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Abstract— A number of authors have recently considered Il. REDUNDANT TANNER GRAPHS
iterative soft-in soft-out (SISO) decoding algorithms for classical
linear block codes that utilize redundant Tanner graphs. Jiang As a motivating example, consider two parity check matri-

and Narayanan presented a practically realizable algorithm that ces for thel8, 4, 4] extended Hamming cod@:
applies only to cyclic codes while Kothiyalet al. presented an » )

algorithm that, while applicable to arbitrary linear block codes,

does not imply a low-complexity implementation. This work first 11110000 01010101
presents the aforementioned algorithms in a common framework — pr, — 00111100 Hy — 11000011 1
and then presents a related algorithm - random redundant iter- 00001111" 10101010
ative decoding - that is both practically realizable and applicable 01100110 01011010

to arbitrary linear block codes. Simulation results illustrate

the successful application of the random redundant iterative These parity-check matrices can be used to construct the

ﬁgﬁgﬁ;’”%hz'g&grge? etlrgeorﬁﬁﬁ“?;g‘\;‘ﬁ%%ﬂ%ﬁr‘;grdne]-J’?fndé' redundant Tanner graph illustrated in Figure 1. Note that the

and Nérayanan’s algorithm for a number of Bose-Chaudhuri- vertices Corrgspondlng to rows Hl_and 1 are labeled, ;

Hocquenghem (BCH) codes. gnd 2, for i = 1,2,3,4, respectlve'ly. The Tanner graph

L ODUCTIO illustrated in Figure 1 is redundant in that only the checks
_ - INTRODUCTION _ corresponding tdH; or H, are needed to completely specify

_ Graphical models of codes, and the SISO decoding ala@e code. Thedegreeof redundancy in a redundant Tanner

rithms implied by those models, are of great current interegfraph is defined as the number of parity-check matrices used to

Whereas modern codes are designed with graphical modelgémstruct the model; redundant Tanner graphs can be naturally
mind, classical linear block codes by and large were not. It §efined with any degree.

well known that acyclic graphical code models (e.g. trellises)
imply optimal SISO algorithms whereas models with cycles
imply suboptimal, albeit often substantially less complex, ...t ... A .
decoding algorithms [1]. For many classical godes, thg Cut-érl’1 ria s T4l Pod Ton Tas Toal
Set Bound precludes the existence of practically realizable: : : o
acyclic graphical models [1]. The search for good cyclic :'—
graphical models of such codes - that is, models which
imply decoding algorithms with near-optimal performance and
practically realizable complexity - is thus an important open
problem.

A natural starting point in the search for good graphical
models of classical linear block codes are the Tanner graph
[2] which are used to decode LDPCs. Although Tanner graphs
imply very low-complexity decoding algorithms, most classi- ci € 3 ¢4 €5 Ccg C7 Cg
cal linear block codes are defined by high-density, rather than
low-density, parity-check matrices and the performance of thi@. 1. Redundant Tanner graph for tfg& 4, 4] extended Hamming code
decoding algorithms implied by these models is poor. defined byH: and .

Recently, a number of authors have studied the SISO decod-
ing algorithms implied byredundantTanner graphs [3], [4]. Redundant Tanner graphs imply the following standard iter-
Section Il describes these algorithms in a unified framewodtive decoding algorithm (note that the message passing sched-
while Section Il presents the proposed random redundarie described below is reasonable but not unique). Consider a
iterative decoding algorithm (RRD). Section IV details theegreen redundant Tanner graph. For each set of chdtks
application of the proposed algorithm to the extended Golay= 1,...,n, denote byM|; the vector of messages passed
code and to a number of BCH codes. Concluding remarks drem checks to variables and denote B§|; the vector of
given in Section V. messages passed from variables to checks. Note that for all




i=1,...,n, M|, is initialized to zerd. Fori = 1,...,n, the and Narayanan’s stochastic shifting based iterative decoding
M|; messages are first updated at the variable nodes us{8&ID) algorithm [3] are redundant Tanner graph decoding
the channel observation and thd|; messages (foj # ¢). algorithms. Kothiyalet al's scheme adaptively chooses new
The M |; messages are then updated at the check nodes ugiagty-check sets based on soft information reliability. Al-
M ;. This updating procedure repeats for a prescribed numhkough the ABP algorithm can be applied to arbitrary block
of iterations,/. Note that this schedule can be modified so thabdes, it does not imply a practical low-complexity imple-
a number of decoding iterations are performed on each setheéntation because the check sets change with every iteration.
checks before proceeding to the next. Furthermore, the ABP algorithm requires computationally ex-
From the viewpoint of practical low-complexity implemen-{pensive Gaussian elimination of potentially large parity-check
tation, the decoding algorithm described above suffers fromatrices at every iteration. Jiang and Narayanan's scheme is
two drawbacks: an example of a practical, low-complexity redundant Tanner
1) For the standard message passing rules, the intermed@@Ph decoding algorithm for cyclic codes which uses the
messages vectoisI|; must be stored foi = 1,...,n Permutation group approach described above. The random
which results in ann-fold increase of the memory redundant deCOding algorithm proposed in this work iS, in faCt,

required with respect to standard Tanner graph decodir®) extension of Jiang and Narayanan’s algorithm to arbitrary
2) Since each parity-check matrix defines a different set Bfock codes.

checks, there is either anfold increase in the number

of single parity-check (SPC) trellises which must be

implemented or the SPC trellises must be implementéd The Main Algorithm

in & reconfigurable fashion. Algorithm 1 describes the proposed random redundant

The first drawback may be addressed by using a massivgbtative decoding (RRD) algorithm. The innéor-loop of
redundant Tanner graph. If a large degree of redundanslyorithm 1 describes an efficient redundant Tanner graph
is used then/ (the number of decoding iterations on thejecoding algorithm with the addition of a damping coefficient
aggregate model) can be set to one and the intermediateThe outerfor-loop of Algorithm 1 iterates over different
message vectordI|; need not be stored. Before addressingalues of o. By varying the damping coefficient, the
the second drawback, permutation groups of codes must fig&jorithm avoids local minima in the solution space. Many
be defined and reviewed. authors have considered the introduction of such damping

Let C be a block code of length. The permutation group coefficients in iterative soft decoding algorithms to achieve
of C, Per (C), is the set of permutations of coordinate placegis end (see, for example, [6]). For practical implementations
which sendC onto itself. By definition,Per (C) is a subgroup where a large number of outer iterations is undesirable from
of the symmetric group of orden, S,. Returning to the a time complexity standpoint, a single damping coefficient (or
8,4, 4] extended Hamming code, it can be shown that:[5] a small set of coefficients) could be used depending on the

operating noise power.
o =(6,4,2,8,1,7,5,3) € Per (Cs) 2) Algorithm 1 takes as input a received soft information

Applying o to the columns offf; yields Hy. vector, SI, a parity-check matrix for the codé/, and four

From the above example, it is clear that redundant paritparameters:
checks for a given codeg;, can be generated by applying 1) «y: The initial damping coefficient.
permutations drawn fronPer (C) to the columns of some 2) 7;: The number of Tanner graph decoding iterations to

IIl. PROPOSEDDECODING ALGORITHM

initial parity-check matrix 4. Observe that decoding with perform per inner iteration.

soft-input vectorSI on TG (B8H) (where 3 € Per(C)) 3) I,: The maximum number of inner iterations to perform
is equivalent to decoding with soft-input vect@'SI on per outer iteration. Each inner iteration considers a
TG (H). It is this observation that allows for efficient imple-  different random permutation of the codeword elements.

mentation of redundant Tanner graph decoding: provided that4) 15: The maximum number of outer iterations to perform.
the redundant parity-checks are column permuted versions of ~Each outer iteration uses a different damping coefficient.
some base matrix/, redundant Tanner graph decoding cafg; ¢ pe the the sum of input soft informatioB], and the out-

be implemented by permuting soft information vectors ang s soft information produced by all previous inner iterations.

decoding with aconstantset of constraints. _During the io-th inner iteration,I; Tanner graph decoding
From the above discussion, it is apparent that Kothsfal jieations are performed 6fiG (H) with damping coefficient

al.'s adaptive belief propagation (ABP) algorithm [4] and Jiang, 5ng soft inputs producing the soft output vectos!, and

.. , . . .
IThroughout this work, decoding is assumed to be performed in thheard decisionc’. The cumulative soft information vectas,

~log(-) domain,i.e. either min-sum Of min*-sum processing is assumed 1S then prdated to include’. Th(‘}' inner iteration Conduldes
2Throughout this work, permutations of coordinate places are de- by applying a random permutatiofl, from the permutation
scribed by n-tuples. For example, the application of the permutationgroup of the code ta. Decoding concludes when either a

(2,5,1,3,4,7,6) to a 7 bit codewordc, c2, c3, ca, c5, c6, c7) Yields the . . .
permuted codewordtcs, 1, c1, s, c2, ¢r, cg ). The identity permutation is valid codeword is returned by the Tanner graph decoding step

denotede and the inverse of a permutatigh is denoted3—1. or when a maximum number of iterations is reached. Before



returning the final soft outpuSO, and hard decisionHD, Input: n — k x n binary parity-check matrix{.
the random permutations are undone by applying the invers€dutput: n — k x n binary parity-check matrix{’.

of the product of the permutations that were applied.to H' — H,rt —1,r5 <1, g* — girth of TG (H);
Nj. < number ofg*-cycles inTG (H');
Input: Lengthn soft-input vectorSI. Nj. o < number ofg* + 2-cycles inTG (H');
n — k x n binary parity-check matrix{. repeat
Parameterdy, I, I3, ag. if 7% # r3 then Replace row} in H' with binary
Output: Lengthn soft-output vectoiSO. sum of rowsr} andr3;
Lengthn hard-decision vectoHD. rF 0, 15— 0;
o — ag: for rl,rgzl,...,n_—k,rg_;éﬁ do
for 1< is < I3 do Replace rowr; in H' with binary sum of rows
O — ¢ ry andrs;
s — SI: g < girth of TG (H');
for 1 <iy < I, do N, < number ofg-cycles inTG (H');
PerformI; decoding iterations o on TG (H) Ng+2 < number ofg + 2-cycles inTG (H');
with damping coefficienty and place soft output if g <g* then
in s’ and resulting hard decision itf; 9" — g, 11,13 12, Ny — Ny,
s«—s+s’; Ngio — Ngio;
if He' =0 then end
Apply ®~! to s andhd’; else if Ny < Ny then ri < ry, 13 < 1o,
SO « s — ST, Ng = Ngs Ngyo — Noy2;
HD « ¢’; else if Ny = N then
return SO and HD ‘ if Ngo < Ngip then r{ «ri, 13—,
end Ngio < Ngio;
6 —random element oPer (C); end
Apply 0 to s; Undo row replacement;
O — 00: end
end until 77 =0 & 75 =0;
@ ag+ (1 —ao) gty return H’
end
Algorithm 1: Random Redundant Decoding. Algorithm 2: Tanner graph cycle reduction.

The following subsections describe supporting algorithms

required by random redundant decoding. random elements of an arbitrary finite group and is due to
" . i . Celleret al. [8].
B. Initial Parity-Check Matrix Selection Let @ be a finite group with generating set:

As will be demonstrated empirically in Section 1V, the
performance of the proposed decoding algorithm depends X ={z1, 22, 2x} ®)
heavily on the choice of parity-check matrix (and thus thenat is, every elemeny € G can be expressed as a finite
Tanner graph) used to represent the code. It is widely accepggquct:
that the performance of the decoding algorithms implied by g=aMa™ ... g™ 4)
Tanner graphs are adversely affected by short cycles (see for o "
example [7]). Algorithm 2 searches for a suitable parity-cheskherez;, € X andn; € N (the set of natural numbers) for
matrix by greedily performing row operations on an inpuall j. Let N > &k be an integer.
binary parity-check matrix{ in order to reduce the number Cellaret al’s algorithm constructs a vect® of length N
of short cycles contained in the Tanner graph defineddby containing all of the elements of with repeats. Algorithm
(denotedTG (H)). Note that after every row operation, the3 describes the basic operation of Celkdral's algorithm.
updated partiy check matrikl’ defines the same code & Generation of random group elements is initialized by exe-
Note also that the operation of Algorithm 2 requires that shartiting Algorithm 3 K times. After initialization, successive
cycles in bipartite graphs can be counted efficiently; such amecutions of Algorithm 3 yield random elements@f Note
algorithm was described in [7]. that the execution of Algorithm 3 requires only one group

) ) multiplication and is thus efficient (permutation multiplication
C. Generation of Random Permutation Group Elements s particularly easy). Also note that after every execution, the

Algorithm 1 requires the efficient generation of randomroup elements contained $1generates. Cellaret al. found
elements of the permutation group of a code. The algorithtimat settingV. = max(2k 4 1,10) and K = 60 provides near-
presented below, theroduct-replacement algorithngenerates uniform random generation of group elements in practice.



Input: Length N vector of group elementS.
Output: Random group element
Updated group element vectSr
(i,7) < pair of random integers
i#je{l,2,... N}
S[i] — S[jIS[il; s
. K
g — S[Z]’ §
return g; @E
=
Algorithm 3: Random group element generation.
IV. SIMULATION RESULTS AND DISCUSSION o EE,))
A. The Extended Golay Code 10% |- — = -RRD (H)
—— RRD (H")
Consider the extended Golay codé;, defined by the - - ==Trellis \
parity-check matrix of Equation 5. i
3 3.5 4 4.5 5 5.5 6 6.5 7
rt0011010111100000101001 17
110011010111100000101001 Eb/No (dB)
011001101011110000010101 Fig. 2 Bit ‘ . ) ¢ different decodi
1g. 2. It error rate performance comparison o imeren ecodaing
(1) 8 (1) } (1) 8 (1) 1 (1) (1) (1) (1) % i } (1) 8 8 8 8 (1) (1) (1) 1 algorithms for the[24, 12, 8] extended Golay code.
. — 010011001101011110000011 ®)
¢~ 1101001100110101111000001 o
010100110011010111100001 decoding iterations were performed for the Tanner graph
001010011001101011110001 decoders while the RRD algorithms both use input parameter
000101001100110101111001 setsiag = 0.08, I; = 2, I = 30 and I3 = 20. Flooding
000010100110011010111101 message passing schedules were used for all Tanner graph
[111111111111111111111111 decoders and binary antipodal signaling over additive white
The permutation group of is generated by four permuta-Gaussian noise (AWGN) channels is assumed throughout this
tions (see Ch. 20 of [5]). work.

The parity-check matrix of Equation 5 contains many short Note first in Figure 2 that the performance of the RRD

cycles. The application of Algorithm 2 to this matrix yields: algorithm is highly sensitive to the choice of parity-check
- A .
10011010111100000101001 11 matrix: the decoder using/’ outperforms the decoder using

. ; )
01001000110001000010100 1 H by approximately 1.75 dB at a bit error rate (BER)16f ~.

111000110000000000010101 It is known that any optimal SISO decoder for the extended
000100100001101010000110 Golay code must contain hidden variables with alphabet size
100001011011110000000000 at least256 [10]. Furthermore, there exists a well-known

H — 000001000001001110101010 ©6) tail-biting trellis for this code which contains6-ary hidden
¢~ 1101001100110101111000001 variables and has near-optimal performance [11]. The RRD
001101011000100111110100 algorithm using H’, which contains only binary variables,

000111000001001100000101 performs approximately 0.3 dB worse than optimal SISO
001000010100010010001101 decoding at a bit error rate ab—°.

001010110010001000110000
L110101100110010100001110. B. The[31,21,5] and [63,39,9] BCH Codes
Whereas the Tanner graphs defined by Equation 5 Contai”%ollowing the notation of Lu and Welch [12], defirt@, .

1551 4-cycles andi5632 6-cycles, the Tanner graph defined,g e nermutation group generatedibglements of the form:
by Equation 6 contain895 4-cycles and204 6-cycles. Note

that any Tanner graph representiig necessarily contains afj) =(2,j+2,2j+2,...,(2™ —2)j +2) )
4-cycles [9].

Figure 2 compares the performance of five decoding alg® 1 < j < m (where each permutation element is taken
rithms for C: optimal SISO decoding via a trellis; standardnodulo2™). The full permutation group of th@1, 21, 5] BCH
iterative decoding using the Tanner graphs implied By €odeCs,is G1 5 [12]. The subgroup of cyclic permutations of
and [’ (labeled TG(H) and TG(H'), respectively); and, Cs is generated byr{") alone and is denoteds;. Similarly,
the proposed random redundant iterative decoding (RRMhie full permutation group of th¢s3,39,9] BCH code,Cs,
algorithm using H and H’' as input parity-check matricesis G1, while the subgroup of cyclic permutations 6§ is
(labeledRRD(H) andRRD(H’), respectively). One hundredgenerated byrél) alone and is denote@s.




Bit Error Rate

wemepees= (31,21) HDD
wen-0e- (31,21) Cyclic-RRD
—o— (31,21) RRD

)

)

)
===eceee= (31,21) Trellis

)

)

)

—— (63,39) HDD
—0—(63,39) Cyclic-RRD |.
===0=== (63,39) RRD

easier to specify than the full permutation group. For example,
the permutation groups of a leng#* Reed-Muller code is

the general affine grou@¥ A(m) whose subgroug:L(m) (the
general linear group) is generated by two elements. The results
of Figure 3 indicate that random redundant iterative decoding
algorithms which use such easily specified subgroups may
have performance characteristics that, although worse than
those RRD algorithms using the full permutation group, are
nonetheless interesting.

V. CONCLUSION

This work introduces random redundant iterative decoding
(RRD) which can be viewed as an extension of Jiang and
Narayanan’s algorithm [3] for cyclic codes to arbitrary block
codes. This work also demonstrated how a number of recently
proposed iterative SISO decoding algorithms for block codes
belong to a common class of algorithms defined by redundant
Tanner graphs. It was shown that RRD is an attractive example

Eb/No (dB) of a redundant Tanner graph algorithm both in terms of its
complexity and its applicability to arbitrary linear block codes.
Fig. 3.  Bit error rate performance comparison of different decodinfurthermore, it was demonstrated empirically that the RRD

algorithms for the[31, 21, 5] and [63, 39, 9] BCH codes.

algorithm can outperform Jiang and Narayanan’s algorithm

when applied to cyclic codes.

Figure 3 compares the performance of four decoding algo-
rithms for Cs: optimal SISO decoding via a trellis; random [1]
redundant iterative decoding using the full permutation group,
(labeled RRD); random redundant iterative decoding using
only permutations drawn randomly frofs, (labeled cyclic- [3l]
RRD); and algebraic HIHO decoding. Figure 3 also illustrates
the performance of the analogous algorithmsdgr(with the  [4]
exception of trellis decoding which is prohibitively complex
for this code). Note that the cyclic-RRD algorithms are equiv-
alent to Jiang and Narayanan's algorithm [3]. T e RRD [g]
algorithms both use input parameter sets:= 0.08, I; = 2,

I, =30 and I35 = 20. TheCs RRD algorithms both use input [6]
parameter setsyy, = 0.08, I; = 2, I, = 50 and I3 = 20.

It is known that any optimal SISO decoder for 3¢, 21,5] 7]
BCH code must contain hidden variables with alphabet size
at least1024 [13]. Furthermore, it is known that under the [g]
standard cyclic bit ordering, the minimal tail-biting trellis for
this code also must contain 1024-ary hidden variables [14]q,
It is thus remarkable that the RRD and cyclic-RRD decoders,
which contain only binary variables, perform only 0.25 and 0.8°!
dB worse than the optimal SISO decoder at a BER®f°. 11
Note that the RRD and cyclic-RRD algorithms outperform
algebraic HIHO decoding by 1.5 and 1.75 dB at a BER qf
10-°. The RRD and cyclic-RRD decoders outperform HIHng]
decoding by similar margins.

The RRD algorithms outperform the corresponding cycliéle’]
RRD algorithms by approximately 0.25 dB at a BER16f™°
for bothCs andCs. The RRD algorithms consider all possible14]
permutations irPer (C5) and Per (Cg), rather than the subset
of permutations corresponding to cyclic shifts, and are in
some sense more random than the cyclic-RRD algorithms.
For certain codes, subgroups of the permutation group may be
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