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Abstract— Let C be an [n, k, d] binary linear code with rate
R = k/n and dual C⊥. In this work, it is shown that C can be
represented by a 4-cycle-free Tanner graph only if:

pd⊥ ≤

$r
np(p− 1) +

n2

4
+

n

2

%

where p = n − k and d⊥ is the minimum distance of C⊥. By
applying this result, it is shown that 4-cycle-free Tanner graphs
do not exist for many classical binary linear block codes.

I. I NTRODUCTION

The study of graphical models of codes is of great current
interest. This work considers a specific, well-known, family of
graphical models of binary linear block codes: Tanner graphs
[1]. Briefly, let C be an[n, k, d] binary linear block code with
n × n − k parity check matrixH = [hij ]. Associated with
H is a bipartite graph,GH(U ∪ W, E), with disjoint vertex
classesU = {ui}n

i=1 andW = {wj}n−k
j=1 corresponding to the

columns and rows ofH, respectively. An edge connectsui

and wj in GH if and only if hij = 1. Note that since there
exist multiple parity check matrices forC, there are, likewise,
multiple Tanner graphs which representC.

Iterative decoding on Tanner graphs has been widely stud-
ied, particularly in the context of low-density parity-check
(LDPC) codes. It is now widely accepted that there is a rela-
tionship between the graph theoretic properties of a graphical
code model and the performance of the iterative decoding
algorithm implied by that model. Specifically, a number of
authors have stressed the importance of designing LDPC codes
with Tanner graphs that have no cycles of length four [2],
[3], [4]. Furthermore, a number of authors have noted that
Tanner graphs for classical linear block codes tend to contain
4-cycles and have thus investigated techniques for obtaining 4-
cycle-free graphical models based on generalized parity check
matrices [5], [6].

Inspired by the work of Etzion, Trachtenberg and Vardy con-
cerning codes with cycle-free Tanner graphs [7], the present
work addresses the question: which codes have 4-cycle-free
Tanner graphs? The remainder of this work is organized as
follows. The main result on the existence of 4-cycle-free
Tanner graphs is proved in Section III. The main result follows
directly from results in graph theory which are reviewed in
Section II. In Section IV, the tightness of the main result is
considered. The main result is applied to a number of classical

linear block code families in Section V. Specifically, it is
shown that the following binary codes do not have 4-cycle-free
Tanner graphs:

1) The [23, 12, 7] binary Golay and[24, 12, 8] extended
binary Golay codes.

2) Those[n = 2m, k, d = 2m−r] Reed-Muller (RM) codes
with rate R ≥ 1/2 and minimum distanced > 2 for
m = 3, . . . , 9.

3) Those [n = 2m − 1, k, d] primitive Bose-Chaudhuri-
Hocquenghem (BCH) codes with rateR ≥ 1/2 for
m = 3, . . . , 8.

4) The binary image of those[n = 2m−1, k, d = n−k+1]
Reed-Solomon (RS) codes with rateR ≥ 1/2 for m ≥
3.

Concluding remarks are given in Section VI.

II. PRELIMINARIES FROM GRAPH THEORY

In the following, G(U ∪ W, E) denotes a bipartite graph
with vertex classesU = {ui}nu

i=1 andW = {wj}nw

j=1 and with
edge setE ⊆ U ×W1. Thesizeof G is ne = |E|. The degree
of a vertexv ∈ U ∪W is denotedd(v).

Propositions 1 and 2 are well-known; the proofs presented
below are due to Neuwirth [8] and are given for completeness.

Proposition 1: Let G(U ∪W, E) be a 4-cycle-free bipartite
graph. Then:

nw∑
j=1

(
d (wj)

2

)
≤

(
nu

2

)
(1)

where
(
x
y

)
is the binomial coefficient.

Proof: Define G̃(U , Ẽ) as the graph with vertex setU
and edge set:

Ẽ =
{
{x, z} ∈ U × U

∣∣∣ ∃ y ∈ W so that

{x, y} ∈ E and {z, y} ∈ E
}

.
(2)

BecauseG is 4-cycle-free, there is at most oney ∈ W such
that{x, y} ∈ E and{z, y} ∈ E for each{x, z} ∈ U×U . Thus,
G̃ contains no multiple edges and|Ẽ | ≤

(
nu

2

)
. The proposition

then follows by noting that there is a bijection between edges

1The results presented hold for general bipartite graphs; however, we
consider the case wherenw ≥ nu. In the context of Tanner graphs,W
thus corresponds to the variable node set andU to the check node set.



in G̃ and pairs of vertices incident on verticeswj ∈ W in G.

Proposition 2: Let G(U ∪W, E) be a 4-cycle-free bipartite
graph such thatnw >

(
nu

2

)
. Then there are at leastnw −

(
nu

2

)
vertices inW with degree 0 or 1.

Proof: LetW2 = {wj ∈ W |d(wj) ≥ 2}. By Proposition
1, since

(
0
2

)
=

(
1
2

)
= 0 and

(
d(wj)

2

)
≥ 1 ∀ wj ∈ W2:

|W2| ≤
nw∑
j=1

(
d(wj)

2

)
≤

(
nu

2

)
. (3)

Becausenw >
(
nu

2

)
, there must be at leastnw−

(
nu

2

)
vertices

in W \W2.
Theorem 3 is well-known as Reiman’s inequality [9]; the

proof presented here is adopted from Bollobas [10].
Theorem 3:Let G(U ∪ W, E) be a 4-cycle-free bipartite

graph withnu ≤ nw. Then the size ofG satifies:

ne ≤
√

nwnu(nu − 1) +
n2

w

4
+

nw

2
(4)

Proof: Let z =
√

nwnu(nu − 1) + n2
w

4 + nw

2 and note
that:

z(z − nw)
2nw

=
nu(nu − 1)

2
=

(
nu

2

)
(5)

Suppose thatG has size strictly greater thanz so that:
nw∑
j=1

d(wj) = ne > z. (6)

Proposition 1 implies the following series of inequalities:(
nu

2

)
≥

nw∑
j=1

(
d(wj)

2

)
(7)

=
1
2

nw∑
j=1

(d(wj))
2 − 1

2

nw∑
j=1

d(wj) (8)

≥ 1
2nw

n2
e −

ne

2
(9)

>
z(z − nw)

2nw
(10)

=
(

nu

2

)
(11)

Note that (9) follows from (8) via the Cauchy-Schwarz in-
equality. Since

(
nu

2

)
≯

(
nu

2

)
, ne ≯ z proving the Theorem.

Neuwirth noted that equality holds in Theorem 3 if and
only if G is the incidence graph of a Steiner system (see, for
example, [11]),S(2, k;nu), on nu points with block degreek
satisfyingnwk(k − 1) = nu(nu − 1) [8].

III. PROOF OF THEMAIN RESULT

Theorem 4:Let C be an[n, k, d] binary linear block code
with dual C⊥. Then C can be represented by a 4-cycle-free
Tanner graph corresponding to only if:

pd⊥ ≤

⌊√
np(p− 1) +

n2

4
+

n

2

⌋
(12)

wherep = n− k andd⊥ is the minimum distance ofC⊥.
Proof: Let H be ap× n parity check matrix forC and

let wt(H) denote the number of1’s in H. The Tanner graph
corresponding toH, GH , is bipartite withnw = n, nu = p
and ne = wt(H). By Theorem 3, in order forGH to be 4-
cycle-free its size must satisfy:

wt(H) ≤

⌊√
np(p− 1) +

n2

4
+

n

2

⌋
. (13)

SinceH generatesC⊥, any row ofH is a nonzero codeword in
C⊥ and contains at leastd⊥ 1’s. Thus,anyparity check matrix
for H must satisfywt(H) ≥ pd⊥ completing the proof.
Theorem 4 immediately implies the following corollary which
is given without proof.

Corollary 5: Let C be an [n, k, d] binary linear block for
which a 4-cycle-free Tanner graph does not exist. Then the
number of 4-cycles in any Tanner graph representingC is
lower-bounded by:

pd⊥ −

⌊√
np(p− 1) +

n2

4
+

n

2

⌋
(14)

wherep = n− k andd⊥ is the minimum distance ofC⊥.
As an example, consider the[7, 4, 3] Hamming code,C[7,4,3],

with d⊥ = 4. Any parity check matrix forC[7,4,3] contains the
7 nonzero binary vectors of length 3 and is thus isomorphic
(under permutation of columns) to [12]:

H[7,4,3] =

[0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

]
(15)

The Tanner graph corresponding toH[7,4,3] clearly contains 3
4-cycles. Indeed, for this code:

pd⊥ = 12 (16)

while: ⌊√
np(p− 1) +

n2

4
+

n

2

⌋
= 10 (17)

precluding the existence of a 4-cycle-free Tanner graph while
requiring that any Tanner graph forH[7,4,3] contains at least
2 4-cycles.

IV. REMARKS ON THE MAIN RESULT

Two questions arise naturally from the bound provided by
Theorem 4:

1) How tight is the bound?
2) Do there exist codes with 4-cycle-free Tanner graphs

which meet the bound with equality?
Hoory noted that Reiman’s inequality is the tightest known
bound on the size of a 4-cycle-free bipartite graph [13].
However, Theorem 3 provides only anecessarycondition for
the existence of a 4-cycle-free bipartite graph - it is not clear
that a 4-cycle-free Tanner graph can be found for any code
that satisfies Theorem 4.

Neuwirth noted that graphs which meet the bound of
Theorem 3 with equality are necessarily the incidence graphs



of certain Steiner systems [8]. A number of authors have
used Steiner systems as a tool for designing algebraically
constructed LDPC codes (see, for example, [14]). A search
for codes which meet the bound of Theorem 4 thus begins
by examining codes with duals generated by the incidence
matrices of Steiner systems.

Let CS(2,3;9) be the code with parity check matrix:

HS(2,3;9) =



1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0


(18)

Equation (18) defines the incidence matrix of the Steiner sys-
temS(2, 3; 9) and the Tanner graph corresponding toCS(2,3;9)

meets the bound of Theorem 3 with equality. However, the
minimum distance of the code generated byHS(2,3;9) is 2,
which is not equal to the minimum row weight ofHS(2,3;9).
Therefore,CS(2,3;9) does not meet the bound of Theorem 4
with equality. In general, the codes generated by the incidence
matrices of Steiner systems do not have minimum distance
equal to the minimum row weight of those matrices and an
alternate approach is required to meet the bound of Theorem
4 with equality.

Let C′S(2,2;v) be the code with parity check matrix:

H ′
S(2,2;v) =

[
I HS(2,2;v)

]
(19)

whereHS(2,2;v) is the
(
v
2

)
×v incidence matrix of theS(2, 2; v)

Steiner system andI is thev× v identity matrix. It is readily
verified that C′S(2,2;v) has lengthn = v +

(
v
2

)
, dimension

k =
(
v
2

)
and minimum dual distanced⊥ = v. Table I

summarizes the application of Theorem 4 to this family of
codes for2 ≤ v ≤ 10. Note theC′S(2,2;2) and C′S(2,2;3) meet
Theorem 4 with equality while the remaining codesnearly
meet the bound.C′S(2,2;2) is the length3 repetition code with
parity check matrix:

H ′
S(2,2;2) =

[
1 0 1
0 1 1

]
(20)

while C′S(2,2;3) is a [6, 3, 3] code with parity check matrix:

H ′
S(2,2;3) =

[1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

]
(21)

V. A PPLICATION OF THEMAIN RESULT

A. The Golay Code

The duals of both the[23, 12, 7] binary Golay code and the
[24, 12, 8] extended binary Golay code have minimum distance
8 [12]. Neither code satisfies Theorem 4 and thus any Tanner
graph for either code must contain 4-cycles.

v pd⊥
—q

np(p− 1) + n2

4
+ n

2

�
2 4 4
3 9 9
4 16 17
5 25 26
6 36 37
7 49 51
8 64 66
9 81 83
10 100 103

TABLE I

APPLICATION OFTHEOREM 4 TO THE C′
S(2,2;v)

FAMILY OF CODES FOR

2 ≤ v ≤ 10.

Code pd⊥
—q

np(p− 1) + n2

4
+ n

2

�
[8, 4, 4] 16 14

[16, 11, 4] 40 27
[32, 26, 4] 96 50
[32, 16, 8] 128 105
[64, 57, 4] 224 92
[64, 42, 8] 352 206

[128, 120, 4] 512 170
[128, 99, 8] 928 392
[128, 64, 16] 1024 785
[256, 219, 8] 2368 725
[256, 136, 16] 5952 1613
[256, 93, 32] 5216 2731
[512, 502, 4] 2048 562
[512, 466, 8] 5888 1316
[512, 382, 16] 8320 3197
[512, 256, 32] 8192 6042

TABLE II

APPLICATION OFTHEOREM 4 TO REED-MULLER CODES.

B. Reed-Muller Codes

An [n = 2m, k, d = 2m−r] RM code has dimensionk =∑r
i=0

(
m
i

)
and its dual has minimum distance2r+1 [12]. Table

II summarizes the application of Theorem 4 to those Reed-
Muller codes with rateR ≥ 1/2 and minimum distanced > 2
for m = 3, . . . , 9. Note that the existence of a 4-cycle-free
Tanner graph is precluded by Theorem 4 for all of these codes.

C. Primitive BCH Codes

Table III summarizes the application of Theorem 4 to those
[n = 2m−1, k, d] primitve BCH codes with rateR ≥ 1/2 for
m = 3, . . . , 8 [12]. Determiningd⊥ is difficult when m ≥ 5
and lower bounds have been used. The lower bounds labeled
?, ′ and † correspond to Sikel’nikov’s bound [12], Theorem
5 of [15] and Schaub’s bound [16] (as reported in [15]),
respectively. Note that the existence of 4-cycle-free Tanner
graphs is precluded by Theorem 4 for all of the codes in Table
III.

D. Reed-Solomon Codes

Corollary 6 follows from Theorem 4.



Code d⊥ pd⊥
—q

np(p− 1) + n2

4
+ n

2

�
[7, 4, 3] 4 12 10

[15, 11, 3] 8 32 22
[31, 26, 3] ≥ 16? ≥ 80 44
[31, 21, 5] ≥ 8? ≥ 70 80
[31, 16, 7] ≥ 8? ≥ 120 97
[63, 57, 3] ≥ 32? ≥ 192 85
[63, 51, 5] ≥ 16? ≥ 192 127
[63, 45, 7] ≥ 16? ≥ 288 173
[63, 39, 9] ≥ 12′ ≥ 288 220
[63, 36, 11] ≥ 12′ ≥ 324 244
[127, 120, 3] ≥ 64† ≥ 448 160
[127, 113, 5] ≥ 56† ≥ 784 228
[127, 106, 7] ≥ 48† ≥ 1008 303
[127, 99, 9] ≥ 40† ≥ 1120 379
[127, 92, 11] ≥ 32† ≥ 1120 457
[127, 85, 13] ≥ 30† ≥ 1260 535
[127, 78, 15] ≥ 28† ≥ 1372 613
[127, 71, 19] ≥ 22† ≥ 1232 692
[127, 64, 21] ≥ 20† ≥ 1260 770
[255, 247, 3] ≥ 128† ≥ 1024 302
[255, 239, 5] ≥ 112† ≥ 1792 405
[255, 231, 7] ≥ 96† ≥ 2304 523
[255, 223, 9] ≥ 88† ≥ 2816 646
[255, 215, 11] ≥ 64† ≥ 2560 770
[255, 207, 13] ≥ 64† ≥ 3072 896
[255, 199, 15] ≥ 60† ≥ 3360 1022
[255, 191, 17] ≥ 42† ≥ 2688 1149
[255, 187, 19] ≥ 42† ≥ 2856 1212
[255, 179, 21] ≥ 40† ≥ 3040 1339
[255, 171, 23] ≥ 32† ≥ 2688 1466
[255, 163, 25] ≥ 32† ≥ 2944 1594
[255, 155, 27] ≥ 32† ≥ 3200 1721
[255, 147, 29] ≥ 28† ≥ 3024 1848
[255, 139, 31] ≥ 26† ≥ 3016 1976
[255, 131, 37] ≥ 22† ≥ 2727 2103

TABLE III

APPLICATION OFTHEOREM 4 TO PRIMITIVE BCH CODES.

Corollary 6: Let C be the binary image of a rateR ≥ 1/2,
[n = 2m − 1, k, d = n − k + 1] RS code form ≥ 4. Then
there exists no 4-cycle-free Tanner graph forC.

Proof: C is a [mn, mk, d′ ≥ d] binary code while its
dual is the binary image of an[n, n− k, k + 1] RS code and
thusd⊥ ≥ k + 1. In order for a 4-cycle-free Tanner graph for
C to exist, it is required that:

d⊥ ≤

√
mn

(
1− 1

m(n− k)

)
+

n2

4(n− k)2
+

n

2(n− k)

≤ 1 +
√

mn + 1
(22)

since n−k
n = 1−R ≤ 1/2 for codes with rateR ≥ 1/2.

Sinced⊥ ≥ k + 1, no 4-cycle-free Tanner graph can exist
if k >

√
mn + 1. It can be readily shown that ifm ≥ 4 and

R ≥ 1/2 thenk >
√

mn + 1 completing the proof.
Corollary 6 does not extend to the binary image of length7

Reed-Solomon codes. Specifically, evaluating Theorem 4 for
the binary image of the[7, 5, 3] RS code,C[7,5,3], with d⊥ ≥ 6

yields m(n− k)d⊥ ≥ 36 and:⌊√
m2n(n− k)(m(n− k)− 1) +

m2n2

4
+

mn

2

⌋
= 37.

(23)
The following alternate argument establishes that any Tanner
graph representing the binary image of theC[7,5,3] must indeed
contain a 4-cycle.

Suppose a 4-cycle-free Tanner graph does exist forC[7,5,3].
The parity check matrix corresponding to this graph,H[21,15,3],
has21 columns and6 rows. By Proposition 2,H[21,15,3] must
contain at least6 weight 1 columns. Since the minimum
distance of the dual ofC[7,5,3] is at least 3,H[21,15,3] must
contain exactly6 weight 1 columns. Now consider the bipartite
graph corresponding to the remaining 15 columns. Since the
minimum distance of the dual ofC[7,5,3] is at least 6, this graph
must contain at least 30 edges. On the other hand, Theorem 3
states that this graph contains at most 30 edges with equality
if only if the graph corresponds to the incidence matrix of
the Steiner systemS(2, 2; 6). We have thus shown that if a
4-cycle-Tanner graph exists forC[7,5,3], thenC[7,5,3] must be
isomorphic toC′S(2,2;6) with parity check matrix:

H ′
S(2,2;6) =


1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1


MacWilliams and Sloane show that the code with parity

check matrixH ′
S(2,2;6) can be interpreted as the binary image

of a [7, 5, 3] maximum distance separable (MDS) code over
GF (8) which isnot a RS code ([12], Ch. 10.5). Thus,C′S(2,2;6)

is not isomorphic to a binary image of the[7, 5, 3] RS code
and no 4-cycle-free Tanner graph exists forC[7,5,3].

VI. CONCLUSION

This work provides a necessary condition for the existence
a 4-cycle-free Tanner graph corresponding to a given binary
linear block code. It was thus shown that many well-known
classical codes can not be represented by 4-cycle-free Tanner
graphs. This result, however, does not preclude the existence
of other simple 4-cycle-free graphical models for these codes.
For example, there exist 4-cycle-free graphical models forall
binary linear block codes corresponding to generalized parity
check matrices containing only binary hidden variables [6].

It is now known which codes cannot support cycle-free and
4-cycle-free Tanner graphs. In [13], Hoory provided an upper
bound on the size of a bipartite graph with given girthg which
reduces to that of Theorem 3 wheng = 6. Hoory’s bound thus
provides a recipe for the development of a necessary condition
for the existence of a(g − 2)-cycle-free Tanner graph for a
given code.
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