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Abstract—The spurious free dynamic range (SFDR) is com-
monly used as a measure of dynamic range for the radio frequency
and microwave front-end receivers. Although well defined
in narrow-band systems, the definition becomes less clear in
wide-band systems, when the nonlinearity is memoryless and
the the noise figure is frequency dependent. To generalize the
SFDR to wide-band systems, a meaningful physical interpretation
of the conventional two-tone test is first developed. Based on
this interpretation, the upper bound of the wide-band SFDR is
obtained by applying a multitone test, while the lower bound is
computed using the effective noise figure. The multitone test in
both the memoryless and memory nonlinear Volterra systems is
considered. A practical measurement technique to characterize
the Volterra kernel is also provided. A realistic example based
on a low noise amplifier shows a significant difference between
the conventional and wide-band SFDR values. In this example,
our results suggest that the use of two tones widely separated in
frequency to model the interferers provides sufficiently accurate
results compared to a multitone approximation.

Index Terms—Circuit theory, distortion analysis, dynamic
range, intermodulation product, noise figure, Volterra series,
wideband communications circuit.

I. INTRODUCTION

I N radio-frequency (RF) and microwave front-end receivers,
the spurious-free dynamic range (SFDR) is commonly used

to determine the input power range in which the received signal
can be detected in the presence of noise and amplified without
nonlinear interference [1], [2]. The lower bound of the SFDR
is set by the input-referred noise floor, which is determined by
the receiver noise figure (NF). The upper bound is defined as
the interferer power level at which an undesirable intermodula-
tion product equals the noise power. This undesirable product
is the third-order intermodulation product term , which
is typically the dominant source of nonlinear interference. As
a result, we subsequently consider the third-order nonlinearity
only when determining the upper bound of the SFDR. The
is incorporated into the SFDR expression by determining the
input-referred third-order intercept point (IIP3), which can be
readily obtained experimentally using the two-tone test.

The underlying assumption when computing the SFDR is
that the NF is constant and the nonlinear system is memory-
less. Since this assumption is valid only in narrow-band sys-
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tems, the SFDR is not well defined in wide-band systems. In
this paper, a modified definition of SFDR is proposed to gener-
alize the conventional SFDR to wide-band systems. In this def-
inition, the NF metric used to determine the lower bound is the
effective NF proposed in [3]. Defined as the weighted harmonic
mean of the measured spot NF across the frequency band of in-
terest, the effective NF represents the loss in the achievable per-
formance after the digital signal processing. To determine the
upper bound, a multitone test based on a meaningful physical
interpretation of the conventional two-tone test is proposed. In
this test, the input tones are viewed as approximating the input
interference signal spectrum. The upper bound then corresponds
to the maximum nonlinear interference in the signal band of in-
terest when all third-order nonlinear products (including )
are considered.

The organization of this paper is as follows. In Section II, the
Volterra series expansion which is used to characterize the gen-
eral nonlinear system [4]–[7] is reviewed. Section III presents a
modified definition of SFDR so that it can be extended to wide-
band systems. The SFDR of a memoryless nonlinear system is
discussed in Section IV. The SFDR of a general Volterra system
is described in Section V, including numerical results. Conclu-
sions are drawn in Section VI.

II. REVIEW OF THE VOLTERRA SERIES EXPANSION

Consider a weakly nonlinear system with input and
output . According to the Volterra theory [5]–[7], the non-
linear system can be modeled as an infinite sum of the linear
response (first order) and the higher order nonlinear re-
sponse (for ) as shown in Fig. 1. The total response
at the output can then be written as

(1)

where is the Volterra kernel of the th-order
Volterra system.

Suppose that the input of the nonlinear system consists of
equally-powered sinusoidal signals, i.e., [8], [9]

(2)
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Fig. 1. General memory weakly nonlinear system.

where denotes the magnitude, and and are the fre-
quencies and phases, respectively, of the th input tone, for

. Note that the frequency with the negative index
is defined as the negative frequency, e.g., .

Substituting (2) into (1), the output of the th-order Volterra
system is given by [10], [11]

(3)

where
is the -dimensional Fourier

transform of . Since the Volterra kernels are
generally real in time domain in practice, their frequency
domain representations are conjugate symmetric.

A. Classifying the Nonlinearity Products

Throughout this paper, we assume that the nonlinear inter-
ference of the receiving system is dominated by the third-order
nonlinearity product . The second-order nonlinear inter-
ference generate out of band frequency components, and there-
fore, they are ignored. Although the subsequent analysis can be
generalized to include higher order distortions, they are assumed
to be negligible for simplicity.

Denoting (or ) as the positive (or negative) frequency
of the th input tone and a nonnegative integer as the number
of times that appears in the Volterra kernel, the frequency of
the term can be written in terms of the frequency mixes
(i.e., the sum of weighted by ) by [7]

(4)

where the weight is subject to the following constraint:

(5)

According to (4) and (5), the frequency mix which generates
the inband consists of either two or three separate frequen-
cies, where the positive and negative frequencies are counted
separately. For both cases, the frequency mix that generates a
positive inband is always generated from two positive fre-
quencies (which we refer to as and ) and one negative fre-
quency (i.e., ) for . When is gener-

ated from two separate frequencies, which occurs when ,
we refer to it as the two-toned . Similarly, when , the
resulting is referred to as the three-toned . A distinc-
tion between the two-toned and the three-toned are made
because of the difference in the magnitude of the resulting
tone as described shortly. In both cases, the resulting tone
frequency becomes the direct sum of , and , i.e.,

(6)

As an example of possible frequency mixes that generate
, consider a three-tone test where the positive frequencies

are denoted as , , and . Examples of the two-toned
are , and , where are (1, 1,

), (1, 1, ) and (1, 1, ), respectively. The first frequency
mix (where ) results in gain compression/expansion
[12]; while the last two are typically referred to as the third-order
intermodulation product, which we denote as [12]. Exam-
ples of the three-toned are , and

, where are (1, 2, ), (1, 3, ) and
(1, 2, ), respectively. The first frequency mix (i.e., )
causes gain desensitization [12]; while the last two are the fre-
quency mixes of three different frequencies, which we subse-
quently refer to as three-tone frequency mix. In this paper, we
consider all third-order nonlinear distortions, not just the
terms, when determining the SFDR.

B. Expressing the Nonlinear Products’ Power

Based on (3), the amplitude of the tone at is

(7)

where , and are given according to (6) and denotes
the set of all possible combinations of the indexes at
which (6) is satisfied for a given , i.e.,

(8)

and

(9)

is used to differentiate between the two-toned and three-toned
[7]. Using (7), the corresponding power of the at

is

(10)
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where is the source resistance (typically 50 ) and the
phases of the equally spaced multiple sinusoidal tones applied
to the input of a memoryless system are assumed to be inde-
pendent random variables that are uniformly distributed from
0 to .

A common measure of the degree of nonlinearity is the inter-
cept point, which occurs in the two-tone test when the input-re-
ferred fundamental and powers are equal. A similar mea-
sure of nonlinearity can be obtained when tones are applied
by defining the -tone IIP3 as the input power of
a single tone that equals the input-referred power at .
Mathematically, can be determined by equating (7)
to the fundamental magnitude (i.e., ) and solving
the resulting equation for , i.e.,

(11)
Note that when and only the terms are
considered, (11) reduces to the conventional IIP3, i.e.,

(where
for any ). is subsequently used to determine the
upperbound of the wide-band SFDR definition.

III. SPURIOUS FREE DYNAMIC RANGE

A. Reviewing the Conventional SFDR Definition

The SFDR is the input signal power range in which the re-
ceived signal can be detected in the presence of noise and ampli-
fied without nonlinear distortion [1], [2]. The upper bound
of the conventional SFDR is defined as the input signal power at
which the power equals the noise power at the output and
its lower bound is simply the input signal power that results in a
signal-to-noise ratio (SNR) of 0 dB. The lower bound can
be obtained by computing the input referred noise power ,
which is the product of the thermal noise power spectral density

, the bandwidth of interest , and the NF (or simply ),
i.e., .

The upper bound of the conventional SFDR is determined
by applying two sinusoidal signals with equal power that are
closely spaced in frequency. Assuming the two frequencies are
at and , the linear output power (e.g., at ) and the
product output power (e.g., at ) are plotted against the
power of the input tone ( , where is 50
and is the tone amplitude). As shown in Fig. 2, they are il-
lustrated by lines 1 and 2, respectively. Using the input referred
noise power and the IIP3 (i.e., ),
which occurs at the intercept of lines 1 and 2, the upper bound
and lower bound of the SFDR can be readily shown to be

and , respectively. Using and
, the SFDR (as expressed in decibels) can is given by

(12)

The underlying assumption when computing the SFDR is that
the nonlinear system is memoryless and the NF is constant in

Fig. 2. Computing SFDR using the power tranfer characteristic plot.

Fig. 3. 2-tone and Q-tone approximation.

the frequency bandwidth of interest . In wide-band systems,
both of the assumptions are not necessarily valid. As a result,
the conventional SFDR definition is generalized as described in
subsequent sections so that it remains meaningful in wide-band
systems.

B. Multitone Test

The modified definition of SFDR is based on a meaningful
physical interpretation of the conventional two-tone test. As
shown in Fig. 3(a), the two input tones are viewed as approx-
imating the signal spectrum of two interferers, each of which
consists of a constant power-spectral density (PSD) of magni-
tude and bandwidth and is separated by . Each tone
with power then models the spectrum of one of the
interferers. When viewed from this physical perspective, an im-
proved approximation of is possible by employing
tones instead of two tones as in the conventional two-tone
test. In this multitone test (or -tone test), tones that are
equally spaced with a frequency spacing of
Hz are each used to approximate one of the interferer signal
spectrum. In addition, each of the input tones are assumed
to have equal power and independent phase.
When multiple tones are applied, not only but all other

products must be considered. An example is illustrated in
Fig. 3(b), where the input referred product at a particular
frequency (as illustrated by the short arrow) is generated by the
frequency mix of three input tones (as illustrated by the long
arrows).

C. Defining the Wide-band SFDR

Using the -tone test, the upper bound of the wide-band
SFDR is defined as the minimum at which the maximum

power-to-noise power ratio (NNR) in the frequency band
of interest, or , equals to one (or 0 dB) as goes to infinity
(or equivalently, goes to zero). To compute , the first step
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is to search over for corresponding to the maximum
NNR. Note that this , which we denote as , is the same re-
gardless of as can be readily observed from (10). The search
for can be mathematically written as

(13a)

(13b)

where is the input noise power
in the subband with the bandwidth of and the center at .
Note that, to obtain (13b), we substitute (10) into (13a) and then
compare the result with (11). Once is determined, the upper-
bound is then computed by solving for at which NNR at
is equal to 0 dB. The upperbound of SFDR can be shown to be

(14)

where the multiplication by is necessary as of the wide-
band SFDR is defined in terms of instead of as in the
conventional SFDR.

The lower bound of the wide-band SFDR is based on the
equivalent noise power in the frequency band of interest. A po-
tential difficulty of computing is that its spot NF varies with
frequency, resulting in a nonflat noise spectrum. As described in
[3], the equivalent NF (subsequently referred to as ) is the
harmonic mean of the spot NF within the bandwidth of

. Consequently, the equivalent noise power is times
, and the lower bound is then simply

(15)
Note that the lower bound is the same as in the conventional
SFDR when the spot NF is constant in the frequency band of
interest, since becomes the spot NF.

Having defined the upper and lower bounds in (14) and (15),
the wide-band SFDR can be computed by taking the limit as
goes to infinity (or equivalently, goes to zero), i.e., we obtain
(16), shown at the bottom of the page.

IV. MEMORYLESS MULTI-TONE TEST

In this section, the wide-band SFDR definition is used to de-
termine the SFDR of a nonlinear system that is memoryless and
has constant NF in the frequency band of interest. Under these
assumptions, the wide-band SFDR in (16) can be simplified as

(17)

which reduces to the conventional SFDR when (see
(12)). According to (17), the computation of SFDR entails
searching for to maximize the summation in the denom-
inator of the second bracket, which requires enumerating all

products that are generated at . In this section, the
enumeration process is first described before comparing the
wide-band and conventional SFDR in a memoryless system.

A. Enumerating the Terms

Given input tones, all the products that are generated
at are enumerated. For clarity of discussion, the enumera-
tion procedure is described using an example of equally spaced
four-tone test. Here, the input frequencies are denoted as , ,

and and the difference between two frequencies is a mul-
tiple of . To enumerate all possible combinations that
generate , we sequentially vary in (6) from to . Ac-
cording to (6), the frequency mix can be written as

(18)

where the rows in the bracket on the right-hand side of (18) cor-
responds to the different positive frequencies in the fre-
quency mix. For the case of , for example, the re-
maining positive and negative frequencies are selected
such that their difference satisfy the following equations:

(19)

which is obtained according to (18).
In each row of (19), multiple choices of and that gen-

erate are possible. The enumeration of , and
can be better illustrated using the arrow diagram as shown in

Fig. 4, where the arrows in each row correspond to the same
values and the direction of the arrows are from the column to

. For example, arrows 1 and 2 at the bottom row of Fig. 4 cor-
respond to frequency mix of and ,
respectively.

When enumerating all frequency mixes that generate at
, it is important to distinguish between contributions from

the two-toned (when ) and three-toned (when
) as their values of are different. Using the arrow dia-

gram, a frequency mix of the two-toned occurs when the
frequency to which the arrow is pointing is the same as the row
in which it belongs. In our example, the two-toned are
arrows 0 and 3, which represent the gain expansion/compres-
sion and terms, respectively. By removing the arrows cor-
responding to the two-toned , the remaining arrows are the

(16)
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Fig. 4. Equally spaced 4 tone test.

three-toned . It is important to note that every arrow repre-
senting the three-toned is repeated. This occurs because,
for a fixed value of , the values of and which are dif-
ferent can be interchanged to yield the same . In our ex-
ample, arrows 6, 7, and 8 in row , which represent
the gain desensitization terms, are the same as arrows 1, 4, and
11, respectively. Similarly, arrows 2 and 5 are the same as ar-
rows 9 and 10, all of which correspond to the frequency mix
of three different frequencies. Since all three-toned are re-
peated in the arrow diagram, the total number of three-toned

is simply half of the total number of arrows corresponding
to the three-toned in the arrow diagram.

For a more general system with input tones, the process
of maximizing the summation in the denominator of (17) con-
sists of the following steps. We first list all possible com-
binations using the arrow diagram that generate a given .
The next step is to identify the arrows corresponding to the
two-toned by comparing the direction of the arrows and
the row to which they belong. When computing the sum, the
weight of one is given to the frequency mix of the two-toned

whereas the weight of two is given to the rest. This process
is repeated by selecting a different in the frequency band
of interest to determine the largest summation value in the de-
nominator of (17).

B. Memoryless System Example

The conventional and wide-band SFDR are compared in a
memoryless nonlinear system with constant NF. The input to
the nonlinear system consists of two interferers, each with band-
width and spacing as illustrated in Fig. 3. In Fig. 5, the
difference between the wide-band and conventional SFDR is
plotted as a function of . It is worth noting that this plot
is the same regardless of the degree of nonlinearity, since the
difference in SFDR is independent of the degree of nonlinearity
in a memoryless nonlinear system as can be easily seen by com-
paring (12) and (17). In Fig. 5, the plots with the circle, square
and the star symbols correspond to of 2, 10 and 100, respec-
tively. The use of 10 tones seems sufficient to accurately ap-
proximate the wide-band SFDR. As the spacing between the
two input interferer signal widens, the difference between the
wide-band and conventional SFDR gradually reduces from 2

Fig. 5. Comparing the wide-band and conventional SFDR for the memoryless
system.

dB (when ) to approximately 0.6 dB (when is
greater than 1.6). Since the difference between the conventional
and wide-band SFDR definition is within 2 dB, the conventional
SFDR is a reasonably good approximation for memoryless non-
linear systems.

V. MEMORY MULTITONE TEST

In this section, the equally spaced multitone test is applied to
a general memory nonlinear system. In this case, the Volterra
kernel is no longer constant but is frequency dependent. The
computation of the SFDR given in (16) requires searching for

that minimizes the function in the second bracket. The
denominator of this function is computed using a similar enu-
meration technique as described in the memoryless case, except
that the sum of is weighted by the Volterra kernels. Since
knowledge of the Volterra kernel is necessary to determine the
SFDR in a general memory nonlinear system, a novel approach
for determining the third-order Volterra kernel is first described.
The SFDR computation for the low noise amplifier (LNA) is
then provided as an example of the general memory nonlinear
system.

A. Measuring the Third Order Volterra Kernel

As discussed earlier, the frequency mixes associated with the
third-order nonlinear distortion consists of gain expansion/com-
pression, gain desensitization, and three-tone frequency
mixes. The Volterra kernel for the tones generated by the
first three frequency mixes can be obtained by applying two
input tones; whereas three-tone tests need to be performed to
determine the Volterra kernel for the three-tone frequency mix.
Note that although the gain desensitization frequency mix is
generated by a two-tone test, it is a three-toned as stated
in Section II.

When determining the Volterra kernels for gain expan-
sion/compression and gain desensitization using the two-tone
test, the difficulty is that these two tones occur at the same
frequency as the input tone frequencies, making differentiating
the tones from the linear tones impossible. This problem
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Fig. 6. Measuring the Volterra kernels.

TABLE I
MAPPING THE ARROWS TO THE KERNELS

can be overcome by applying three input tones for the two-tone
test as shown in Fig. 6(a). Here, the long arrows represent tones
at the input frequency and the short arrows are the tones
generated by the nonlinearity. When applying three tones for
a two-tone test at and , for example, the first two tones
are closely spaced at and (for sufficiently small,
e.g., 1 MHz), and the third tone is placed at . The magnitude
of the Volterra kernel of the gain expansion/compression and
desensitization, i.e., and ,
can then be determined by measuring the output power of
arrows 1 and 4. The other Volterra kernels for the two-tone
frequency mix that cannot be measured from setup in Fig. 6(a)
(i.e., and ) can be obtained
from the setup in Fig. 6(b). The only difference between the
two setups is that the two closely spaced tones are placed
at instead of at . In addition, by performing the exper-
imental setups in Fig. 6(a) and (b), the two Volterra kernels
corresponding to the kernels, i.e., and

, can also be determined by measuring the
output power of arrows 5 and 6.

The Volterra kernels of the three-tone frequency mix is deter-
mined by applying a three-tone test. For a three tone test at ,

and , for example, three tones are applied at , , and
to prevent the output products from overlapping. As

shown in Fig. 6(c), the Volterra kernels of ,
and are obtained by mea-

suring the output power of arrows 11, 12 and 13, respectively.
In addition, all of the kernels associated with the products
can also be determined using this three-tone test. The mapping
between the output tones and the corresponding Volterra kernel
is summarized in Table I.

Fig. 7. LNA with reactive degeneration.

Also note that, when estimating the third-order Volterra ker-
nels, the input power is set so that an incremental increase in
the input power results in the input referred nonlinear power in-
creasing at approximately three times as fast. In this input power
region, the third-order nonlinearity dominates and the higher
order nonlinearities can be safely ignored.

When the signal is approximated using tones, the number
of two-tone tests required to determine the Volterra kernels as-
sociated with gain expansion/compression, gain desensitization
and the terms is the number of combinations of tones
taken two at a time, i.e., . Similarly, the number of
three-tone tests necessary for the Volterra kernel associated with
the three-tone frequency mix is the number of combinations of

tones taken three at a time, i.e., . Al-
though a large number of two-tone and three-tone tests may be
required, the tests can be readily automated.

B. Memory System Example

As an example of a memory nonlinear receiving system with
frequency dependent NF, a commonly used LNA with inductive
degeneration is chosen [13], [14]. Fig. 7(a) shows the circuit
schematic of the inductive degeneration LNA, which consists of
the cascoded equally-sized MOS transistors ( and ) with
source degeneration inductor . The purpose of adding is
to provide a 50- input impedance without adding the resistive
thermal noise, although lower NF can be achieved by relaxing
the 50- constraint. For a given , the LNA resonant frequency
can be selected by appropriately choosing inductance values
and in Fig. 7(a).

The input to the LNA consists of two interferers, each with
bandwidth and spacing as illustrated in Fig. 3. As shown
in Fig. 7(b), the frequency band of interest is centered at the
resonant frequency of the LNA so to achieve maximum linear
gain. The 3-dB gain bandwidth of the LNA is denoted as .

In Fig. 8, the wide-band SFDR of the LNA is plotted against
for different values. Since the LNA is typically

designed so that the LNA gain bandwidth is greater than
the signal bandwidth , less than one are considered
only. To determine the linear and third-order Volterra kernels for
the SFDR computation, Cadence SpectreRF was used to simu-
late an LNA resonating at 2 GHz. The LNA was designed in
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Fig. 8. Comparing SFDR of the LNA using the wide-band and conventional
definition.

0.25- m CMOS technology and dissipates 10 mW. Although
not shown, tones is sufficient to achieve performance
close to infinite tones. In Fig. 8, the difference in the wide-band
SFDR between (as illustrated by the dash line) and 20
(as illustrated by the solid line) is less than 2 dB. This suggests
that the two tone approximation is sufficiently accurate for the
wide-band SFDR.

For comparison, the conventional two-tone test is also plotted
in Fig. 8. Unlike in the two tone approximation described above,
the conventional two-tone test is not well defined when the non-
linear system has memory and/or the NF is not constant in the
frequency band of interest. Therefore, the conventional SFDR
given in (12) is computed by placing the two tones at the res-
onant frequency to satisfy the memoryless assumption and by
assuming that the NF is the spot NF at the resonant frequency.
Unlike the conventional SFDR (as illustrated by the star sym-
bols), the wide-band SFDR first decreases slightly before in-
creasing. A large difference in SFDR is observed between the
conventional and wide-band SFDR in memory nonlinear sys-
tems. For example when , the difference is 5, 12 and
16 dB for , 2 and 3, respectively.

VI. CONCLUSION

The SFDR is commonly used as a measure of dynamic range
for the RF and microwave front-end receivers. Since the SFDR
is not well defined in wide-band systems, the conventional
SFDR is generalized based on a meaningful physical inter-
pretation of the conventional two-tone test. In this definition,
multiple input tones are applied to better approximate the input
interference signal spectrum. The upper bound of the wide-band
SFDR is defined as the minimum signal power at which the
maximum NNR is 0 dB and its lower bound is the equivalent
noise power obtained using the effective NF. Although a large
difference between the conventional and wide-band SFDR is
observed for memory nonlinear system, a two-tone test with
tones separated in frequency provides reasonably accurate

results compared to an infinite-tone test. This suggests that a
simple separated two-tone test may be sufficient to quantify a
general nonlinear system.
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