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Abstract— A parametric model for indoor Ultra-wideband
(UWB) impulse response at the receiver is derived analyti-
cally based on diffusion phenomenon and stochastic differential
equations (SDE). This novel approach considers the channel in
continuous space instead of characterizing the discrete multi-
path components. It was hypothesized that the multiple wave
reflections in the rich scatter indoor environment cause diffusion-
like behavior in the received signal. Our analysis suggested a
geometric Brownian motion with exponential decaying factor as
the channel stochastic impulse response. The simple closed form
of the model has parameters that can be adjusted for different
indoor channel behaviors, i.e., match the power delay profile
and channel statistics. The model parameters were estimated
for an office building, and its statistics were compared to the
statistics of a set of data from experiment. The IEEE channel
model (CM3) was used for comparison purposes. The results
have shown that our proposed model performs closely to dense
multipath experimentally collected data.

I. I NTRODUCTION

Ultra-wideband (UWB) signal propagation in the indoor
environment is a topic of great interest. The propagation
complexities in the indoor environments with dense multipath
make the analytical characterization of the channel impulse
response properties more challenging. There are valuable doc-
umented resources based on extensive measurements (e.g., [1]
[2] [3] [4]) for modelling the channel path loss, the frequency
domain response and analysis of the statistics of the related
channel parameters. Some previous studies has provided a
thorough statistical description of multipath components (i.e.,
wave reflections, angles-of-arrival and times-of-arrival, e.g.,
[1]). Frequency domain channel sounding is considered in [2].

Some channel models that have been proposed for the
indoor UWB environments are complicated or have too many
parameters which should be estimated. Therefore, the use of
these models are limited. The experimentally proposed IEEE
channel models [3] are widely used for simulation purposes
but it’s not apparent how different parameters of the model can
be matched to different buildings and environments. Complete
characterization of the UWB channel can help engineers to
design optimum UWB system components like receivers and
optimum codes.

Most of the proposed channel models are based on charac-
terizing the discrete multipath components. Although this is a
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standard approach for narrowband applications, UWB signals
typically occupy multi-Gigahertz bandwidth which result a
fine time resolution and therefore, hundreds or thousands of
multipath components will be generated. The large number
of multipath components usually lead to large number of
parameters in the channel model which should be estimated
for different environments. Alternatively, we can consider the
channel model in the continuous signal space. By this, we
imply that the large number of specular and diffused reflections
in a rich scattering environment can be better approximated
with a continuous received impulse response model. Therefore,
the analysis will be done in the continuous space and the
derived closed form solution of the statistical model will
contain only a few parameters and thus, the model will be
reduced in complexity.

In this paper, first we hypothesized properties of the UWB
channel and then analytically derived the stochastic channel
impulse response from a set of stochastic differential equations
(SDE). In the absence of precise information about the channel
(e.g., object locations and materials in the building) the exact
analytical solution from Maxwell equations or ray tracing
methods [5] can not be determined. As an alternate approach,
we can develop simplified tractable stochastic models to
describe the channel behavior. Note that it is impossible to
reconstruct the continuous channel impulse response from
the channel pulse response, since the pulse waveform has
limited bandwidth and performs lowpass filtering. The primary
objective of our analysis was to derive analytically a simple
and accurate stochastic impulse response for the indoor UWB
channel with few adjustable parameters.

The organization of the paper is as follows: Section II
discusses the UWB signal estimation and formulates the cor-
responding stochastic differential equation (SDE). From basic
physical assumptions and channel properties, in section III, we
adjust the mathematical assumptions to physical realities and
determine the corresponding SDE parameters. The solution to
the proposed SDE will be also presented in section III. In
section IV, the stochastic impulse response of the channel is
derived. Finally, in section V, the accuracy of the new proposed
model is verified by comparing the model statistics to that of
experimentally collected data.



II. UWB SIGNAL ESTIMATION AND SDE FORMULATION

Consider a building consisting of at least two rooms. An
UWB transmitter exists in one room. We partition the entire
building into two regions. Suppose that region 2 consists of
the room with the transmitter in it. Assume there are enough
objects in the building so that there exists a large number
of multiple diffused and specular reflections which produce a
diffusion-like propagation characteristic [6]. This is true for
most buildings with objects in them. In the average sense,
while the energy in region 2 diffuses to region 1, the energy
in region 1 diffuses back to region 2. We showed [6] that the
following differential equation holds for the spatial average
power profile of the two regions

Ṗ(t) = AP(t), (1)

where P(t) =
[
P1(t) P2(t)

]t
, and P1(t) and P2(t) are

the spatial average power profiles of the impulse response in
regions 1 and 2 respectively.Ṗ(t) , d

dtP(t) andA is a known
matrix of constant coefficients which its elements depend on
the building structure. The solution to (1) for region 1 is of
the form

E{X(t)} = P1(t) = k1

(
eα1t − eα2t

)
, (2)

where X(t) is the instantaneous received power profile of
the impulse response at a sample point in region 1 and is
proportional to the square of the received signal envelope,
α1, α2 (functions of elements of matrixA) and k1 are
parameters which are selected to adjust the model to the
specific environment (constant values for each region of the
building).E{·} averages over the space of one region. For the
purposes of this paper, the stochastic processX(t) for one
location is of the prime interest. The model (2) was proposed
for the power profile of the impulse response, so that the
infinite bandwidth of the transmitted impulse does not force
any limitation on the shape of the average power profile.

The finite variance continuous processX(t); t ≥ 0 consists
of two parts: the average (deterministic) part as shown in
(2), and the stochastic part, i.e., random variations. IfX(t)
is considered as the received power at a specific location at
time t, then at timet + dt the power will be given by

X(t + dt) = X(t) + dXt. (3)

dXt should be estimated at each timet, given the observation
X(t′); 0 ≤ t′ ≤ t. In other words, by observing the history
of the process up to timet, the minimum mean square
error (MMSE) estimate of future values forX(·) should be
calculated. It is known that the MMSE estimation ofdXt is
its the conditional mean. Denote the conditional mean random
variable, which is a function of the path{X(t′); 0 ≤ t′ ≤ t},
by dYt, i.e.,

dYt , E{dXt|X(t′); 0 ≤ t′ ≤ t}. (4)

dYt is the predictable part ofX(t) (The orthogonal projection
of X(t) in the case of Gaussian, or in the case of linear esti-
mation with a squared loss function definition). The difference

dUt = dXt − dYt (5)

represents the prediction error, or the mean square unpre-
dictable part of the incrementdXt. By definition, dUt is
called the innovation part of the processdX(t). The innovation
process is unbiased, i.e.,E{dUt} = 0. Integrating (5) along
time results

X(t) =
∫ t

0

dYt +
∫ t

0

dUt. (6)

Note thatX(0) = 0 since the received power is a continuous
physical phenomenon. Hence (6) can be written as the so
called Doob-Mayer-Fiske decomposition

X(t) = Y (t) + U(t) (7)

whereY (t) ia a continuous physical process predictable with
X(t). It turns out thatU(t) is always a (Gaussian) Wiener
process and also is aFX

t −Martingale withU(0) = 0 [7], i.e.,

E{U(t)|FX
s } = U(s), s < t. (8)

FX
t is the σ−algebra generated by collections of random

variablesX, i.e.,FX
t = σ{X(s); 0 ≤ s ≤ t}.

Alternatively, it is known that under certain regulatory
conditions, a finite variance continuous processX(t); t ≥ 0
can be decomposed in to a smooth signal component and
a continuous but highly erratic noisy component which is a
transformation of the standard Wiener process [8], i.e.,

X(t) =
∫ t

0

a(τ, X(τ))dτ +
∫ t

0

b(τ,X(τ))dWτ (9)

where W (t) is the standard Wiener process anddWt is
the official differentiation of the Wiener process, i.e., white
gaussian process.a(t,X(t)) and b(t,X(t)) are continuous
memoryless transformations of the processX(t). Taking the
derivative of (9) we obtain

{
dXt = a(t,X(t))dt + b(t,X(t))dWt

X(0) = 0 (10)

dXt, a process written as linear combination of ordinary
finite variance process (Gaussian or non-Gaussian) and white
gaussian noise, is called generalized process. Comparing (10)
and (5), we find that the predictable part ofdXt, i.e., dYt

in (5) has the form ofa(t,X(t))dt in (10) anddUt which
is the unpredictable part of (5) holds the same statistics of
b(t, X(t))dWt.

In (10), the white Gaussian componentdWt is independent
of the past ofX andW (i.e., independent ofX(t′); 0 ≤ t′ < t
and W (t′); 0 ≤ t′ < t). SincedX(t) = X(t + dt) − X(t)
is a forward increment equation and as a result of (10), the
conditional distribution ofX(t+dt), given the past and present
X(t′); 0 ≤ t′ ≤ t depends only on the present value of
X(t). But this is the definition of Marcov property. Therefore,
X(t) is a Marcov process, meaning that the probability law
of the entire future of the process is completely determined
by the present value, and hence is independent of the past.
The processX(t) does not have independent increments since
dXt depends onX(t) througha(t, X(t)) andb(t,X(t)). Not
a surprise thatX(t) need not even be a Gaussian process.



a(t, X(t)) and b(t, X(t)) should be calculated for UWB
dense multipath channel and then (10) should be solved.
Before adjusting the above functions with the physics of the
problem, it should be mentioned that for measurable functions
a(t, x) and b(t, x), if there exist constantsK1 and K2 such
that the following conditions are satisfied for allx, y and t:

‖a(t, x)− a(t, y)‖+ |b(t, x)− b(t, y)‖ ≤ K1‖x− y‖
‖a(t, x)‖+ ‖b(t, x)‖ ≤ K2(1 + ‖x‖) (11)

then a unique solution to SDE (10) exists [7] and the solution
has the following properties:

1) X is FW
t −adapted, i.e.,X(t) ∈ FW

t ; ∀t ≥ 0 meaning
that for each fixedt the process valueX(t) is a function
of the Wiener trajectory on the interval[0, t].

2) X is a Markov process with continuous trajectories.

Therefore SDE (10) is a transformation of the spaceC[0,∞)
into itself, i.e., a Wiener trajectoryW (·) is mapped into the
corresponding trajectoryX(·) as the solution.

III. UWB C HANNEL PHYSICS AND SDE SOLUTION

A PROBABILISTIC V IEW

The physics of UWB signal propagation phenomenon
should be used to find the corresponding functionsa(·, ·) and
b(·, ·) for UWB channel. To adjust (10) to the UWB channel,
we consider that for the perfectly smooth reflection surfaces,
specular reflection is the only type of existing reflection, while
irregular surfaces (relative to wavelength, as it is for almost
all surfaces for UWB signal) contribute in both diffused and
specular reflections. As a result, in most cases a combination
of specular reflections together with diffused reflections exist.

Based on different diffused and specular reflection coef-
ficients (material dependent), multiple reflections of waves,
different absorption coefficients and different angles of reflec-
tions, also considering the impulse signal spreading in time
due to frequency dependent reflection coefficients and accord-
ing to central limit theorem (CLT), the difference between the
actual and predicted power at the receiver is Gaussian, that
complies with the previously discusseddUt = b(t,X(t))dWt.
In the weak form of CLT, the assumption of finite variance
is the essential necessity for the convergence to normality.
The CLT convergence in distribution gives us a useful general
approximation, though the goodness of this approximation is
a function of original distributions and must be checked case
by case. In section V, the accuracy of this hypothesis will
be investigated by comparing the analytical results with the
results from the experiment.

dUt also has independent increment property, since differ-
ent reflections at different times are probably reflected from
different objects and materials with unrelated reflection and
absorption coefficients (Fig.1). In addition, the difference in
powerdUt is proportional to the existing instantaneous power
in the environmentX(t). The larger the instantaneous power
in the environment, the higher the probability of stronger
reflections from the objects, and therefore the probability for

t1
t2

Fig. 1. Received signals at different times are reflected probably from
different materials with unrelated reflection and absorption coefficients.

larger variations in the received signal is higher. Hence

dUt = σX(t)dWt (12)

whereσ is a constant which depends on the environment. Fix-
ing X(t) in the environment, the larger values ofσ correspond
to the stronger (specular) reflected waves and produce larger
unpredictable variationsdUt. Taking the expected values from
(5) results

E{dXt} = E{dYt}+ E{dUt}. (13)

As mentioned earlier, by definition the innovation process
has zero mean. In fact, the mean of the processdXt is
considered in its predictable part. From (4), for anyt2 ≥ t1:

dYt1 , Yt2 − Yt1 = E{dXt1 | X(t); 0 ≤ t ≤ t1}
= E{X(t2)−X(t1) | X(t); 0 ≤ t ≤ t1} (14)

Given X(t); 0 ≤ t ≤ t1, X(t1) is a constant, therefore

dYt1 = E{X(t2) | X(t); 0 ≤ t ≤ t1} −X(t1) (15)

Considering the Marcov property ofX(t), all the infor-
mation in X(t); 0 ≤ t ≤ t1 for estimating E{X(t2) |
X(t); 0 ≤ t ≤ t1} is in X(t1). In other words, since
E{X(t2) | X(t); 0 ≤ t ≤ t1} = E{X(t2) | X(t1)}, X(t1) is
sufficient statistic to estimateE{X(t2) | X(t); 0 ≤ t ≤ t1}.
For simplicity purposes,E{X(t2) | X(t1)} which should be
estimated was denoted byθ. Apparently θ is a function of
X(t1). The pdff(X(t1)|θ) can be written as

f(X(t1)|θ) =
f(θ|X(t1))f(X(t1))

f(θ)
= f(X(t1)) (16)

which is a delta function whenX(t1) is known. Since no
function of X except the one that is identically zero with
probability one for all θ satisfiesEθ{g[X(t1)]} = 0; ∀θ,
X(t1) is a complete sufficient statistics forθ [9]. Eθ{·} is
the expected value of its argument with the known parameter
θ. Reference [9] has shown that ifT is a complete sufficient
statistic for a parameterθ, and ϕ(T ) is any estimator based
only on T , then ϕ(T ) is the unique best unbiased estimator
of its expected value. Consequently, for the Markov process
Z(t) with E{Z(t)} = Keat, when Z(t0); t0 ≤ t is known,
the best unbiased estimator forE{Z(t)|Z(t0)} would be
Z(t0)ea(t−t0).

E{Z(t)} = E{E{Z(t)|Z(t0)}} = E{Z(t0)}ea(t−t0)

= Keat0ea(t−t0) = Keat (17)

specifically this is true for a constant coefficient equation, i.e.,
whenK is not time varying.



E{X(t)} in (2) consists of two exponential terms, each
with constant initial value±k1. We consider X(t) as the
summation of two processes;X(t) = X1(t) + X2(t) so that
E{X1(t)} = k1e

a1t andE{X2(t)} = −k1e
a2t. If the values

of X1(t1) andX2(t1) are known, the best unbiased estimator
of the conditional expected valueE{X(t2)|X1(t1), X2(t1)}
would be

Ê{X(t2)|X1(t1), X2(t1)} = ϕ(X1(t1), X2(t1)) (18)

= X1(t1)ea1(t2−t1) + X2(t1)ea2(t2−t1) ;∀t1, t2 3 t1 < t2

where Ê{·} is the orthogonal projection. By definingdt =
t2 − t1 → 0, (15) gives

d̂Yt1 = X1(t1)ea1dt + X2(t1)ea2dt −
[X1(t1) + X2(t2)]. (19)

d̂Yt1 is the estimated value ofdYt1. The Taylor expansion
approximation will result

d̂Yt1 ≈ a1X1(t1)dt + a2X2(t1)dt (20)

Therefore, (5) can be rewritten as

dXt = a1X1(t)dt + a2X2(t)dt + σX(t)dWt. (21)

SubstitutingX(t) = X1(t) + X2(t) we get

dX1t + dX2t = a1X1(t)dt + a2X2(t)dt +
σX1(t)dWt + σX2(t)dWt (22)

The first and the second terms in the right hand side of
(22) come from the conditional expected values of Markov
processes with exponential mean and are independent of each
other. Terms 3 and 4 in the right hand side of (22) should
have the same Gaussian processdWt which has been divided
into two parts. Equation (22) was considered as two separate
equations to be solved:





dX1(t) = a1X1(t)dt + σX1(t)dWt

dX2(t) = a2X2(t)dt + σX2(t)dWt

X1(0) = −X2(0) = x0

(23)

The third equation comes from the fact that the processX(t)
always starts from zero. Equation (2) also resultsE{X1(0)} =
−E{X2(0)} = k1. The value ofx0 depends on the power of
transmitter and physical characteristics of the channel, e.g.,
the distance between the transmitter and the receiver, objects
in the room and their locations, etc. Assume that ,somehow,
the value ofx0 can be estimated. The first equation in (23)
can be considered as

{
Ẋ1(t) = [a1 + σẆ (t)]X1(t)
X1(0) = x0

(24)

whereẆ (·) is the white Gaussian process.
Considering that the solution to the corresponding deter-

ministic linear equation is an exponential function of time,
we define the processZ whereZ(t) = ln[X1(t)]. SinceX is
the received UWB power, it is always non-negative andln(X)

exists. For now, we assume thatX is a strictly positive solution
to (24). Taylor expansion and partial derivative rule gives

dZt =
∂Z(t)

∂t
dt +

∂Z(t)
∂X1

dX1

+
1
2

(
∂2Z(t)

∂t2
dt2 +

∂2Z(t)
∂X2

1

dX2
1

)
+ . . . (25)

Sincedt → 0, dt2 can be disregarded as the second order
infinitesimal value. ButX1 contains a white Gaussian process
which may vary rapidly and hence[dXt]2 can not be neglected

[dXt]2 = [aX1(t)dt + σX1(t)dWt]2

≈ σ2X2
1 (t)(dWt)2 (26)

(dWt)2 which is quadratic variation process of the Wiener pro-
cess converges todt in L2 almost surely, therefore[dXt]2 =
σ2X2

1 (t)dt, and hence (25) can be rewritten as

dZt =
1

X(t)
dXt − 1

2X2(t)
[dXt]2

= adt + σdWt − 1
2
σ2dt (27)

therefore, the following equations were obtained
{

dZt = (a− 1
2σ2)dt + σdWt

z0 = ln(x0)
(28)

Solving (28) is not complicated, since the right hand side
does not includeZ(·) and can be integrated directly:Z(t) =
ln(x0) + (a− 1

2σ2)t + σW (t), which implies

X1(t) = x0 exp{(a1 − 1
2
σ2)t + σW (t)} (29)

Therefore

X(t) = x0e
σW (t)e−

1
2 σ2t

(
ea1t − ea2t

)
(30)

The expected value ofX(t) can be calculated to be
E{X(t)} = x0 (ea1t − ea2t). Equation (30) shows thatX(t),
the UWB instantaneous power at one point, consists of
three multiplicative components. The average term,x0(ea1t−
ea2t) which exists because of the average energy diffusion
phenomenon in the environment [6], the exponential term
exp[σW (t)], which contains all the random variations in the
form of log-normal process with increasing variance and an
exponentially attenuation term with time,exp[− 1

2σ2t]. It is
interesting to note that largerσ, which is corresponding to
stronger specular reflections, results larger power variations
and faster decay in power, as long asa1 and a2 are fixed.
This happens with constanta1, a2, andx0, which implies that
the materials in the environment are the same but their surfaces
are smoother. The reason may be that the specular reflections
do not contribute in the average power diffusion process, and
although these specular reflections cause larger variations in
the instantaneous power according to theeσW (t) term, but in
the average, these strong reflections have higher possibility to
leave the system more rapidly.

On the other hand, the reflection and absorption coefficients
of the materials in the environment, the physical distances and
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Fig. 2. Averaged received energy from UWB diffusion channel model
together with a sample trajectory of its stochastic process.
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Fig. 3. UWB diffusion model channel response to second derivative of
Gaussian waveform as the input template.

the structure of the environment affecta1, a2, x0, andσ, and
consequently change the average time of nonzero power in
the environment, variations of the power, and the average and
instantaneous power magnitude.

IV. UWB CHANNEL IMPULSE RESPONSE

Equation (30) mathematically describes the statistics of the
instantaneous power profile at each point in the building. In
order to obtain the statistics of the channel impulse response,
the received signal envelope was calculated. The received
signal envelope is proportional to the square root of the power

e(t) = e0e
1
2 σW (t)e−

1
4 σ2t

(
ea1t − ea2t

) 1
2 (31)

wheree0 is proportional to square root ofx0. Fig. 2 shows
a sample trajectory of the received energyX(t) obtained
from the UWB diffusion channel model, with its mean value
E{X(t)}. From (31) the impulse response of the channel is

C(t) = e0p(t)e
1
2 σW (t)e−

1
4 σ2t

(
ea1t − ea2t

) 1
2 (32)

In (32)p(t) is a random process that can take values of +1 or -1
with equal probabilities based on the polarity of the reflections.
To conceive more generality, we consider that the polarityp(t)
might be changed at Poisson times with probability0.5. If the
Poisson arrival rateλ is considered to be very big relative to
the system resolution (e.g., sampling rate and UWB template
bandwidth) p(t) converges to independent±1 polarities at
each time. Finally by applying the convolution integral, the
received channel output when specific templateg(t) is used
would ber(t) = C(t) ∗ g(t).

V. UWB CHANNEL STATISTICS, MEASUREMENTRESULTS

AND MODEL VALIDITY

In order to verify the fidelity of the proposed model,
statistics of the pulse response of the channel was compared to
the statistics of a set of measured data taken by Win [1]. For
reference the results were also compared to the statistics of
the IEEE channel pulse response as a discrete channel model.
Since it was not known how to match parameters of the model
with the real environment, the typical values of IEEE-CM3
was used which was the closest to the experiment condition.
For both models, the impulse response of the channel was
simulated according to the model, then the response of the
channel to the measured received pulse shape (obtained from
clean LOS measurements [1]) was calculated. AWGN, with
the same power level as measurements, was added to the
signals. Where needed, the impulse responses were estimated
by CLEAN algorithm from measured and simulated signals.

The parametersx0, a1 and a2 of UWB diffusion channel
model were estimated from measured data at one point for
each room. The estimated values show that for the building
where measurements were done, the standard deviation of
a1 and a2 were 32% and 21% of their mean values respec-
tively. This value was about 120% forx0, but since the gain
coefficient x0 has a linear contribution, it can be estimated
easily. σ and Poisson arrival rate ofp(t), λ, were estimated
by minimizing theL2 distance of the averaged power profile
of the model with the power profile of one point measurement.

The signal quality and Mean-excess-delay (MED) were
calculated for 343 measured data set and correspondingly 343
simulated profiles from each model. The signal quality in
dB was defined asQ(u) = 10 log10 Etot(u) − 10 log10 Eref ,
where u indexes the outcome of the stochastic process,
Etot(u) =

∫ T

0
|r(u, t)|2dt, T is the total observation time,

r(u, t) is the received signal (measured or resulted from the
Models), andEref is a fixed reference quantity. Mean-excess-

delay was defined asτ =
P

i ĥ2
i tiP

i ĥ2
i

, whereĥi is theith channel
impulse response estimate at timeti.

Since the diffusion model parameters were estimated for
the same type of channel and distance as measurements were
done, the ensemble mean of the mean-excess-delays was
expected to be almost the same for measured data and the
model. However, since IEEE channel model could not be
matched with the real environment, the corresponding results
were quite different with measurement. Table I shows the
statistics of the signal quality and Mean-excess-delay. To
compare the performances of the correlator receivers, the
quantityenergy capturewas defined asEC , 1− Emin(u,L)

Etot(u) ,

whereEmin = minci{
∫ T

0
|r(u, t)−∑L

i=1 ciw(t−τi)|2dt} [1].
Energy capture plots for measured signals and signals from
each model is shown in Fig. 4, and Fig. 5. The results indicated
that the proposed UWB diffusion channel model simulates
the UWB signal behavior closely and the model parameters
can be matched with any specific building. Pulse distortion
effects due to antennas [10], channel frequency distortion
and corresponding changes on the stochastic properties of
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Fig. 4. Energy-capture for 49 measured signals.
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Fig. 5. Energy-capture for 49 simulated signals from UWB diffusion CM.

the received signal may be the most important sources of
discrepancy between the simulation and experimental results.
On the other hand Fig. 6 shows the corresponding results for
IEEE-CM3. Since the IEEE channel model parameters are
not easy to be matched with the real environment, the results
might be quite different with that of the experimental data.
The results also show that in the discrete channel models, the
estimation of multipath components might be easier than in
the real situations, and therefore we can capture more energy
with less number of single path correlators.

Finally, we applied the proposed channel impulse response
to the narrowband signals. Fig.7 and 8 shows the resulted
histograms of amplitude and phase respectively. It is seen that
the histograms fit to the well known results for the narrowband
Rayleigh channels.

VI. CONCLUSION

We analytically derived an indoor parametric channel model
for UWB communication signal. The proposed model parame-
ters can be set for typical environments. The model also has the
flexibility that the parameters be tuned to a specific building
or location within the building. Analysis showed that the
proposed UWB diffusion channel model performs reasonably
close to the set of experimentally collected data.

TABLE I

SIGNAL QUALITY (Q) AND MEAN -EXCESS-DELAY (MED) STATISTICS

std{Q} E{MED} std{MED}
Measurement 2.6 dB 65.0 nsed 0.178
Diffusion CM 2.75dB 68.1 nsec 0.194

IEEE CM3 1.4dB 54.0 nsec 0.0421
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Fig. 6. Energy-capture for 49 simulated signals from UWB IEEE-CM3.
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Fig. 7. Amplitude histogram of a narrowband signal at 900 MHz using the
proposed channel impulse response, along with Nakagami m=1 distribution.
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