Which Codes Have 4-Cycle-Free Tanner Graphs?
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Abstract—Let C be an [n, k,d] binary linear code with rate linear block code families in Section V. Specifically, it is
R = k/n and dual C*. In this work, it is shown that C can be shown that the following binary codes do not have 4-cycle-free

represented by a 4-cycle-free Tanner graph only if: Tanner graphs:
N nz n 1) The [23,12,7] binary Golay and[24,12,8] extended
pd” < {\/ np(p— 1)+ 7 + gJ binary Golay codes.
2) Those[n = 2™, k,d = 2™~"] Reed-Muller (RM) codes
where p = n — k and d* is the minimum distance of C*. By with rate R > 1/2 and minimum distancel > 2 for
applying this result, it is shown that 4-cycle-free Tanner graphs m=3,...,9.

do not exist for many classical binary linear block codes. 3) Those[n = 2™ — 1,k,d] primitive Bose-Chaudhuri-

|. INTRODUCTION Hocq;engh;m (BCH) codes with rat® > 1/2 for
m=3,...,8.
The study of graphical models of codes is of great current4) The pinary image of those, = 27 — 1, k,d = n—k+1]

interest. This work considers a specific, well-known, family of Reed-Solomon (RS) codes with rae> 1/2 for m >
graphical models of binary linear block codes: Tanner graphs 5 o o

[1]. Briefly, let C be an[n, k, d] binary linear block code with

n x n — k parity check matrixd = [h;;]. Associated with Concluding remarks are given in Section V1.

H is a bipartite graphG g (U U W’QJ with disjoir?t vertex Il. PRELIMINARIES FROM GRAPH THEORY
classeg( = {u;};_; andW = {w;} " corresponding to the . o
columns and rows off, respectively. An edge connects In the following, G(U U W, ) denotes a bipartite graph

andw; in Gy if and only if h;; = 1. Note that since there With vertex classed/ = {u;},, andW = {w;};*, and with
exist multiple parity check matrices fat, there are, likewise, €dge se€ C U x W*. Thesizeof G is n, = |€]. The degree
multiple Tanner graphs which represeht of a vertexv € U U is denotedd(v).

Ilterative decoding on Tanner graphs has been widely stud-Propositions 1 and 2 are well-known; the proofs presented
ied, particularly in the context of low-density parity-checto€low are due to Neuwirth [8] and are given for completeness.
(LDPC) codes. It is now widely accepted that there is a rela- Proposition 1: Let G(U/ UW, £) be a 4-cycle-free bipartite
tionship between the graph theoretic properties of a graphi€igph. Then:
code model and the performance of the iterative decoding e (d (wj)> < (nu>
algorithm implied by that model. Specifically, a number of 2 - \2
authors have stressed the importance of designing LDPC codes
with Tanner graphs that have no cycles of length four [2vhere (*) is the binomial coefficient.

[3], [4]. Furthermore, a number of authors have noted thgt Proof: Define é(u,é*) as the graph with vertex sét
Tanner graphs for classical linear block codes tend to contgjp edge set:

4-cycles and have thus investigated techniques for obtaining 4-

cycle-free graphical models based on generalized parity checks — { {z,2} €U xU| Ty €W so that

matrices [5], [6].

Inspired by the work of Etzion, Trachtenberg and Vardy con- {z,y} € & and {z,y} € 5}~
cerning codes with cycle-free Tanner graphs [7], the present . .
work addresses the question: which codes have 4-cycle-ffacause’ is 4-cycle-free, there is at most onec )V such
Tanner graphs? The remainder of this work is organized that{z,y} € £ and{z,y} € & for ‘iaCh{va} € UxU. Thus,
follows. The main result on the existence of 4-cycle-fre Contains no multiple edges ang| < (7). The proposition
Tanner graphs is proved in Section IIl. The main result follow§€n follows by noting that there is a bijection between edges

directly from results in graph theory which are reviewed in | o

Secti Il In Section IV. the tightness of the main result i The results presented hold for general bipartite graphs; however, we
ec |_on . _ » BS g ; _§on5|der the case where,, > n,. In the context of Tanner graph¥)

considered. The main result is applied to a number of classigals corresponds to the variable node set &@ni the check node set.

1)

j=1

)



in G and pairs of vertices incident on vertices € W in G.
Ul

wherep = n — k andd* is the minimum distance af~.
Proof: Let H be ap x n parity check matrix fotC and

Proposition 2: Let G({UW, £) be a 4-cycle-free bipartite let wt(H) denote the number df's in H. The Tanner graph

graph such that,, > (";). Then there are at least, — (")
vertices inWW with degree O or 1.

Proof: Let W, = {w; € W |d(w;) > 2}. By Proposition
1, since(5) = (3) =0 and (““)) > 1V w; € Wt

o d(wj) Ty,
w3 (5)) < (7))
j=1
Becausen,, > ("), there must be at least, — (") vertices
in W \ Ws. Ol

3

corresponding taH, Gy, is bipartite withn,, = n, n, = p
andn. = wt(H). By Theorem 3, in order fof7y to be 4-
cycle-free its size must satisfy:

wt(H) < \‘\/np(p—l)—FT—FZJ .

SinceH generate€, any row of H is a nonzero codeword in
C*+ and contains at leagt- 1’s. Thus,any parity check matrix
for H must satisfywt(H) > pd+ completing the proof. [

(13)

Theorem 3 is well-known as Reiman’s inequality [9]; thdheorem 4 immediately implies the following corollary which

proof presented here is adopted from Bollobas [10].

Theorem 3:Let G(U U W, E) be a 4-cycle-free bipartite

graph withn, < n,,. Then the size of7 satifies:

2

Nne < \/nwnu(nu—l)—kl“’—&—nw

; )

Proof: Let z = \/nwnu(nu -1+ % + %= and note
that: ( ) ( 0
Z\Z — Nw Ny My, — on
2N 2 2
Suppose thafi has size strictly greater thanso that:
Ny
(6)

Zd(wj) =ne > 2.
j=1

Proposition 1 implies the following series of inequalities:

. Naw d )
(”2 ) > 7221 ( (;”J)) )
1 2 1
=52 (dwy))” =3 > d(w)) 8)
j=1 j=1
> ont ©)
2(z — ny)
> =5 (10)
Ny,
-z}

Note that (9) follows from (8) via the Cauchy-Schwarz in-
equality. Since(") # ("), n. # z proving the Theorem.
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is given without proof.

Corollary 5: Let C be an|n, k,d] binary linear block for
which a 4-cycle-free Tanner graph does not exist. Then the
number of 4-cycles in any Tanner graph representings
lower-bounded by:

pdt — b/np(p—l)—i-rf-l-ZJ

wherep = n — k andd* is the minimum distance af~.
As an example, consider tliig, 4, 3] Hamming code([7 4 3],
with d*+ = 4. Any parity check matrix foCj7 4,3 contains the
7 nonzero binary vectors of length 3 and is thus isomorphic
(under permutation of columns) to [12]:

0001111
Hiz43=0110011
1010101
The Tanner graph corresponding #9; 4 3; clearly contains 3
4-cycles. Indeed, for this code:

(14)

(15)

pdt =12 (16)
while:
2
{1/71}7(}7 1)+ % + ZJ — 10 17)

precluding the existence of a 4-cycle-free Tanner graph while
requiring that any Tanner graph fdf}; 4 3 contains at least
2 4-cycles.

IV. REMARKS ON THE MAIN RESULT

Two questions arise naturally from the bound provided by
Theorem 4:

Neuwirth noted that equality holds in Theorem 3 if and 1) How tight is the bound?
only if G is the incidence graph of a Steiner system (see, for2) Do there exist codes with 4-cycle-free Tanner graphs

example, [11]),5(2, k; n,,), onn, points with block degreé
satisfyingn,k(k — 1) = n,(n, — 1) [8].

[1l. PROOF OF THEMAIN RESULT

which meet the bound with equality?

Hoory noted that Reiman’s inequality is the tightest known
bound on the size of a 4-cycle-free bipartite graph [13].

Theorem 4:Let C be an[n, k,d] binary linear block code However, Theorem 3 provides onlyrecessaryondition for
with dual C*+. ThenC can be represented by a 4-cycle-freéhe existence of a 4-cycle-free bipartite graph - it is not clear

Tanner graph corresponding to only if:

2
IR _ nm,r
pd { np(p—1) + 1 +2J

12)

that a 4-cycle-free Tanner graph can be found for any code
that satisfies Theorem 4.

Neuwirth noted that graphs which meet the bound of
Theorem 3 with equality are necessarily the incidence graphs



of certain Steiner systems [8]. A number of authors have v | pdt ‘,/np(p—1)+ 22y

used Steiner systems as a tool for designing algebraically > 7 7

constructed LDPC codes (see, for example, [14]). A search 3 9 9

for codes which meet the bound of Theorem 4 thus begins 4| 16 17

by examining codes with duals generated by the incidence 2 ég gg

matrices of Steiner systems. 7 | 49 51

Let Cg(2,3;0) be the code with parity check matrix: g g‘l‘ gg

(1001001001007 10| 100 103
100010010010 TABLE |
100001001001 APPLICATION OF THEOREM4 TO THECfS<2’2;v) FAMILY OF CODES FOR
010100001010 2< v <10,

Hg(a.3:9)= | 010010100001 (18)
010001010100
001100010001

001010001100 Code pd ’ wpp— 1)+ 224 m
001001100010
- - [8,4,4] 16 14
Equation (18) defines the incidence matrix of the Steiner sys- 16,11,4 40 27
tem S(2,3;9) and the Tanner graph corresponding’tQs 3.0 5220, f’;’s 15(?5
meets the bound of Theorem 3 with equality. However, the 64.57.4 524 92
minimum distance of the code generated Ky, 3.9 is 2, 64,42, 8 352 206
which is not equal to the minimum row weight éfs s .9). [128,120,4] | 512 170
"% [128,99,8] | 928 392
Therefore,_Cs(Q,g,;g) does not meet the bound of The_ore_m 4 [128,64,16) | 1024 785
with equality. In general, the codes generated by the incidence [256,219, 8] | 2368 725
matrices of Steiner systems do not have minimum distance 256,136, 16] | 5952 1613
| to the minimum row weight of those matrices and an 256,93, 32] | 5216 231
equa , - welg [512,502,4] | 2048 562
alternate approach is required to meet the bound of Theorem [512,466,8] | 5888 1316
4 with equa"ty_ (512,382,16] | 8320 3197
Let Cy(, ,.,) D€ the code with parity check matrix: [512,256,52] | 8192 0042
TABLE I
H,/S'(Q_Q'U) = [[ HS(2 2”})] (19) APPLICATION OF THEOREM 4 TO REED-MULLER CODES

whereHg s 2.,) is the(5) xv incidence matrix of the(2, 2; v)

Steiner system andl is thev x v identity matrix. It is readily

\I;erlﬂe(zi;hatcdg(lm) has (Ijengltr;n = vdir (5), dln;eglslo? B. Reed-Muller Codes
= (3) and minimum dual distanc = v. Table

2 _ L — -r i i —
summarizes the application of Theorem 4 to this family ',A.‘n [Z_ mek’d = 2" ].RM codg has dllmensmh o

codes for2 < v < 10. Note theCl ,.,) andCl, 2{3 meet  2i=0 (") and its dual has minimum distange™ [12]. Table

Theorem 4 with equality while the remaining codesarly :\I/lslllJmmaélzes _ttr;]e atgglﬁaltlo; ogTh_e(_)rem ?j.t(t) thoése geed-
meet the boundCy,, , ,) is the length3 repetition code with uller codes with ratef? > 1/2 and minimum distance >

; o for m = 3,...,9. Note that the existence of a 4-cycle-free
ty check matrix: e
parity check matrix Tanner graph is precluded by Theorem 4 for all of these codes.
101
Hé(2,2;2) = [0 1 1] (20)

while C’S(M;g) is a[6, 3, 3] code with parity check matrix:

C. Primitive BCH Codes

Table Il summarizes the application of Theorem 4 to those
[n =2™—1,k,d] primitve BCH codes with raté& > 1/2 for

100101
Hg@ 23) = 010110 (1) m=3,...,8 [12]. Determiningd=- is difficult whenm > 5
w 001011 and lower bounds have been used. The lower bounds labeled

*,"and T correspond to Sikel'nikov’s bound [12], Theorem
5 of [15] and Schaub’s bound [16] (as reported in [15]),
respectively. Note that the existence of 4-cycle-free Tanner
A. The Golay Code graphs is precluded by Theorem 4 for all of the codes in Table

The duals of both thé23, 12, 7] binary Golay code and the !ll-
[24, 12, 8] extended binary Golay code have minimum distan i
8 [12]. Neither code satisfies Theorem 4 and thus any Tang'r Reed-Solomon Codes
graph for either code must contain 4-cycles. Corollary 6 follows from Theorem 4.

V. APPLICATION OF THEMAIN RESULT



Code d+ pdt | np(p — 1) + % +2 yields m(n — k)d* > 36 and:
[7,4,3] 4 12 10 2.2
15,11, 3 8 32 22 \/an(n —k)(m(n—k) —1) + mTnT o MR ey
31,26,3 > 16* > 80 44 4 2
31,21,5 > 8* > 70 80 (23)
géégg 22382* ; 13(2) gg The following al_ternate grgum_ent establishes that any Tanner
63,51,5 >16* | >192 127 graph representing the binary image of thes 3 must indeed
63,45,7 > 16* | >288 173 contain a 4-cycle.
!/
[6633’3369’191] E }3/ E 522 34212 Suppose a 4-cycle-free Tanner graph does exisCfoy 5.
[127,120,3] | > 64T | > 448 160 The parity check matrix corresponding to this grafiy, 15 3,
[127,118,5] | >561 | > 784 228 has21 columns and rows. By Proposition 2H |3, 153 must
(127,106,7] | = 48; > 1008 303 contain at leasts weight 1 columns. Since the minimum
[[112277’9929’191]] Eggf iﬂgg i;? distance of the dual of; 53 is at least 3,Hs;,15,3 must
[127: 85, 13] | >30f | > 1260 535 contain exactlh weight 1 columns. Now consider the bipartite
[127,78,15] | >28t | > 1372 613 graph corresponding to the remaining 15 columns. Since the
[127,71,19] | > 22: > 1232 692 minimum distance of the dual 6%; 5 3 is at least 6, this graph
Egg 23’72;& >212208T i iggg ;Z,g must contain at least 30 edges. On the other hand, Theorem 3
255.239.5] | > 112t | > 1792 405 states that this graph contains at most 30 edges with equality
[255,231,7] | >96" | > 2304 523 if only if the graph corresponds to the incidence matrix of
[255,223,9] | = 88: > 2816 646 the Steiner systen$(2,2;6). We have thus shown that if a
255, 215, 11] 564f i 2560 770 4-cycle-Tanner graph exists fdk; 5 ), thenCpr 5.5 must be
[255,207,13] | >e64t | > 3072 896 . hi , ith parity check £
[255.199.15] | > 601 | > 3360 1022 isomorphic toCg, ,.q With parity check matrix:
[255,191,17] | > 42t | > 2688 1149
100000111110000000000
[255,187,19] | > 42t | > 2856 1212
[255,179,21] | >40f | > 3040 1339 010000100001111000000
[255,171,23] | > 32t | > 2688 1466 H ~1001000010001000111000
[255,163,25] | >32f | > 2944 1594 5(2:26) — |000100001000100100110
[255,155,27] | > 32t | > 3200 1721 000010000100010010101
[255,147,29] | >28T | > 3024 1848 000001000010001001011
[255,139,31] | >26f | > 3016 1976 . . _
[255,131,37] | >22F | > 2727 2103 MacWilliams and Sloane show that the code with parity
TABLE III check matring(z)z;G) can be interpreted as the binary image

of a [7,5,3] maximum distance separable (MDS) code over
GF(8) which isnota RS code ([12], Ch. 10.5). Thuég(m;ﬁ)

is not isomorphic to a binary image of th&, 5,3] RS code
and no 4-cycle-free Tanner graph exists €oy 5 5).

APPLICATION OF THEOREM4 TO PRIMITIVE BCH CODES

Corollary 6: Let C be the binary image of a rate > 1/2, VI. CONCLUSION
[n = 2" —1,k,d =n—k+1] RS code form > 4. Then s work provides a necessary condition for the existence
there exists no 4-cycle-free Tanner graph dor a 4-cycle-free Tanner graph corresponding to a given binary

Proof: C is a [mn,mk,d" > d] binary code while its |inear block code. It was thus shown that many well-known
dual s the binary image of am,n — k,k + 1] RS code and ¢jassical codes can not be represented by 4-cycle-free Tanner
thusd~ > k+ 1. In order for a 4-cycle-free Tanner graph fotyraphs. This result, however, does not preclude the existence

C to exist, it is required that: of other simple 4-cycle-free graphical models for these codes.
For example, there exist 4-cycle-free graphical modelsafbr

gt < \/mn (1 _ 1 ) n n? " n binary linear block codes corresponding to generalized parity
- m(n — k) dn—k)?2  2(n—k) check matrices containing only binary hidden variables [6].

It is now known which codes cannot support cycle-free and
4-cycle-free Tanner graphs. In [13], Hoory provided an upper
bound on the size of a bipartite graph with given gigtivhich
sice’ =1 < 172 forcodes with ra = 2. SO ol e 3o b oo bond e

Sinced* > k + 1, no 4-cycle-free Tanner graph can exisf P P y

if & > /mn & 1. It can be readily shown that i > 4 and or the existence of &g — 2)-cycle-free Tanner graph for a

<l+vmn+1
(22)

R >1/2 thenk > v/mn + 1 completing the proof. o gven code.
Corollary 6 does not extend to the binary image of lerigth REFERENCES
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