in

Considering that the solution to the corresponding detdhe average, these strong reflections have higher possibility to
ministic linear equation is an exponential function of timedgeave the system more rapidly.
we define the proces8 where Z(t) = In[X;(¢)]. SinceX is On the other hand, the reflection and absorption coefficients
the received UWB power, it is always non-negative &nd¥) of the materials in the environment, the physical distances and



° V. UWB CHANNEL STATISTICS, MEASUREMENTRESULTS
AND MODEL VALIDITY

In order to verify the fidelity of the proposed model,
statistics of the pulse response of the channel was compared to
the statistics of a set of measured data taken by Win [1]. For
reference the results were also compared to the statistics of
the IEEE channel pulse response as a discrete channel model.
Since it was not known how to match parameters of the model

» -»”" with the real environment, the typical values of IEEE-CM3
Fig. 2.  Averaged received energy from UWB diffusion channel moddl/asS used which was the closest to the experiment condition.
together with a sample trajectory of its stochastic process. For both models, the impulse response of the channel was
simulated according to the model, then the response of the
channel to the measured received pulse shape (obtained from

o.a B

clean LOS measurements [1]) was calculated. AWGN, with

1 the same power level as measurements, was added to the

i signals. Where needed, the impulse responses were estimated

by CLEAN algorithm from measured and simulated signals.

The parameters;, a; anday of UWB diffusion channel

1 model were estimated from measured data at one point for

1 each room. The estimated values show that for the building

P 2= where measurements were done, the standard deviation of
a; anday were 32% and 21% of their mean values respec-

Fig. 3. UWB diffusion model channel response to second derivative gf/ely. This value was about 120% far,, but since the gain

Gaussian waveform as the input template. . . - . .
coefficientzg has a linear contribution, it can be estimated

easily. 0 and Poisson arrival rate qf(¢), A, were estimated

by minimizing thelL; distance of the averaged power profile

consequently change the average time of nonzero powerof the model with the power profile of one point measurement.

the environment, variations of the power, and the average an?vhel3 t&gr}:al ;‘;??“ty and gﬂga{l-ex<iess(;delay (ME([;.) Vlve:r;lS
instantaneous power magnitude. calculated for measured data set and correspondingly

simulated profiles from each model. The signal quality in
IV. UWB CHANNEL IMPULSE RESPONSE dB was defined a€)(u) = 10log,o Etot(u) — 10logyg Erey,

) h icall ) h o ¢ where v indexes the outcome of the stochastic process,
Equation (30) mathematically describes the statistics of t > () = foT r(u,t)[2dt, T is the total observation time,

instantaneous power profile at each point in the building. %é;%’t) is the received signal (measured or resulted from the
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the structure of the environment affect, a», z9, ando, and

order to obtain the statistics of the channel impulse respon dels), andE,. ; is a fixgd reference quantity. Mean-excess-
the received signal envelope was calculated. The receive ' et E’ﬁ?tz .

: _ 7 th
signal envelope is proportional to the square root of the powlflay Was defined as= -=7.%, whereh; is thei™ channel
impulse response estimate at tihe

e(t) = coe3W B =107t (e™? — eazt)% (31) Since the diffusion model parameters were estimated for

_ ) _ the same type of channel and distance as measurements were

wheree, is proportional to square root ofy. Fig. 2 shows done, the ensemble mean of the mean-excess-delays was

a sample trajectory of the received energy(t) obtained expected to be almost the same for measured data and the
from the UWB diffusion channel model, with its mean valugnodel. However, since IEEE channel model could not be
E{X(t)}. From (31) the impulse response of the channel ispatched with the real environment, the corresponding results
B LoW(t) —Lot [ art _ _ast\% were _qwte dlfferer_lt with me_asurement. Table | shows the

C(t) = eop(t)e? e a7 (el —emt)? (32)  statistics of the signal quality and Mean-excess-delay. To

cpmpare the performances of the correlator receivers, the

In (32) p(t) is a random process that can take values of +1 or _ : ~ Evin(u,L)
tityenergy capturavas defined a&zC' = 1 — ﬁ

with equal probabilities based on the polarity of the reflection§4an

To conceive more generality, we consider that the polaiity whereE,;, = minci{fOT |r(u, t) —Ele ciw(t—m;)2dt} [1].

might be changed at Poisson times with probabliity. If the Energy capture plots for measured signals and signals from
Poisson arrival rate\ is considered to be very big relative toeach model is shown in Fig. 4, and Fig. 5. The results indicated
the system resolution (e.g., sampling rate and UWB templdteat the proposed UWB diffusion channel model simulates

bandwidth) p(¢) converges to independenrtl polarities at the UWB signal behavior closely and the model parameters
each time. Finally by applying the convolution integral, thean be matched with any specific building. Pulse distortion

received channel output when specific template) is used effects due to antennas [10], channel frequency distortion

would ber(t) = C(t) * g(t). and corresponding changes on the stochastic properties of
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Fig. 4. Energy-capture for 49 measured signals. Fig. 6. Energy-capture for 49 simulated signals from UWB IEEE-CM3.
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Fig. 7. Amplitude histogram of a narrowband signal at 900 MHz using the
Fig. 5. Energy-capture for 49 simulated signals from UWB diffusion CMproposed channel impulse response, along with Nakagami m=1 distribution.
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or location within the building. Analysis showed that the

proposed UWB diffusion channel model performs reasonably __ Phase

close to the set of experimentally collected data. 400 1

TABLE |
SIGNAL QUALITY (@) AND MEAN-EXCESSDELAY (M E D) STATISTICS

std{Q} | E{MED} | std{ MED} s
Measurement| 2.6 dB 65.0 nsed 0.178
Diffusion CM 2.75dB 68.1 nsec 0.194
IEEE CM3 1.4dB 54.0 nsec 0.0421 Fig. 8. Phase histogram of a narrowband signal at 900 MHz using the

proposed channel impulse response.



