
Random Redundant Soft-In Soft-Out Decoding of
Linear Block Codes
Thomas R. Halford and Keith M. Chugg

Communication Sciences Institute
University of Southern California

Los Angeles, CA 90089-2565

Abstract— A number of authors have recently considered
iterative soft-in soft-out (SISO) decoding algorithms for classical
linear block codes that utilize redundant Tanner graphs. Jiang
and Narayanan presented a practically realizable algorithm that
applies only to cyclic codes while Kothiyalet al. presented an
algorithm that, while applicable to arbitrary linear block codes,
does not imply a low-complexity implementation. This work first
presents the aforementioned algorithms in a common framework
and then presents a related algorithm - random redundant iter-
ative decoding - that is both practically realizable and applicable
to arbitrary linear block codes. Simulation results illustrate
the successful application of the random redundant iterative
decoding algorithm to the extended binary Golay code. Addi-
tionally, the proposed algorithm is shown to outperform Jiang
and Narayanan’s algorithm for a number of Bose-Chaudhuri-
Hocquenghem (BCH) codes.

I. I NTRODUCTION

Graphical models of codes, and the SISO decoding algo-
rithms implied by those models, are of great current interest.
Whereas modern codes are designed with graphical models in
mind, classical linear block codes by and large were not. It is
well known that acyclic graphical code models (e.g. trellises)
imply optimal SISO algorithms whereas models with cycles
imply suboptimal, albeit often substantially less complex,
decoding algorithms [1]. For many classical codes, the Cut-
Set Bound precludes the existence of practically realizable
acyclic graphical models [1]. The search for good cyclic
graphical models of such codes - that is, models which
imply decoding algorithms with near-optimal performance and
practically realizable complexity - is thus an important open
problem.

A natural starting point in the search for good graphical
models of classical linear block codes are the Tanner graphs
[2] which are used to decode LDPCs. Although Tanner graphs
imply very low-complexity decoding algorithms, most classi-
cal linear block codes are defined by high-density, rather than
low-density, parity-check matrices and the performance of the
decoding algorithms implied by these models is poor.

Recently, a number of authors have studied the SISO decod-
ing algorithms implied byredundantTanner graphs [3], [4].
Section II describes these algorithms in a unified framework
while Section III presents the proposed random redundant
iterative decoding algorithm (RRD). Section IV details the
application of the proposed algorithm to the extended Golay
code and to a number of BCH codes. Concluding remarks are
given in Section V.

II. REDUNDANT TANNER GRAPHS

As a motivating example, consider two parity check matri-
ces for the[8, 4, 4] extended Hamming codeC8:

H1 =

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0

 , H2 =

0 1 0 1 0 1 0 1
1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0

 (1)

These parity-check matrices can be used to construct the
redundant Tanner graph illustrated in Figure 1. Note that the
vertices corresponding to rows inH1 andH2 are labeledr1,i

and r2,i for i = 1, 2, 3, 4, respectively. The Tanner graph
illustrated in Figure 1 is redundant in that only the checks
corresponding toH1 or H2 are needed to completely specify
the code. Thedegreeof redundancy in a redundant Tanner
graph is defined as the number of parity-check matrices used to
construct the model; redundant Tanner graphs can be naturally
defined with any degree.

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r0 (10)

r1 (11)

r2 (12)

r3 (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

H1 (2)

H2 (3)

H3 (4)

c4 (5)

c5 (6)

c6 (7)

c0 (8)

V8 (9)

C1 (10)

C2 (11)

0 : (12)

1 : (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

H1 (2)

H2 (3)

H3 (4)

c4 (5)

c5 (6)

c6 (7)

c0 (8)

V8 (9)

C1 (10)

C2 (11)

0 : (12)

1 : (13)

2 : (14)

3 : (15)

H1 (16)

u4 (17)

αg+3 (18)

αg+4 (19)

α1 = αg+1 (20)

α2 = αg+2 (21)

α1 = α5 (22)

α3 = α7 (23)

α1 = α3 (24)

α2 = α6 (25)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c0 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,0 (10)

r1,1 (11)

r1,2 (12)

r1,3 (13)

r2,0 (14)

r2,1 (15)

r2,2 (16)

r2,3 (17)

2 : (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c8 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,1 (10)

r1,2 (11)

r1,3 (12)

r1,4 (13)

r2,1 (14)

r2,2 (15)

r2,3 (16)

r2,4 (17)

r4 (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c8 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,1 (10)

r1,2 (11)

r1,3 (12)

r1,4 (13)

r2,1 (14)

r2,2 (15)

r2,3 (16)

r2,4 (17)

r4 (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

. . . (1)

c8 (2)

c1 (3)

c2 (4)

c3 (5)

c4 (6)

c5 (7)

c6 (8)

c7 (9)

r1,1 (10)

r1,2 (11)

r1,3 (12)

r1,4 (13)

r2,1 (14)

r2,2 (15)

r2,3 (16)

r2,4 (17)

r4 (18)

3 : (19)

H1 (20)

u4 (21)

αg+3 (22)

αg+4 (23)

α1 = αg+1 (24)

α2 = αg+2 (25)

α1 = α5 (26)

α3 = α7 (27)

α1 = α3 (28)

α2 = α6 (29)

1

Fig. 1. Redundant Tanner graph for the[8, 4, 4] extended Hamming code
defined byH1 andH2.

Redundant Tanner graphs imply the following standard iter-
ative decoding algorithm (note that the message passing sched-
ule described below is reasonable but not unique). Consider a
degreen redundant Tanner graph. For each set of checksHi,
i = 1, . . . , n, denote byM�i the vector of messages passed
from checks to variables and denote byM�i the vector of
messages passed from variables to checks. Note that for all



i = 1, . . . , n, M�i is initialized to zero1. For i = 1, . . . , n, the
M�i messages are first updated at the variable nodes using
the channel observation and theM�j messages (forj 6= i).
TheM�i messages are then updated at the check nodes using
M�i. This updating procedure repeats for a prescribed number
of iterations,I. Note that this schedule can be modified so that
a number of decoding iterations are performed on each set of
checks before proceeding to the next.

From the viewpoint of practical low-complexity implemen-
tation, the decoding algorithm described above suffers from
two drawbacks:

1) For the standard message passing rules, the intermediate
messages vectorsM�i must be stored fori = 1, . . . , n
which results in ann-fold increase of the memory
required with respect to standard Tanner graph decoding.

2) Since each parity-check matrix defines a different set of
checks, there is either ann-fold increase in the number
of single parity-check (SPC) trellises which must be
implemented or the SPC trellises must be implemented
in a reconfigurable fashion.

The first drawback may be addressed by using a massively
redundant Tanner graph. If a large degree of redundancy
is used thenI (the number of decoding iterations on the
aggregate model) can be set to one and the intermediate
message vectorsM�i need not be stored. Before addressing
the second drawback, permutation groups of codes must first
be defined and reviewed.

Let C be a block code of lengthn. The permutation group
of C, Per (C), is the set of permutations of coordinate places
which sendC onto itself. By definition,Per (C) is a subgroup
of the symmetric group of ordern, Sn. Returning to the
[8, 4, 4] extended Hamming code, it can be shown that [5]2:

σ = (6, 4, 2, 8, 1, 7, 5, 3) ∈ Per (C8) (2)

Applying σ to the columns ofH1 yields H2.
From the above example, it is clear that redundant parity-

checks for a given code,C, can be generated by applying
permutations drawn fromPer (C) to the columns of some
initial parity-check matrixH. Observe that decoding with
soft-input vectorSI on TG (βH) (where β ∈ Per (C))
is equivalent to decoding with soft-input vectorβ−1SI on
TG (H). It is this observation that allows for efficient imple-
mentation of redundant Tanner graph decoding: provided that
the redundant parity-checks are column permuted versions of
some base matrixH, redundant Tanner graph decoding can
be implemented by permuting soft information vectors and
decoding with aconstantset of constraints.

From the above discussion, it is apparent that Kothiyalet
al.’s adaptive belief propagation (ABP) algorithm [4] and Jiang

1Throughout this work, decoding is assumed to be performed in the
− log(·) domain,i.e. eithermin-sum or min?-sum processing is assumed

2Throughout this work, permutations ofn coordinate places are de-
scribed by n-tuples. For example, the application of the permutation
(2, 5, 1, 3, 4, 7, 6) to a 7 bit codeword(c1, c2, c3, c4, c5, c6, c7) yields the
permuted codeword:(c3, c1, c4, c5, c2, c7, c6). The identity permutation is
denotedε and the inverse of a permutationβ is denotedβ−1.

and Narayanan’s stochastic shifting based iterative decoding
(SSID) algorithm [3] are redundant Tanner graph decoding
algorithms. Kothiyalet al.’s scheme adaptively chooses new
parity-check sets based on soft information reliability. Al-
though the ABP algorithm can be applied to arbitrary block
codes, it does not imply a practical low-complexity imple-
mentation because the check sets change with every iteration.
Furthermore, the ABP algorithm requires computationally ex-
pensive Gaussian elimination of potentially large parity-check
matrices at every iteration. Jiang and Narayanan’s scheme is
an example of a practical, low-complexity redundant Tanner
graph decoding algorithm for cyclic codes which uses the
permutation group approach described above. The random
redundant decoding algorithm proposed in this work is, in fact,
an extension of Jiang and Narayanan’s algorithm to arbitrary
block codes.

III. PROPOSEDDECODING ALGORITHM

A. The Main Algorithm

Algorithm 1 describes the proposed random redundant
iterative decoding (RRD) algorithm. The innerfor-loop of
Algorithm 1 describes an efficient redundant Tanner graph
decoding algorithm with the addition of a damping coefficient
α. The outerfor-loop of Algorithm 1 iterates over different
values of α. By varying the damping coefficientα, the
algorithm avoids local minima in the solution space. Many
authors have considered the introduction of such damping
coefficients in iterative soft decoding algorithms to achieve
this end (see, for example, [6]). For practical implementations
where a large number of outer iterations is undesirable from
a time complexity standpoint, a single damping coefficient (or
a small set of coefficients) could be used depending on the
operating noise power.

Algorithm 1 takes as input a received soft information
vector, SI, a parity-check matrix for the code,H, and four
parameters:

1) α0: The initial damping coefficient.
2) I1: The number of Tanner graph decoding iterations to

perform per inner iteration.
3) I2: The maximum number of inner iterations to perform

per outer iteration. Each inner iteration considers a
different random permutation of the codeword elements.

4) I3: The maximum number of outer iterations to perform.
Each outer iteration uses a different damping coefficient.

Let s be the the sum of input soft information,SI, and the out-
put soft information produced by all previous inner iterations.
During the i2-th inner iteration,I1 Tanner graph decoding
iterations are performed onTG (H) with damping coefficient
α and soft inputs producing the soft output vector,s′, and
hard decision,c′. The cumulative soft information vector,s,
is then updated to includes′. The inner iteration concludes
by applying a random permutation,θ, from the permutation
group of the code tos. Decoding concludes when either a
valid codeword is returned by the Tanner graph decoding step
or when a maximum number of iterations is reached. Before



returning the final soft output,SO, and hard decision,HD,
the random permutations are undone by applying the inverse
of the product of the permutations that were applied tos.

Input : Lengthn soft-input vectorSI.
n− k × n binary parity-check matrixH.
ParametersI1, I2, I3, α0.

Output : Lengthn soft-output vectorSO.
Lengthn hard-decision vectorHD.

α← α0;
for 1 ≤ i3 ≤ I3 do

Θ← ε;
s← SI;
for 1 ≤ i2 ≤ I2 do

PerformI1 decoding iterations ofs on TG (H)
with damping coefficientα and place soft output
in s′ and resulting hard decision inc′;
s← s + s′;
if Hc′ = 0 then

Apply Θ−1 to s andhd′;
SO← s− SI;
HD← c′;
return SO and HD

end
θ ←random element ofPer (C);
Apply θ to s;
Θ← θΘ;

end
α← α0 + (1− α0) i3

I3−1 ;
end

Algorithm 1 : Random Redundant Decoding.

The following subsections describe supporting algorithms
required by random redundant decoding.

B. Initial Parity-Check Matrix Selection

As will be demonstrated empirically in Section IV, the
performance of the proposed decoding algorithm depends
heavily on the choice of parity-check matrix (and thus the
Tanner graph) used to represent the code. It is widely accepted
that the performance of the decoding algorithms implied by
Tanner graphs are adversely affected by short cycles (see for
example [7]). Algorithm 2 searches for a suitable parity-check
matrix by greedily performing row operations on an input
binary parity-check matrixH in order to reduce the number
of short cycles contained in the Tanner graph defined byH
(denotedTG (H)). Note that after every row operation, the
updated partiy check matrixH ′ defines the same code asH.
Note also that the operation of Algorithm 2 requires that short
cycles in bipartite graphs can be counted efficiently; such an
algorithm was described in [7].

C. Generation of Random Permutation Group Elements

Algorithm 1 requires the efficient generation of random
elements of the permutation group of a code. The algorithm
presented below, theproduct-replacement algorithm, generates

Input : n− k × n binary parity-check matrixH.
Output : n− k × n binary parity-check matrixH ′.

H ′ ← H, r?
1 ← 1, r?

2 ← 1, g? ← girth of TG (H);
N?

g? ← number ofg?-cycles inTG (H ′);
N?

g?+2 ← number ofg? + 2-cycles inTG (H ′);
repeat

if r?
1 6= r?

2 then Replace rowr?
2 in H ′ with binary

sum of rowsr?
1 andr?

2 ;
r?
1 ← 0, r?

2 ← 0;
for r1, r2 = 1, . . . , n− k, r2 6= r1 do

Replace rowr?
2 in H ′ with binary sum of rows

r?
1 andr?

2 ;
g ← girth of TG (H ′);
Ng ← number ofg-cycles inTG (H ′);
Ng+2 ← number ofg + 2-cycles inTG (H ′);
if g < g? then

g? ← g, r?
1 ← r1, r?

2 ← r2, N?
g ← Ng,

N?
g+2 ← Ng+2;

end
else if Ng < N?

g then r?
1 ← r1, r?

2 ← r2,
N?

g ← Ng, N?
g+2 ← Ng+2;

else if Ng = N?
g then

if Ng+2 < N?
g+2 then r?

1 ← r1, r?
2 ← r2,

N?
g+2 ← Ng+2;

end
Undo row replacement;

end
until r?

1 = 0 & r?
2 = 0;

return H ′

Algorithm 2 : Tanner graph cycle reduction.

random elements of an arbitrary finite group and is due to
Celler et al. [8].

Let G be a finite group with generating set:

X = {x1, x2, . . . , xk} (3)

That is, every elementg ∈ G can be expressed as a finite
product:

g = xn1
i1

xn2
i2
· · ·xnt

it
(4)

wherexij
∈ X and nj ∈ N (the set of natural numbers) for

all j. Let N > k be an integer.
Cellar et al.’s algorithm constructs a vectorS of lengthN

containing all of the elements ofX with repeats. Algorithm
3 describes the basic operation of Cellaret al.’s algorithm.
Generation of random group elements is initialized by exe-
cuting Algorithm 3 K times. After initialization, successive
executions of Algorithm 3 yield random elements ofG. Note
that the execution of Algorithm 3 requires only one group
multiplication and is thus efficient (permutation multiplication
is particularly easy). Also note that after every execution, the
group elements contained inS generateG. Cellaret al. found
that settingN = max(2k +1, 10) andK = 60 provides near-
uniform random generation of group elements in practice.



Input : LengthN vector of group elementsS.
Output : Random group elementg.

Updated group element vectorS.

(i, j)← pair of random integers
i 6= j ∈ {1, 2, . . . , N};

S[i]← S[j]S[i];
g ← S[i];

return g;

Algorithm 3 : Random group element generation.

IV. SIMULATION RESULTS AND DISCUSSION

A. The Extended Golay Code

Consider the extended Golay code,CG, defined by the
parity-check matrix of Equation 5.

HG =



1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1
1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1
1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1
1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1
0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1
0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


(5)

The permutation group ofCG is generated by four permuta-
tions (see Ch. 20 of [5]).

The parity-check matrix of Equation 5 contains many short
cycles. The application of Algorithm 2 to this matrix yields:

H ′
G =



1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1
0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1
1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1
0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1
0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0
1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0


(6)

Whereas the Tanner graphs defined by Equation 5 contains
1551 4-cycles and65632 6-cycles, the Tanner graph defined
by Equation 6 contains295 4-cycles and6204 6-cycles. Note
that any Tanner graph representingCG necessarily contains
4-cycles [9].

Figure 2 compares the performance of five decoding algo-
rithms for CG: optimal SISO decoding via a trellis; standard
iterative decoding using the Tanner graphs implied byH
and H ′ (labeled TG(H) and TG(H ′), respectively); and,
the proposed random redundant iterative decoding (RRD)
algorithm usingH and H ′ as input parity-check matrices
(labeledRRD(H) andRRD(H ′), respectively). One hundred

10-5

10-4

10-3

10-2

3 3.5 4 4.5 5 5.5 6 6.5 7

TG (H)

TG (H')

RRD (H)

RRD (H')

Trellis

B
it
 E

rr
o
r 

R
a
te

Eb/No (dB)

Fig. 2. Bit error rate performance comparison of different decoding
algorithms for the[24, 12, 8] extended Golay code.

decoding iterations were performed for the Tanner graph
decoders while the RRD algorithms both use input parameter
sets:α0 = 0.08, I1 = 2, I2 = 30 and I3 = 20. Flooding
message passing schedules were used for all Tanner graph
decoders and binary antipodal signaling over additive white
Gaussian noise (AWGN) channels is assumed throughout this
work.

Note first in Figure 2 that the performance of the RRD
algorithm is highly sensitive to the choice of parity-check
matrix: the decoder usingH ′ outperforms the decoder using
H by approximately 1.75 dB at a bit error rate (BER) of10−4.
It is known that any optimal SISO decoder for the extended
Golay code must contain hidden variables with alphabet size
at least 256 [10]. Furthermore, there exists a well-known
tail-biting trellis for this code which contains16-ary hidden
variables and has near-optimal performance [11]. The RRD
algorithm usingH ′, which contains only binary variables,
performs approximately 0.3 dB worse than optimal SISO
decoding at a bit error rate of10−5.

B. The[31, 21, 5] and [63, 39, 9] BCH Codes

Following the notation of Lu and Welch [12], defineG1,m

as the permutation group generated bym elements of the form:

σ(j)
m = (2, j + 2, 2j + 2, . . . , (2m − 2)j + 2) (7)

for 1 ≤ j ≤ m (where each permutation element is taken
modulo2m). The full permutation group of the[31, 21, 5] BCH
code,C5, is G1,5 [12]. The subgroup of cyclic permutations of
C5 is generated byσ(1)

5 alone and is denotedC31. Similarly,
the full permutation group of the[63, 39, 9] BCH code,C6,
is G1,6 while the subgroup of cyclic permutations ofC6 is
generated byσ(1)

6 alone and is denotedC63.



10-5

10-4

10-3

10-2

3 4 5 6 7 8

(31,21) HDD

(31,21) Cyclic-RRD

(31,21) RRD

(31,21) Trellis

(63,39) HDD

(63,39) Cyclic-RRD

(63,39) RRD

B
it
 E

rr
o

r 
R

a
te

Eb/No (dB)

Fig. 3. Bit error rate performance comparison of different decoding
algorithms for the[31, 21, 5] and [63, 39, 9] BCH codes.

Figure 3 compares the performance of four decoding algo-
rithms for C5: optimal SISO decoding via a trellis; random
redundant iterative decoding using the full permutation group
(labeled RRD); random redundant iterative decoding using
only permutations drawn randomly fromC31 (labeled cyclic-
RRD); and algebraic HIHO decoding. Figure 3 also illustrates
the performance of the analogous algorithms forC6 (with the
exception of trellis decoding which is prohibitively complex
for this code). Note that the cyclic-RRD algorithms are equiv-
alent to Jiang and Narayanan’s algorithm [3]. TheC5 RRD
algorithms both use input parameter sets:α0 = 0.08, I1 = 2,
I2 = 30 andI3 = 20. TheC6 RRD algorithms both use input
parameter sets:α0 = 0.08, I1 = 2, I2 = 50 andI3 = 20.

It is known that any optimal SISO decoder for the[31, 21, 5]
BCH code must contain hidden variables with alphabet size
at least1024 [13]. Furthermore, it is known that under the
standard cyclic bit ordering, the minimal tail-biting trellis for
this code also must contain 1024-ary hidden variables [14].
It is thus remarkable that the RRD and cyclic-RRD decoders,
which contain only binary variables, perform only 0.25 and 0.5
dB worse than the optimal SISO decoder at a BER of10−5.
Note that the RRD and cyclic-RRD algorithms outperform
algebraic HIHO decoding by 1.5 and 1.75 dB at a BER of
10−5. The RRD and cyclic-RRD decoders outperform HIHO
decoding by similar margins.

The RRD algorithms outperform the corresponding cyclic-
RRD algorithms by approximately 0.25 dB at a BER of10−5

for bothC5 andC6. The RRD algorithms consider all possible
permutations inPer (C5) andPer (C6), rather than the subset
of permutations corresponding to cyclic shifts, and are in
some sense more random than the cyclic-RRD algorithms.
For certain codes, subgroups of the permutation group may be

easier to specify than the full permutation group. For example,
the permutation groups of a length2m Reed-Muller code is
the general affine groupGA(m) whose subgroupGL(m) (the
general linear group) is generated by two elements. The results
of Figure 3 indicate that random redundant iterative decoding
algorithms which use such easily specified subgroups may
have performance characteristics that, although worse than
those RRD algorithms using the full permutation group, are
nonetheless interesting.

V. CONCLUSION

This work introduces random redundant iterative decoding
(RRD) which can be viewed as an extension of Jiang and
Narayanan’s algorithm [3] for cyclic codes to arbitrary block
codes. This work also demonstrated how a number of recently
proposed iterative SISO decoding algorithms for block codes
belong to a common class of algorithms defined by redundant
Tanner graphs. It was shown that RRD is an attractive example
of a redundant Tanner graph algorithm both in terms of its
complexity and its applicability to arbitrary linear block codes.
Furthermore, it was demonstrated empirically that the RRD
algorithm can outperform Jiang and Narayanan’s algorithm
when applied to cyclic codes.

REFERENCES

[1] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linköping University (Sweden), 1996.

[2] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE
Trans. Information Theory, vol. IT-27, pp. 533–547, September 1981.

[3] J. Jiang and K. R. Narayanan, “Iterative soft decision decoding of Reed-
Solomon codes,”IEEE Communications Letters, vol. 8, no. 4, pp. 244–
246, April 2004.

[4] A. Kothiyal, O. Y. Takeshita, W. Jin, and M. Fossorier, “Iterative
reliability-based decoding of linear block codes with adaptive belief
propagation,”IEEE Communications Letters, vol. 9, no. 12, pp. 1067–
1069, December 2005.

[5] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. North-Holland, 1978.

[6] J. Chen and M. P. C. Fossorier, “Near optimum universal belief
propagation based decoding of low-density parity check codes,”IEEE
Trans. Communications, vol. 50, no. 3, pp. 406–414, March 2002.

[7] T. R. Halford and K. M. Chugg, “An algorithm for counting short cycles
in bipartite graphs,”IEEE Trans. Information Theory, vol. 52, no. 1, pp.
287–292, January 2006.

[8] F. Celler, C. R. Leedham-Green, S. H. Murray, A. C. Niemeyer,
and E. A. O’Brien, “Generating random elements of a finite group,”
Communications in Algebra, vol. 23, pp. 4931–4948, 1995.

[9] T. R. Halford, A. J. Grant, and K. M. Chugg, “Which codes have 4-
cycle-free Tanner graphs?” January 2006,submitted to ISIT 2006.

[10] D. J. Muder, “Minimal trellises for block codes,”IEEE Trans. Informa-
tion Theory, vol. 34, no. 5, pp. 1049–1053, September 1988.

[11] A. R. Calderbank, G. D. Forney, Jr., and A. Vardy, “Minimal tail-biting
trellises: the Golay code and more,”IEEE Trans. Information Theory,
vol. 45, no. 5, pp. 1435–1455, July 1999.

[12] C.-C. Lu and L. R. Welch, “On automorphism groups of binary
primitive BCH codes,” inProc. IEEE Symposium on Information Theory,
Trondheim, Norway, June 1994, p. 51.

[13] A. Lafourcade and A. Vardy, “Lower bounds on trellis complexity of
block codes,”IEEE Trans. Information Theory, vol. 41, no. 6, pp. 1938–
1954, November 1995.

[14] P. Shankar, P. N. A. Kumar, H. Singh, and B. S. Rajan, “Minimal tail-
biting trellises for certain cyclic block codes are easy to construct,”
Lecture Notes in Computer Science, vol. 2076, pp. 627–638, 2001.


