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Abstract— A novel mathematical model of a voltage controlled a two-pole filter is introduced to constrain the tracking loop
oscillator (VCO) based on physical dynamics with noise is npise. We derive an analytic solution when both internal noise
proposed. The effects of noise on oscillators are shown and theand tracking loop noise are present as well as the resulting
analytical forms of the resulting phase noise are obtained using h ise d iotion in Section V. It is then foll db
the stochastic integrals. It is shown that the VCO has phase noise p_ ase _nOISE escnpton in e(_: Ion C IS then 9 Qwe _y
contributed from the internal noise of the clock and the clock S|mu|at|0n on the model and noise statistics anaIyS|S in Section
drift caused by tuning plus tracking loop noises. Moreover, a VI. One of the main results is that the timing jitter process is
two-pole noise filter is designed to constrain tracking loop noise. shown to have a random walk behavior with restoring force.
The statistics of upward zero-crossing timing jitter are obtained Further results such as cycle-to-cycle jitter and timing jitter

as well as the cycle-to-cycle jitter. A timing jitter estimate is timat . Section VII d h USi
proposed. Analysis of the resulting phase noise along with the estimate are given. section raws the conclusions.

simulation suggest that the timing jitter process has a random

walk behavior with restoring force and the upward zero-crossing Il. THEORETICAL MODEL
jitter is normal distributed. The cycle-to-cycle jitter statistics are .
shown to be Gaussian distributed and independent. We propose a theoretical model of a voltage controlled
oscillator based on physical dynamics with noise ( Fig. 1). We
[. INTRODUCTION show that a voltage controlled oscillator can be described by

In communication system analysis, where the voltage colfie following stochastic differential equation, which includes
trolled oscillator (VCO) of the PLL is defined as a simpldhe internal noiseF(t), of the clock and the tracking loop
integrator, the model does not capture the essence of fiise plus the controller noisejt).
dynamics of oscillation. Here, we propose a simple but novel Kool + 7(1))
mathematical model of a VCO based on physical dynamigs- ——— Y+ [wo+ Kyeo(v+n(t))]2y = c(t)F (1)
with noise. wo + Kveolv + (1)) B

Extensive research has been done in the past for osCillgiere we assume that(¢) is a white Gaussian noise, which
tors and standards. This includes the theoretical phase ”9§%dependent ofi(t). In addition, n(t) € ([0, 0)), y(t)
of oscillators based on structure functions [1]. Phase Noise ihe oscillator generating waveformy(t) represents the
analysis is further investigated in electrical oscillators [2] andynirolled voltage(t) is a scaled factorKye is the VCO

a positive feedback system approach [5] is used on a clasgn and., is the clock rest frequency. The output of the
of oscillators. Moreover, the approach to analyzing oscillat roposed model after the hard-limiter is thus

noise based on the stochastic integrals can be found in [4]
where perturbation technique is used for noise analysis. In Z(t) = sgny(t)). (2)
addition, in [3] an analysis and simulation of phase noise in
VCO is investigated. However, most of the research are circuit-
based and few address the effect of noise on a VCO.
We first introduce the proposed mathematical model of Ill. MODEL WITHOUT NOISE

VCO with noise in Section Il. An analytic solution of the Fjrst we assume that(t) is known and the noise terms
diﬁe_rential equation withogt noisg contribution_ with timen(t), F(t) are not present. The initial conditions fgft), v(t)
varying input then follows in Section Ill. Analysis of noisegre gych thay(0) = 0, v(0) = 0. The stochastic differential

effect on the proposed model with the presence of the imer%’uation then becomes an ordinary differential equation.
noise of the clock is presented and the non-stationary phase

noise process is derlyed in _Sect|0n IV. When t_he tracking loop _ veol 4+ [wo + Kueot]2y = 0 ©)
plus the controller noise is included for analysis on the model, wo + Kyeov
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Fig. 2. Equivalent model of VCO (Fig. 1) with noise contributiorfégt),
scaled internal noise, and(t), controller plus tracking loop noise.

The solution can be found such that? (t) and y@ (t) are

> linearly independent. They are

Fig. 1. Theoretical model of voltage controlled oscillator with thermal noise (1) sin(wot + fg Kycoat dT)
and noise from the controlled voltage and tracking loop. y (t) = (w + K. at) Cos(w . ft Koar dT) s
0 VCo! 0 o t}vco

t
| | y@ (1) = ( loslint + o Ky 1) ) |
when the error input voltage to the VCO is a constant. The (wo + Kyeoat) sin(wot + fo Kycoar dr)
equation (3) can then be solved to be 9)
) It can be shown that they satisfy equation (7). The Wron-
y(t) = Asin(wnent) ) skian ofy® andy® is greater than zero far> 0. Therefore,

wherewnew = wo + Kveott, and 4 is any constant. For the casethe solution exists without discontinuity. For simplicity, when
whenv(t) is any function other than a constant, equation (3) = ¢2 = 1, the solution that is verified to be periodic in the
becomes a differential equation with time-varying coefficient§mit is

t
Suppose that(t) can be expressed as a ramp function y1(t) = sin(wot +/ Kyeov(T) dT). (10)
. 0
v(t) = { at !f t=ts 5) A numerical method is used to demonstrate the behavior of the
¢ itt>t solution for equation (7). It has been verified that the numerical

where a, C' are constants, and, is the time of steady solution agrees with the solution derived. As a result, for any
state. Here no noise contribution is considered, equation @fer controlled voltage waveform with a steady state value in

therefore becomes the limit, the solution becomes periodic in the limit.
i Kyeon § + [wo + Kueout]?y = 0 ©6) IV. MODEL WITH NOISE o
wo + Kyeoat In general, the proposed model shown in Fig. 1 can be
for t <t,. Lety; =y, y2 = 1, a State space equation canepresented by the equivalent model shown in Fig. 2. Two
therefore be written as cases are considered in the following two sections. One occurs
. when the internal noisef'(t), of the clock is present while
Y =AY @) n(t) is excluded from the calculation. A stochastic differential
where equation is thus obtained,
v [ n } A= { 0 i Kioa ] Y =AY +DF(t), (11)
Y2 —<w0 + Kycoat) wot Kyeoal where

The above differential equation can be solved in various (1) = 0 I D — 0
ways. By the existence and uniqueness theorems [6], the ele= "7~ | —(wo + Kyeov)? % S I O
ments of matrixA (t) in (7) are continuous on an open interval =
0 < t < t,, containing the initial point = ¢, (e.g.,to = 0), F(t) = c(O)F(t) .
then there exists a unique solutian, = ¢4 (t), yo2 = ¢2(t) of The equation (11) can be solved usifitp integral. We
the system of differential equations (7). This set of solutiorensidered the case when the controlled voltage = a,
also satisfies the initial conditiong,(0) = 0, v(0) = 0. wherea is a constant. Similarly, it can be extended to the
Furthermore, if the vector functiong'?), 42 are solutions case of time-varying:(t) as well. The solution to equation
of the system (7), then by the superposition principle, ar{1) with initial conditions thaty;(0) = 0, y2(0) = dwnew
linear combinatiorc; () + ¢,y(?) is also a solution for any wherea € R is
constants:; andcs. . t ¢(s) sin

From the state space equation (7), the solution is foundy1(t) = asin(wnewt) +/
having the following form 0

(wnew(t — 8))

Wnew

dB, (12)

wherec(s) is a scaling factor for the noisé{(t), and B is
Y = ay® () + cy@(1). (8) a 1-dimensional Brownian motion.



1) noise analysis:Without loss of generality, let = 1, 3) phase noise processthe phase noise process (15) in-

then equation (12) can then be expressed as duced by the scaled internal noidé(t), can be approximated
) ) by the following equation
y1(t) = sinwnewt + 11 (t) sinwnewt — na(t) coswnewt  (13) ()
2
Y —— =~ t)(1— t)) . 18
where SO( ) 1 —|—n1(t) 7’L2( )( nl( )) ( )

t t It has been shown that this is a valid approximation by
ni(t) = K/ coswnews dBs , na(t) = K/ sinwnews dBs ,  simulation for low noise level. Furthermore, the phase noise
0 0 ©(t) has the following statistical properties. The mean is given
and K = & for ¢(s) = c. Using complex notation we canby
write for equation (13)

4 Elp(t)] ~ Elna(t) —na(t)na(t)]
ui(t) = Re{—j[(1+m(t)) — jna(t)] e} s ot 1] (19
= Re{—jy/(1+ m(0))2 + n(r) eiermi o)) e
5 ol with the correlation function
- VL1 (0 + n3(0)sin(went +0(0) (14) Rt Bt ~ s 20
. na() when the time ste@\t — 0 from the derivation by a stochastic
o(t) = tan™! <1—i-2m(t)> , (15) integral.

The phase noise procegs$t) can also be approximated by
where (t) is the oscillator phase noise contributed by thaz(t) for low noise level and it is shown as a valid assumption
scaled internal noiset(t), of the oscillator. by simulation. In this case, the phase noise proggs$ has

2) Noise processesThe noise processesy (t), na(t), the same statistical. property as(t), megning it is Gaussian
have the following statistical properties. Both noise process@stributed ands(t) is a wide-sense stationary process.
are zero mean, Gaussian distributed, and non-stationary. The

. : V. MODEL WITH n(t) PRESENT
correlation functions forn, (¢t) andns(¢) are found to be

The original proposed VCO model (1) has an additional

Ro,(t,s) = E[ni(t)n(s)] noise contribution,n(t), from the tracking loop plus the
2 . i (2wnewmin(s, t)) _controller. In addition,n(_t) € 02([0,90)), and a 2 pole filter
= min(s, t) ) is proposed to constrain the tracking loop noise due to the
2
2wnew 2Wnew

differentiator as shown in Fig. 1.
. _ We considered a two pole filter when(t) is present
_ c {min(s,t) B SIH(QCUneWHHH(S,t)):|7 (shown in Fig. 3), wherdV(t) = Weont(t) + Wioop(t) is

R, (t,s)

I
5
3
)
=
3
)
=

2Wiew 2Wnew white assuming noise processB&.on(t) and Wigep(t) are
and the cross-correlation function is found to be independent.
Ruyna(t,5) = Ena(t)na(s)] o
02 . n(t) d .
= F[l — cos(2wnewmin(s, t))] . W(t) —» 2 pole filter e n(t)
new

In addition, n4(¢) is found to be wide-sense cyclo-stationary,. _ _
. L . Fig. 3. General scheme for the tracking loop plus the controller neigs,

similarly, so isnq(t). When the 2x frequency terms in the

correlation functions are filteredh, (), no(t) are strict sense

stationary. Furthermore, the first increment process.dt), The transfer function of a general 2-pole filter is
no(t), are found to be non-stationary. w2
i 7 H s=jw — . ;
If we denote the noise effedt(t) on the VCO by ()ls=joo = S5 Sewns T o
t . _ . . .
Na(t) = C(s)sm(wnew(t 8))dBS 7 (16) Whereg is a damping factor, andy, filter natural frequency.
F 0 Whnew Assuming that the averaged control output voltage after the

filter v(t) is equal to a constant,, the voltage controller is
therefore corrupted by the filtered noiss).
The filtered noisen(t) can be expressed as the following
(17) state equations. Let; () = "w(i) andzy(t) = #1(¢) under the
condition thatn(t) € C?([0, c0)), the state equation is shown
whereo? is the noise power of (t). This noise generates theas

amplitude and phase noise of a VCO before the hard-limiter. X =AX + f)W(t) (21)

the variance ofV(t) is found to be

012\/; B o2c? 2t — sin(?wnewt)]

- 2
F 4wn(-;aw Wnew




where 2) noise processesthe noise processes; (t), n2(t), have
A - { 0 , 1 } D= { 0 } . the following statistical properties. Both noise processes are
—wp  —20wn |’ 1 zero mean and non-stationary. The correlation functions for

Analytical solution to the above equation (21) can be solvétt () @ndnz(t) are found to be

using a stochastic integral. It has the following form R, (t,s) = Elfy(t)ii1(s)]
~ t B B 1 min(s,t)
X(t) = exp(At)X(0) +/ exp(A(t—s))DdBs , (22) = 2{ E[K?(z,n(2)) + cos(2<1>new(z))]dz},
0 0
where dB, is the increment of a one-dimensional Browniar ‘7> (t,s) = E[”Q(t)ﬁi(iz]
motion B,. Assuming zero initial conditions foK(t), the _ L MR  cos(2 d
correlation function of the output noise(t) can be found 21 Jo K7(z,n(2)) = cos(2®nenl))]dz
to be and the cross-correlation function is found to be
t
R, (t,7) = Eln(t)n(t + 7)) = / c*h(Dh(l+7)dl, (23) Raa(t,s) = Ena(t)ne(s)]
0 min(s,t)
1 -, .
whereh(t) is the impulse response of the filtef? is the input D) o E[K*(z,n(2)) sin(2®new(2))]dz -
noise power of¥ (t). Whent — oo, the process(¢) becomes

3) phase noise processebor the tracking loop plus con-

stationary. troller noisen(t), the phase noise generated is denoted by

The analytical solution to the VCO model (11) whétt),
n(t) are present and(t) = at V t with initial conditions of T
y1(0) = 0, y2(0) = awp, wherea € R is found using the Pn(t) = 0 Rveon(z)dz.

fundamental matrix solution to be i ) ~
For phase noise generated by internal noiBé;), of the

b c(s)sinb(s, 1) VCO, &(t) from equation (28 b imated by th
) = 4 sin oot ) dB, (24 , P quation (28) can be approximated by the
y1(t) = asin Pnew )+/0 wo + Kyeolas + n(s)) (24) following equation for small noise level

where . n2(t)
t) ~
PO~ T @
Furthermore, the phase noig¢t) has the following statistical
properties. The mean is given by
E[p(t)] ~ Elna(t) — na(t)na (1))

min(s,t)

1) noise analysisWithout loss of generality, lei = 1, we 1 - )
can rewrite equation (24) as =3 E[K*(z,n(z)) sin(2®new(2))|dz (30)

0
Y1 (t) = sin Pnen(t) + 711 () sin Ppew(t) — fin(t) cos Pnen(t) with the correlation function

t . ~ g (t)(1 —nq(t)) . (29)
@new(t) = W()t + / K\/coaTdT + / chon(T)dT )
0 0

t t
b(s,t) = Wo(t—5)+/ choard7'+/ Kyeon()dr.

(29) Ry(t,5) = Blp(H)@(s)] ~ R (1, 5) (31)
where
‘ when the time steg\¢t — 0 from the derivation by a stochastic
Ain(t) = / & (5,(5)) c0s Drew(s)dBs | integral.
0
. VI. SIMULATION RESULTS AND TIMING JITTER ESTIMATE
na(t) = /o K (s,n(s)) sin Pnew(s)dBs , (26)  we performed a simulation on the proposed mathematical

. VCO model and we verified the analytical solutions and noise
and K (s, n(s)) = Sormmtastagy, 1OF ¢(s) = c. Again, using  statistics as well by simulation. The simulation is done for two
complex notation we can write for equation (25) as cases, 1) when the internal noise of the clakkt), is present,

- — . ~ 2) when the tracking plus the controller noiskt), is present
yi(t) = \/[1 + i (8)]? + 75(t) sin(®Pnenlt) + 4(t))  (27) s well. It is simulated at a VCO frequency of 2 kHz with
noise poweral?E = 1, the scaling factor(t) = 1, v(t) = 1,
0] )8 and Ky = 2007 rad/V for 1_00 _s_,econds._ We obtaine(_j thg
1-5-751(15)) (28) averaged upward zero-crossing jitter statistics shown in Fig.
o o 4, which indicates that the timing jitter has a random walk
We have after the hard limiter as shown in Fig. 1, behavior with restoring force. Statistics from simulations also
z(t) = sgn(yi(t)) = sgn[sin(Pnew(t) + ¢(t))] show that the timing jitter has a normal distribution at different
times with a diffusion-like variance.
where ®nen(t) 4 @(t) is the total oscillator phase with phase In addition to the timing jitter, we are interested in the cycle-
noises caused by(t) and F'(¢). to-cycle jitter statistics as shown in Fig. 5. We performed

where

@(t) = tan™! (
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Fig. 4. Averageq upper zeroZ—crossing jitter for a VCO with 2 kHz clockynction. We then take samples @iot(t) as (I)tot(trise(k)) _
frequency with noise power af7 = 1 2nk = hy, wherek € Z*. We obtain the normalized upward
zero-crossing time estimate ast(k) = E[At(k)|Por(t)|Z]
where At(k) = tise(k) — 7 and T is the stopping time.

VIl. CONCLUSION

This paper describes a novel mathematical model of a
voltage controlled oscillator based on physical dynamic with
noise. The effects of noise on the proposed model are analyzed
and the resulting phase noise is investigated. Analytical forms
of the VCO with noise are obtained using a stochastic integral.
Moreover, a two-pole filter is introduced for the constraint of
tracking loop noise. Simulation of the model is done to further
verify the analytic solutions and noise statistics. Analysis of

| oA | the resulting phase noise along with the simulation suggest

tme (sec) that the timing jitter process has a random walk behavior with
Fig. 5. Cycle-to-cycle jitter statistics for 100 seconds restoring force and the upward zero crossing jitter is normal
distributed. The increment of the timing jitter process, cycle-
to-cycle jitter, is shown to behave as normal distributed and

independent. We can conclude that from the results obtained,

the chi-squared goodness of fit test as a normality te%t ¥t the tracking loop plus the controller nois¢) cause the
the test statistics. We obtainedpavalue of 0.73537 at 95% qgjjjator phase to drift while the internal noig&t) tends to

.co'nfldence |nt'erv'al such that we accept the hypothesis ”_&%hse diffusion on the oscillator phase.
it is normal distributed. We then performed the parametric
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