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Abstract— A novel mathematical model of a voltage controlled
oscillator (VCO) based on physical dynamics with noise is
proposed. The effects of noise on oscillators are shown and the
analytical forms of the resulting phase noise are obtained using
the stochastic integrals. It is shown that the VCO has phase noise
contributed from the internal noise of the clock and the clock
drift caused by tuning plus tracking loop noises. Moreover, a
two-pole noise filter is designed to constrain tracking loop noise.
The statistics of upward zero-crossing timing jitter are obtained
as well as the cycle-to-cycle jitter. A timing jitter estimate is
proposed. Analysis of the resulting phase noise along with the
simulation suggest that the timing jitter process has a random
walk behavior with restoring force and the upward zero-crossing
jitter is normal distributed. The cycle-to-cycle jitter statistics are
shown to be Gaussian distributed and independent.

I. I NTRODUCTION

In communication system analysis, where the voltage con-
trolled oscillator (VCO) of the PLL is defined as a simple
integrator, the model does not capture the essence of the
dynamics of oscillation. Here, we propose a simple but novel
mathematical model of a VCO based on physical dynamics
with noise.

Extensive research has been done in the past for oscilla-
tors and standards. This includes the theoretical phase noise
of oscillators based on structure functions [1]. Phase noise
analysis is further investigated in electrical oscillators [2] and
a positive feedback system approach [5] is used on a class
of oscillators. Moreover, the approach to analyzing oscillator
noise based on the stochastic integrals can be found in [4]
where perturbation technique is used for noise analysis. In
addition, in [3] an analysis and simulation of phase noise in
VCO is investigated. However, most of the research are circuit-
based and few address the effect of noise on a VCO.

We first introduce the proposed mathematical model of
VCO with noise in Section II. An analytic solution of the
differential equation without noise contribution with time
varying input then follows in Section III. Analysis of noise
effect on the proposed model with the presence of the internal
noise of the clock is presented and the non-stationary phase
noise process is derived in Section IV. When the tracking loop
plus the controller noise is included for analysis on the model,
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a two-pole filter is introduced to constrain the tracking loop
noise. We derive an analytic solution when both internal noise
and tracking loop noise are present as well as the resulting
phase noise description in Section V. It is then followed by
simulation on the model and noise statistics analysis in Section
VI. One of the main results is that the timing jitter process is
shown to have a random walk behavior with restoring force.
Further results such as cycle-to-cycle jitter and timing jitter
estimate are given. Section VII draws the conclusions.

II. T HEORETICAL MODEL

We propose a theoretical model of a voltage controlled
oscillator based on physical dynamics with noise ( Fig. 1). We
show that a voltage controlled oscillator can be described by
the following stochastic differential equation, which includes
the internal noise,F (t), of the clock and the tracking loop
noise plus the controller noise,n(t).

ÿ− Kvco(v̇ + ṅ(t))
ω0 + Kvco(v + n(t))

ẏ+[ω0+Kvco(v+n(t))]2y = c(t)F (t)

(1)
where we assume thatF (t) is a white Gaussian noise, which
is independent ofn(t). In addition,n(t) ∈ C1([0,∞)), y(t)
is the oscillator generating waveform,v(t) represents the
controlled voltage,c(t) is a scaled factor,Kvco is the VCO
gain, andω0 is the clock rest frequency. The output of the
proposed model after the hard-limiter is thus

Z(t) = sgn(y(t)). (2)

III. MODEL WITHOUT NOISE

First, we assume thatv(t) is known and the noise terms
n(t), F (t) are not present. The initial conditions fory(t), v(t)
are such thaty(0) = 0, v(0) = 0. The stochastic differential
equation then becomes an ordinary differential equation.

ÿ − Kvcov̇

ω0 + Kvcov
ẏ + [ω0 + Kvcov]2y = 0 (3)

Two cases are investigated. The first case is thatv(t) is a
constanta when the steady state of the system is reached, i.e.,
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Fig. 1. Theoretical model of voltage controlled oscillator with thermal noise
and noise from the controlled voltage and tracking loop.

when the error input voltage to the VCO is a constant. The
equation (3) can then be solved to be

y(t) = A sin(ωnewt) (4)

whereωnew = ω0 +Kvcoa, andA is any constant. For the case
whenv(t) is any function other than a constant, equation (3)
becomes a differential equation with time-varying coefficients.
Suppose thatv(t) can be expressed as a ramp function

v(t) =
{

at if t ≤ ts
C if t > ts

(5)

where a, C are constants, andts is the time of steady
state. Here no noise contribution is considered, equation (3)
therefore becomes

ÿ − Kvcoa

ω0 + Kvcoat
ẏ + [ω0 + Kvcoat]2y = 0 (6)

for t ≤ ts. Let y1 = y, y2 = ẏ1, a state space equation can
therefore be written as

Ẏ = A(t)Y (7)

where

Y =
[

y1

y2

]
, A(t) =

[
0 1

−(ω0 + Kvcoat)2 Kvcoa
ω0+Kvcoat

]
.

The above differential equation can be solved in various
ways. By the existence and uniqueness theorems [6], the ele-
ments of matrixA(t) in (7) are continuous on an open interval
0 ≤ t < ts, containing the initial pointt = t0 (e.g., t0 = 0),
then there exists a unique solution,y1 = φ1(t), y2 = φ2(t) of
the system of differential equations (7). This set of solutions
also satisfies the initial conditions,y(0) = 0, v(0) = 0.
Furthermore, if the vector functionsy(1), y(2) are solutions
of the system (7), then by the superposition principle, any
linear combinationc1y

(1) + c2y
(2) is also a solution for any

constantsc1 andc2.
From the state space equation (7), the solution is found

having the following form

Y = c1y(1)(t) + c2y(2)(t). (8)

A(t, v(t),n(t))

+D Y)(
~

tF

Fig. 2. Equivalent model of VCO (Fig. 1) with noise contributions,eF (t),
scaled internal noise, andn(t), controller plus tracking loop noise.

The solution can be found such thaty(1)(t) and y(2)(t) are
linearly independent. They are

y(1)(t) =

(
sin(ω0t +

∫ t

0
Kvcoaτ dτ)

(ω0 + Kvcoat) cos(ω0t +
∫ t

0
Kvcoaτ dτ)

)
,

y(2)(t) =

(
− cos(ω0t +

∫ t

0
Kvcoaτ dτ)

(ω0 + Kvcoat) sin(ω0t +
∫ t

0
Kvcoaτ dτ)

)
.

(9)
It can be shown that they satisfy equation (7). The Wron-

skian ofy(1) andy(2) is greater than zero fort ≥ 0. Therefore,
the solution exists without discontinuity. For simplicity, when
c1 = c2 = 1, the solution that is verified to be periodic in the
limit is

y1(t) = sin(ω0t +
∫ t

0

Kvcov(τ) dτ). (10)

A numerical method is used to demonstrate the behavior of the
solution for equation (7). It has been verified that the numerical
solution agrees with the solution derived. As a result, for any
other controlled voltage waveform with a steady state value in
the limit, the solution becomes periodic in the limit.

IV. MODEL WITH NOISE

In general, the proposed model shown in Fig. 1 can be
represented by the equivalent model shown in Fig. 2. Two
cases are considered in the following two sections. One occurs
when the internal noise,F (t), of the clock is present while
n(t) is excluded from the calculation. A stochastic differential
equation is thus obtained,

Ẏ = A(t)Y + DF̃ (t) , (11)

where

A(t) =
[

0 1
−(ω0 + Kvcov)2 Kvcov̇

ω0+Kvcov

]
, D =

[
0
1

]
,

F̃ (t) = c(t)F (t) .

The equation (11) can be solved usingItô integral. We
considered the case when the controlled voltagev(t) = a,
where a is a constant. Similarly, it can be extended to the
case of time-varyingv(t) as well. The solution to equation
(11) with initial conditions thaty1(0) = 0, y2(0) = âωnew,
whereâ ∈ R is

y1(t) = â sin(ωnewt) +
∫ t

0

c(s) sin(ωnew(t− s))
ωnew

dBs (12)

wherec(s) is a scaling factor for the noise,F (t), andBs is
a 1-dimensional Brownian motion.



1) noise analysis:Without loss of generality, let̂a = 1,
then equation (12) can then be expressed as

y1(t) = sin ωnewt + n1(t) sin ωnewt− n2(t) cos ωnewt (13)

where

n1(t) = K

∫ t

0

cos ωnews dBs , n2(t) = K

∫ t

0

sinωnews dBs ,

and K = c
ωnew

for c(s) = c. Using complex notation we can
write for equation (13)

y1(t) = Re{−j[(1 + n1(t))− jn2(t)] ej(ωnewt)}
= Re{−j

√
(1 + n1(t))2 + n2

2(t) ej(ωnewt+ϕ(t))}

=
√

(1 + n1(t))2 + n2
2(t) sin(ωnewt + ϕ(t)) (14)

with

ϕ(t) = tan−1

(
n2(t)

1 + n1(t)

)
, (15)

where ϕ(t) is the oscillator phase noise contributed by the
scaled internal noise,̃F (t), of the oscillator.

2) Noise processes:The noise processes,n1(t), n2(t),
have the following statistical properties. Both noise processes
are zero mean, Gaussian distributed, and non-stationary. The
correlation functions forn1(t) andn2(t) are found to be

Rn1(t, s) = E[n1(t)n1(s)]

=
c2

2ω2
new

[
min(s, t) +

sin(2ωnewmin(s, t))
2ωnew

]
,

Rn2(t, s) = E[n2(t)n2(s)]

=
c2

2ω2
new

[
min(s, t)− sin(2ωnewmin(s, t))

2ωnew

]
,

and the cross-correlation function is found to be

Rn1,n2(t, s) = E[n1(t)n2(s)]

=
c2

4ω3
new

[1− cos(2ωnewmin(s, t))] .

In addition, ṅ1(t) is found to be wide-sense cyclo-stationary,
similarly, so is ṅ2(t). When the 2× frequency terms in the
correlation functions are filtered,ṅ1(t), ṅ2(t) are strict sense
stationary. Furthermore, the first increment process ofn1(t),
n2(t), are found to be non-stationary.

If we denote the noise effect̃F (t) on the VCO by

N eF (t) =
∫ t

0

c(s)
sin(ωnew(t− s))

ωnew
dBs , (16)

the variance ofN eF (t) is found to be

σ2
N eF =

σ2c2

4ω2
new

[2t− sin(2ωnewt)
ωnew

] (17)

whereσ2 is the noise power ofF (t). This noise generates the
amplitude and phase noise of a VCO before the hard-limiter.

3) phase noise process:The phase noise process (15) in-
duced by the scaled internal noise,F̃ (t), can be approximated
by the following equation

ϕ(t) ≈ n2(t)
1 + n1(t)

≈ n2(t)(1− n1(t)) . (18)

It has been shown that this is a valid approximation by
simulation for low noise level. Furthermore, the phase noise
ϕ(t) has the following statistical properties. The mean is given
by

E[ϕ(t)] ≈ E[n2(t)− n2(t)n1(t)]

=
c2

4ω3
new

[cos(2ωnewt)− 1] (19)

with the correlation function

Rϕ(t, s) = E[ϕ(t)ϕ(s)] ≈ Rn2(t, s) (20)

when the time step∆t → 0 from the derivation by a stochastic
integral.

The phase noise processϕ(t) can also be approximated by
n2(t) for low noise level and it is shown as a valid assumption
by simulation. In this case, the phase noise processϕ(t) has
the same statistical property asn2(t), meaning it is Gaussian
distributed andϕ̇(t) is a wide-sense stationary process.

V. MODEL WITH n(t) PRESENT

The original proposed VCO model (1) has an additional
noise contribution,n(t), from the tracking loop plus the
controller. In addition,n(t) ∈ C2([0,∞)), and a 2 pole filter
is proposed to constrain the tracking loop noise due to the
differentiator as shown in Fig. 1.

We considered a two pole filter whenn(t) is present
(shown in Fig. 3), whereW (t) = Wcontr(t) + Wloop(t) is
white assuming noise processesWcontr(t) and Wloop(t) are
independent.

2 pole filter

)(th

)(tW
dt

d )(tn!
)(tn

Fig. 3. General scheme for the tracking loop plus the controller noise,n(t)

The transfer function of a general 2-pole filter is

H(s)|s=jω =
ω2

n

s2 + 2ζωns + ω2
n

,

whereζ is a damping factor, andωn filter natural frequency.
Assuming that the averaged control output voltage after the
filter v(t) is equal to a constant,a, the voltage controller is
therefore corrupted by the filtered noise,n(t).

The filtered noisen(t) can be expressed as the following
state equations. Letx1(t) = n(t)

ω2
n

andx2(t) = ẋ1(t) under the
condition thatn(t) ∈ C2([0,∞)), the state equation is shown
as

Ẋ = ÃX + D̃W (t) (21)



where

Ã =
[

0 1
−ω2

n −2ζωn

]
, D̃ =

[
0
1

]
.

Analytical solution to the above equation (21) can be solved
using a stochastic integral. It has the following form

X(t) = exp(Ãt)X(0) +
∫ t

0

exp(Ã(t− s))D̃ dBs , (22)

wheredBs is the increment of a one-dimensional Brownian
motion Bt. Assuming zero initial conditions forX(t), the
correlation function of the output noisen(t) can be found
to be

Rn(t, τ) = E[n(t)n(t + τ)] =
∫ t

0

σ2h(l)h(l + τ) dl , (23)

whereh(t) is the impulse response of the filter,σ2 is the input
noise power ofW (t). Whent →∞, the processn(t) becomes
stationary.

The analytical solution to the VCO model (11) wheñF (t),
n(t) are present andv(t) = at ∀ t with initial conditions of
y1(0) = 0, y2(0) = âω0, where â ∈ R is found using the
fundamental matrix solution to be

y1(t) = â sinΦnew(t) +
∫ t

0

c(s) sin b̂(s, t)
ω0 + Kvco(as + n(s))

dBs (24)

where

Φnew(t) = ω0t +
∫ t

0

Kvcoaτdτ +
∫ t

0

Kvcon(τ)dτ ,

b̂(s, t) = ω0(t− s) +
∫ t

s

Kvcoaτdτ +
∫ t

s

Kvcon(τ)dτ.

1) noise analysis:Without loss of generality, let̂a = 1, we
can rewrite equation (24) as

y1(t) = sin Φnew(t) + ñ1(t) sin Φnew(t)− ñ2(t) cosΦnew(t)
(25)

where

ñ1(t) =
∫ t

0

K̃(s, n(s)) cos Φnew(s)dBs ,

ñ2(t) =
∫ t

0

K̃(s, n(s)) sin Φnew(s)dBs , (26)

andK̃(s, n(s)) = c
ω0+Kvco(as+n(s)) for c(s) = c. Again, using

complex notation we can write for equation (25) as

y1(t) =
√

[1 + ñ1(t)]2 + ñ2
2(t) sin(Φnew(t) + ϕ̃(t)) (27)

where

ϕ̃(t) = tan−1

(
ñ2(t)

1 + ñ1(t)

)
. (28)

We have after the hard limiter as shown in Fig. 1,

z(t) = sgn(y1(t)) = sgn[sin(Φnew(t) + ϕ̃(t))]

whereΦnew(t) + ϕ̃(t) is the total oscillator phase with phase
noises caused byn(t) and F̃ (t).

2) noise processes:The noise processes,ñ1(t), ñ2(t), have
the following statistical properties. Both noise processes are
zero mean and non-stationary. The correlation functions for
ñ1(t) and ñ2(t) are found to be

Rñ1(t, s) = E[ñ1(t)ñ1(s)]

=
1
2

{ ∫ min(s,t)

0

E[K̃2(z, n(z)) + cos(2Φnew(z))]dz

}
,

Rñ2(t, s) = E[ñ2(t)ñ2(s)]

=
1
2

{ ∫ min(s,t)

0

E[K̃2(z, n(z))− cos(2Φnew(z))]dz

}
,

and the cross-correlation function is found to be

Rñ1,ñ2(t, s) = E[ñ1(t)ñ2(s)]

=
1
2

∫ min(s,t)

0

E[K̃2(z, n(z)) sin(2Φnew(z))]dz .

3) phase noise processes:For the tracking loop plus con-
troller noisen(t), the phase noise generated is denoted by

ϕn(t) =
∫ t

0

Kvcon(z)dz.

For phase noise generated by internal noise,F̃ (t), of the
VCO, ϕ̃(t) from equation (28) can be approximated by the
following equation for small noise level

ϕ̃(t) ≈ ñ2(t)
1 + ñ1(t)

≈ ñ2(t)(1− ñ1(t)) . (29)

Furthermore, the phase noisẽϕ(t) has the following statistical
properties. The mean is given by

E[ϕ̃(t)]≈E[ñ2(t)− ñ2(t)n1(t)]

=−1
2

∫ min(s,t)

0

E[K̃2(z, n(z)) sin(2Φnew(z))]dz (30)

with the correlation function

Rϕ̃(t, s) = E[ϕ̃(t)ϕ̃(s)] ≈ Rñ2(t, s) (31)

when the time step∆t → 0 from the derivation by a stochastic
integral.

VI. SIMULATION RESULTS AND TIMING JITTER ESTIMATE

We performed a simulation on the proposed mathematical
VCO model and we verified the analytical solutions and noise
statistics as well by simulation. The simulation is done for two
cases, 1) when the internal noise of the clock,F̃ (t), is present,
2) when the tracking plus the controller noise,n(t), is present
as well. It is simulated at a VCO frequency of 2 kHz with
noise powerσ2eF = 1, the scaling factorc(t) = 1, v(t) = 1,
and Kvco = 200π rad/V for 100 seconds. We obtained the
averaged upward zero-crossing jitter statistics shown in Fig.
4, which indicates that the timing jitter has a random walk
behavior with restoring force. Statistics from simulations also
show that the timing jitter has a normal distribution at different
times with a diffusion-like variance.

In addition to the timing jitter, we are interested in the cycle-
to-cycle jitter statistics as shown in Fig. 5. We performed
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Fig. 4. Averaged upper zero-crossing jitter for a VCO with 2 kHz clock
frequency with noise power ofσ2eF = 1
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Fig. 5. Cycle-to-cycle jitter statistics for 100 seconds

the chi-squared goodness of fit test as a normality test for
the test statistics. We obtained ap value of 0.73537 at 95%
confidence interval such that we accept the hypothesis that
it is normal distributed. We then performed the parametric
Pearson correlation test on the test statistics. The results
indicate that forp value < 0.05 at 95% confidence interval,
we found that samples of test statistics are uncorrelated. We
then conclude that they are independent since they are normal
and uncorrelated.

When both noise sources̃F (t) and n(t) are considered in
the simulation, we see that at some time in the future, the
timing jitter will drift away as shown in Fig. 6. It is caused by
the tracking loop plus controller noisen(t). The simulation
was done for 100 seconds atσ2

W = 0.1 with the Butterworth
filter havingζ = 1.25 andωn = 2.

We then performed a timing jitter estimate based on the
Markov property of the phase noise. We denote the total phase
as Φtot(t) = Φnew(t) + ϕ̃(t) = f(ϕn(t), ϕ̃(t)), wheref(·) is
any function. It is a Markov process sinceϕn(t) and ϕ̃(t)
are hidden Markov process. We havey1(t) = g(Φtot(t)) =
sin(Φtot(t)) as a Markov process as well, whereg(·) is any
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Fig. 6. Timing jitters wheneF (t) andn(t) are present

function. We then take samples ofΦtot(t) as Φtot(trise(k)) =
2πk = hk, wherek ∈ Z+. We obtain the normalized upward
zero-crossing time estimate as∆t̂(k) = E[∆t(k)|Φtot(t)|T0 ]
where∆t(k) = trise(k)− k

fnew
andT is the stopping time.

VII. C ONCLUSION

This paper describes a novel mathematical model of a
voltage controlled oscillator based on physical dynamic with
noise. The effects of noise on the proposed model are analyzed
and the resulting phase noise is investigated. Analytical forms
of the VCO with noise are obtained using a stochastic integral.
Moreover, a two-pole filter is introduced for the constraint of
tracking loop noise. Simulation of the model is done to further
verify the analytic solutions and noise statistics. Analysis of
the resulting phase noise along with the simulation suggest
that the timing jitter process has a random walk behavior with
restoring force and the upward zero crossing jitter is normal
distributed. The increment of the timing jitter process, cycle-
to-cycle jitter, is shown to behave as normal distributed and
independent. We can conclude that from the results obtained,
that the tracking loop plus the controller noisen(t) cause the
oscillator phase to drift while the internal noisẽF (t) tends to
cause diffusion on the oscillator phase.
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