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An Adaptive Maximally Decimated Channelized 
UWB Receiver with Cyclic Prefix
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Abstract - The frequency channelized receiver based on
hybrid filter bank is a promising receiver structure for ultra-
wideband (UWB) radio because of its relaxed circuit require-
ments and robustness to interference. The uncertainties in the
analog analysis filters and the time varying nature of the propaga-
tion channels necessitate adaptive methods in practical frequency
channelized receivers. Adaptive synthesis filters, however, suffer
from slow convergence speed especially when maximally deci-
mated to reduce the ADC sampling frequency. To improve the
convergence speed, cyclic prefix (CP) is applied to the transmitted
data. The propagation channel and the channelizer can then be
modeled as a circulant matrix (CM) and block circulant matrix
(BCM), respectively. Such matrix representation enables the
transmitted data to be recovered by two cascaded one-tap equaliz-
ers, one of which corresponds to the channelizer and the other to
the propagation channel. The cascaded structure is attractive as it
allows the estimation of the propagation channel and the channel-
izer, which vary at vastly different rates, to be updated separately.
Adaptive algorithms for both the fractionally spaced equalizer
(FSE) and the symbol spaced equalizer (SSE) are derived. After
initial convergence during startup, the adaptive performance of
the channelized receiver to different propagation channels is simi-
lar to that of an ideal full band receiver. 

Index Terms - Adaptive, channelized receiver, cyclic prefix,
equalization, filter bank, ultra-wideband

1  INTRODUCTION
UWB system is characterized by its huge signal band-

width of generally several gigahertz. Since digitizing such a
wideband signal at least at the signal Nyquist rate is difficult
using a single ADC, parallel ADCs need to be employed. Max-
imally decimated frequency channelized receivers based on
hybrid filter banks (HFB) achieve an effective sampling fre-
quency that is M times the ADC sampling frequency, where M
is the number of parallel ADCs [1]. Among the advantages of
the frequency channelized receiver compared to the more con-
ventional time channelized (i.e., time-interleaved ADC)
receiver are the ease of designing the sample/hold circuitries,

greater robustness to jitter/phase noise, and reduced ADC
dynamic range requirements.

After passing through the analysis filters then sampling
using parallel ADCs, an approach for detecting the received
signal is to first reconstruct the channelized signal and then
process the sampled full band signal as in the conventional
receiver. Design of perfect reconstruction (PR) or approxi-
mately PR HFB has been explored [2][3]. A major challenge is
that the digital synthesis filters require accurate knowledge of
the transfer functions of the analog analysis filters, which may
be unavailable in practice because of the uncertainties resulting
from process and temperature variations.

The uncertainties in the analog analysis filters and the
time varying nature of the propagation channels necessitate
adaptive methods in practical frequency channelized receivers.
Adaptive synthesis filters, however, suffer from slow conver-
gence speed especially when maximally decimated [4][5]. As
fast adaptive filter banks are required to quickly track varia-
tions in the wireless propagation channel, the slow conver-
gence speed of the existing adaptive maximally decimated
filter banks are ill-suited in UWB systems.

To achieve faster convergence, the proposed approach
transmits blocks of data with cyclic prefix (CP). Cyclic pre-
fixed data transmission is popular in both the multicarrier [6]
and single carrier modulation [7] as it is efficient in combating
intersymbol interference (ISI). Because of the large time dis-
persion caused by dense multipath propagation, transmission
with CP is a promising approach in UWB systems. CP limits
the matrix representation of the propagation channel to a circu-
lant matrix (CM) subspace instead of the space for all possible
channel models. The CM subspace matrices can be decom-
posed into the multiplication of two fixed DFT/IDFT matrices
and a diagonal matrix, which can be compensated by a set of
one-tap equalizers. Two primary examples of communication
systems that exploit the structural properties of the CM are
cyclic prefixed single carrier (CP-SC) and orthogonal fre-
quency division multiplexing (OFDM) systems. Their main
difference is that OFDM, unlike in CP-SC, employs an IDFT
operation at the transmitter, resulting in large transmit power
peak-to-average ratio (PAR) [8]. Although the reception tech-
nique proposed in this paper is equally applicable to both CP-
SC and OFDM systems, we focus on CP-SC system because of
the smaller PAR. A smaller PAR generally indicates more effi-
cient power usage and simplified power amplifier design,
which is a major implementation challenge in UWB radio [9].

In this paper, we show that as in the full band receiver,
CP data transmission also simplifies the detection process of
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the frequency channelized receiver. The frequency channelizer
can be modeled as a block circulant matrix (BCM), which is a
generalization of a CM. A BCM becomes a CM if the number
of channels in the channelizer is one, which corresponds to the
conventional full band receiver. The properties of BCM were
investigated in [10] and [11] for applications in electromagnet-
ics. In the BCM subspace, all matrices can be decomposed into
two fixed DFT related matrices and a block diagonal matrix
[10]. Additional simplification is possible by exploiting the
structure of subband filters to further decompose the channel-
ized receiver into three fixed DFT related matrices and a diago-
nal matrix. Since the propagation channel is modeled as a CM,
the channelized receiver detection can be achieved by two cas-
caded sets of one-tap equalizers and several DFT/IDFT related
operations. The use of one-tap equalizers simplifies the estima-
tion process, resulting in faster convergence speed.

Adaptive algorithms for the frequency channelized
receiver based on fractionally spaced equalizer (FSE) and sym-
bol spaced equalizer (SSE) are derived. Compared to when
SSE is employed, receivers using FSE achieve improved
steady-state performance but suffer from slower convergence
speed. In both the FSE and SSE based channelized receivers,
the receiver adaptively compensates the propagation channel
and the channelizer separately, each of which vary at vastly
different rates. The one-tap equalizers for the frequency chan-
nelizer can be fixed or updated very slowly to track variations
in the analog analysis filters after initial convergence. The
adaptive receiver then operates as if its input is from an ideal
full band receiver, resulting in fast tracking of propagation
channel variations. All constant matrices in the adaptive algo-
rithms can be efficiently realized using FFT/IFFT as they are
all related to the DFT/IDFT operation. Simulation shows the
channelized receiver using FSE (or SSE) achieves about the
same performance as that of a conventional ideal full band
receiver using FSE (or SSE). 

The paper is organized as follow. Section II describes the
system model. The general cascaded one-tap equalizer struc-
ture is introduced in Section III. Section IV derives the cas-
caded adaptive algorithms for both the FSE and SSE
channelized receivers. Section V provides simulation results
and conclusions are drawn in Section VI.

2  SYSTEM MODEL
Assuming a block of Kb consecutive symbols are trans-

mitted, the received UWB signal , which is real, is 

(1)

where ak is the kth transmitted antipodal data, T is the symbol
period,  is the real propagation channel response, and 
is the additive white Gaussian noise (AWGN). In CP-SC sys-
tem, a certain number of symbols at the end of each block are
copied and appended to the beginning of the block to form CP.
The length of the CP is set to exceed the impulse response of
the propagation channel. Assuming K data symbols are trans-
mitted in each block, there are  CP symbols.

The UWB system with the frequency channelized
receiver is shown in Fig. 1. The channelized receiver consists
of two parts: analog channelizer and digital equalizer. When
viewed as a HFB, the channelizer is the continuous-time analy-
sis filter and the digital equalizer is the discrete synthesis filter.
The purpose of the channelizer is to decompose the received
signal into multiple frequency subbands so that the ADC
requirements are relaxed. The digital equalizer then compen-
sates for the distortion caused by the channelizer and the prop-
agation channel to detect the transmitted data.

As shown in Fig. 1, the received signal rrec(t) is down-
converted by a set of  equally spaced mixers 
( , fs = 1/Ts). The downconverted signals are
passed through a bank of  continuous-time lowpass analy-
sis filters , then sampled by ADCs at a rate of 1/Ts to
produce the digitized data . Since there are

 ADCs (one ADC in the zeroth subband and two
ADCs in each nonzero subbands), the effective sampling fre-
quency of the receiver is . To obtain sufficient
statistics, the effective sampling frequency must be greater
than the Nyquist rate of the received UWB signal. Assuming
the signal is bandlimited to , the effective sampling fre-
quency is set to be  in this paper. The digital
equalizer then operates on  to produce the estimated out-
put data .

To obtain the discrete equivalent model of the system in
Fig. 1, which is subsequently used for simulation and analysis,
the received signal rrec(t) is sampled at κ/Te, where κ is a posi-
tive integer. Since  and rrec(t) are bandlimited, the dis-
crete model is accurate for sufficiently large κ. The discrete
equivalent model is obtained by oversampling rrec(t), because
the continuous-time convolution in the channelizer can then be
modeled as a discrete-time convolution. Such discrete-time
modeling enables us to exploit the structure of the correspond-
ing matrix representation to produce an efficient one-tap digital
equalizer as will become clear in later sections. Although κ = 4
is used when simulating for accuracy in our discrete equivalent
model, we assume κ = 1 for simplicity when analyzing the fre-
quency channelized receiver. This is a reasonable assumption
since rrec(t) and the channelizer are approximately bandlimited
within . Applying the equivalence theorem of the dig-
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âk

h t( ){ }

1 2Te( )⁄



 To be published, IEEE Trans. on Circuits and Systems I  3 

ital and analog signal processing [13], the lth sample of the mth
subband is

(2)

where  is the initial phase of the mth mixer,  denotes the

c o n v o l u t i o n  o p e r a t i o n ,  ,

 a n d

. When maximally

decimated, the effect of the mixer and lowpass filter can be
readily shown to be equivalent to filtering by . We
assume for simplicity that the mixers are designed so that

 in the remaining part of the

paper. The proposed reception approach can be readily modi-
fied to account for the more general case with arbitrary initial
phase values. The subband noise  is modeled as a dis-

crete white noise v[n] passing through , where v[n] is
the AWGN with a PSD that corresponds to that of v(t). 

In (2), the expression for  can be simplified by first
defining  as

(3)

 can then be written as

(4)

where

(5)

Using (4), the discrete equivalent model for the mth subband is
shown in Fig. 2, where the different sampling rates for each
section are indicated at the bottom.

Although  provide sufficient
statistics of the UWB signal, the discrete spectrum covered by
the Ms subbands is mainly between 0 and π. To form a com-
plete representation of the received signal,  sub-
bands between 0 and 2π are needed. Since the received signal
is assumed to be real, the remaining spectrum is obtained by
conjugating the  nonzero subbands. These subbands are

virtual subbands as they are not actually implemented but are
used to simplify the analysis. For subbands

, the conjugated samples and the cor-
resonding analysis filters are

(6)

(7)
We will subsequently use  subbands instead of

 subbands for analysis.

3  GENERAL EQUALIZER STRUCTURE
In this section, the general cascaded equalizer structure

for the channelized receiver is developed. Towards this end,
we first represent the propagation channel and the channelizer
as a CM and BCM, respectively. Such matrix representations
are possible because of the CP in the transmission blocks. Both
matrices are then diagonalized, so that one-tap equalizers can
be employed. Based on the diagonal decomposition, the cas-
caded equalizer structure is derived.

3.1  Matrix representation of channel and channelizer
When CP transmission is employed, it is well known that

the propagation channel can be modeled as a circulant matrix.
Assuming , where N is the number of samples col-
lected in each subband and K is the number of data symbols in
a transmission block, the CM of the propagation channel is

(8)

Denoting the upsampled data symbols in a transmission block
as , where T denotes trans-
pose, the received signal vector is

(9)
After passing through the channelizer, the nth sample of all M
s u b b a n d s  ( )  i n  v e c t o r  f o r m  i s

 and the corresponding
noise is . The (N - 1)th
sample of all M subbands can be expressed as

(10)
where  are  matrices. All the subband samples in a
transmission block, denoted as ,
is represented as

(11)
where  is the noise
vector, and H is a block circulant matrix defined as
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(12)

3.2  Diagonalizing channel and channelizer matrices
To achieve fast and efficient detection using one-tap

equalizers, both the channel matrix P in (8) and the channelizer
matrix H in (12) need to be decomposed as diagonal matrices.
As P is a circulant matrix (CM), diagonalizing it is straightfor-
ward. P can be decomposed as

 (13)
I n  ( 1 3 ) ,   i s  a  d i a g o n a l  m a t r i x ,  a n d  

 i s  t h e  D F T  m a t r i x ,  w h e r e
. 

Unlike P, H is a block circulant matrix (BCM). Applying
the results of BCM decomposition in [10], H can be decom-
posed as

(14)
In  (14) ,  the  DFT re la ted  mat r i ces  ,

,  ,  where  is a
 identity matrix.  D  is  a block diagonal matrix

, where diag( ) denotes a block
diagonal matrix with the matrices inside the parenthesis on the
diagonal.  is related to  in (12) by DFT/IDFT
operations

(15)

To diagonalize D, which is a block diagonal matrix, we
exploit the structure of the channelizer. As shown in (7), the
subband responses in a channelizer are modulated versions of a
template lowpass filter response. Then, block  in H can be
decomposed as

(16)
where 

(17)

(18)

diag( ) denotes a diagonal matrix with elements in the paren-
thesis on the diagonal. Using (16),  in (15) can then be
written as

(19)

From (19),  can be
decomposed as

(20)
where

(21)

(22)

C is a diagonal matrix because  are all diagonal matrices.
The BCM channelizer matrix H then becomes

(23)
where C is a diagonal matrix and , , and  are DFT/
IDFT related matrices.

3.3  Cascaded equalizer structure
From (11), s can be estimated by multiplying x with

. Inverting (13) and (23),
. To avoid noise enhance-

ment, diagonal matrices  and  are replaced by equaliz-
ers  and , respectively, where the superscript H stands
for conjugate transpose. Both  and  are diagonal matri-
ces. The estimate of s then becomes

(24)
In (24), all matrices are DFT/IDFT related matrices,

except for  and , which are both diagonal matrices. The
elements in  and  can be determined adaptively as
described in the following section.  and  represent one-
tap equalizers for the channelizer and the propagation channel,
respectively. This decomposition reduces the number of
parameters to estimate, resulting in faster convergence speed.
More importantly, the estimation of the propagation channel
and the channelizer, which vary at vastly different rates, can be
updated separately. As a result, the adaptive performance of a
maximally decimated channelized receiver can be made simi-
lar to an ideal full band receiver after initial convergence dur-
ing startup.

4  ADAPTIVE CASCADED EQUALIZERS
As the effective sampling frequency is chosen to be twice

the symbol rate, both equalizers in (24) are FSEs. To achieve
faster convergence at the cost of performance loss [14], the
propagation channel equalizer can be modified to be a SSE. In
this section, adaptive algorithms for both the FSE and SSE are
derived. Adapting the equalizer structure in (24) is not straight-
forward because the equalizers are cascaded. The adaptive
algorithm are derived to minimize the minimum mean squared
error.
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4.1  Fractional Spaced Equalizer
Since only half of the elements in  correspond to the

transmitted data, the data  can be
recovered by dropping every other row of . Defining

,  and

(25)

where  and  are  diagonal matrices, the

estimate of a is obtained as 

(26)

Each output of  is a summation of two one-tap

equalizer outputs, since FSE is employed [12] and the effective
sampling frequency is twice the symbol frequency.

An adaptive algorithm for the equalizer in (26) is derived
to minimize the mean squared error (MSE). Defining the
detection error as

(27)
The MSE of a block of signals is the expectation of .
Since expectations are typically obtained by instantaneous esti-
mations in adaptive algorithms such as in the LMS algorithm,
the derivation is directly based on the squared error

(28)
According to the method of steepest descent, the two

equalizers can be updated with the corresponding gradients.
Denote the diagonal elements of the equalizer  and  as
column vectors  and , respectively. The gradient vectors
are defined as

(29)

The procedure for deriving the gradients of FSE is provided in
the APPENDIX. The results are

(30)

(31)
where  denotes the inner product operation, i.e., element-
wise multiplication. In (30), the input to the equalizer  is

(32)
and the corresponding output error is

(33)

Similarly in (31), the input to the equalizer  is
(34)

and the corresponding output error is

(35)

The gradients can be applied to the adaptive algorithms
by introducing data block index  as the iteration index. By
appending  to all the signals (e.g. ,
etc.), the adaptive equations are

(36)

(37)
where  and  are the update step sizes for the channelizer
and propagation channel equalizers, respectively. The FSE
adaptive structure is shown in Fig. 3.

The cascaded equalizer structure enables the receiver to
track the variations in the propagation channel and the channel-
izer at different rates. This decomposition is important as the
channelizer and the propagation channel vary at vastly differ-
ent rates. After the initial convergence of , which is
achieved after turning on the receiver, the receiver basically
adapts only equalizer , resulting in performance comparable
to an ideal receiver for CP-SC system.

4.2  Symbol Spaced Equalizer
The convergence speed can be further improved by

employing a SSE for the propagation channel. A filter matched
to the transmitted pulse filters the output of the channelizer
equalizer. The output of the matched filter is then decimated to
the symbol rate before passing through the propagation chan-
nel SSE. The use of SSE introduces additional performance
loss because the matched filter before decimation is matched to

ŝ
a a0 a1 … aK 1–, , ,[ ]T=

F 1–

F1 2⁄
1– WMN 2⁄

kn[ ] MN 2⁄( )⁄= k n, 0 … MN 2⁄ 1–, ,=( )

Λe
Λe0 0

0 Λe1
=

Λe0 Λe1
MN

2
--------- MN

2
---------× 
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the transmit pulse and not to the channel pulse response, which
is unknown at the receiver. As a result, the decimated samples
do not provide sufficient statistics for the propagation channel
equalizer, resulting in performance loss.

The matched filter is represented as a 
matrix, which is obtained by dropping every other row of a CM
constructed with the transmitted pulse response. As in (26), the
matched filter matrix can be decomposed as

, where  and  are constant diagonal

matrices corresponding to the matched filter. As the dimen-
sions of the matched filter matrix is , the subse-
quent propagation channel equalizer is a SSE and is given by

. The transmitted data are estimated as

(38)

The gradients of the cost function J on the equalizer taps of 
and  are  and , respectively. Derivation of the
SSE gradients is provided in the APPENDIX. 

The adaptive equations for SSE is similar to those for
FSE. The input and the error signal of the two equalizers are

(39)

(40)

(41)

(42)

Defining  and  as the vector form of equalizer taps of
 and , respectively, the adaptive equations are

(43)

(44)

5  SIMULATION RESULTS
The transmitted data is modulated by a raised cosine

pulse with a roll off factor of 0.8. The symbol period is 0.5ns.
The effective sampling rate is two samples per symbol (i.e.,
4GS/s). The UWB channel model is CM1 model proposed by
IEEE P802.15 working group. 

The channelized receiver is composed of  sub-
bands so that the effective sampling frequency is seven times
the subband ADC sampling frequency. The analog prototype
filter is a fourth order Butterworth lowpass filter whose cutoff
frequency is half of the ADC sampling frequency. Since most
of the multipath energy is within the first 20ns, the CP period is
selected to be 20ns. Each data block includes 280 information
bits and 42 CP bits. In addition to the channelized receiver, the
performance of an ideal full band CP-SC receiver that samples
the received signal at twice the symbol frequency of 4GS/s is
included for comparison. The signal energy is

, and the noise power  is the variance

of . As SSE is sensitive to the sampling time [14], the

sampling time of SSE is selected to achieve the best perfor-
mance.

LMS algorithm is applied to the channelized and full
band receiver structures. The convergence speeds of the FSE
and SSE are compared for the channelized and full band
receivers. The channelized receiver performance is considered
for two different modes of operation -- startup and transition
modes. In the startup mode, the receiver has no prior knowl-
edge of the propagation channel or the channelizer. In the tran-
sition mode, the channelized equalizer  has already
converged based on five different propagation channels. In
both receivers, the step size for the propagation channel equal-
izer is set to be 0.1. The step size for the channelizer equalizer
is set to be 0.005 in transition mode and 0.2 in startup mode to
accelerate the initial convergence. 

The learning curves when  are given in
Fig. 4 and Fig. 5 for the FSE and SSE, respectively. The con-
vergence speed of the channelized receiver in transition mode
is approximately the same as that of the full band receiver. This
result is not surprising since when operating in transition
mode, the convergence speed is set predominantly by the prop-
agation channel equalizer, which has the same structure as that
of the full band receiver. At steady-state, the channelized
receiver performs slightly worse than the full band receiver,
because cascaded adaptive filters generally suffer from addi-
tional excess MSE. The minimum MSE is lower in the FSE
than in the SSE, since the SSE is suboptimal.
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Fig. 4   MSE learning curves of FSE
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The bit error rate (BER) of FSE and SSE are compared in
Fig. 6. The channel is assumed to be constant during a packet
consisting of 200 transmission blocks. In each packet, the first
block is used for training. The channelized receiver is assumed
to operate in the transition mode. The performance of the chan-
nelized receiver and the full band receiver is similar for both
the FSE and SSE. Although the SSE converge faster as shown
in the previous figures, the FSE receiver outperforms the SSE
receiver significantly when only one training block is
employed. 

In Fig. 7, the BER performance of the FSE for both chan-
nelized and full band receivers are simulated for a packet con-
sisting of 200 transmission blocks where the first 1 and 10
blocks are used for training. The channelized receiver operates
in the transition mode. The channelized receiver performance
is similar to that of the full band receiver especially when

 is low to moderate. 

6  CONCLUSIONS
Adaptive FSE and SSE algorithms for maximally deci-

mated UWB channelized receivers with CP transmission are
derived. Applying CP to the transmitted data enables the chan-
nelizer to be modeled as a BCM and the propagation channel to
be modeled as a CM. By exploiting the modulation relations
among the subbands, the BCM is diagonalized. As a result,
equalization for the channelized receiver is achieved by cas-
cading two one-tap equalizers, one of which corresponds to the
channelizer and the other to the propagation channel. This
decomposition allows the propagation channel and channelizer
equalizers to be updated at different rates. After initial conver-
gence of the channelizer equalizer, the performance of the
channelized receiver is similar to that of an ideal full band
receiver. 

APPENDIX

The cost function is defined as the squared error

(45)
To simply notations, define

,

 and 

.

For FSE,

(46)

(47)

Fig. 5   MSE learning curves of SSE

Fig. 6   BER of FSE and SSE with 1 training block

Eb N0⁄

Fig. 7   FSE with 1 and 10 training blocks
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(48)

Because , the gradients with respect to
 are

(49)

(50)

(51)
Summing (49), (50) and (51), the gradient of J with respect to

 is

(52)

To compute , define  and

.  can be expressed as two 

vector 

Gradients with respect to  are

(53)

(54)

(55)
Summing (53), (54) and (55), the gradient of J with respect to

 is

(56)

For SSE, ,  and  are of the same form as

(46)-(48) except that  is replaced by .

, the gradient of J with respect to each equalization tap of

, is readily obtained from (52) with the same replacement.
We omit the equation here. Gradients of the three terms with
respect to each equalization tap of  are 

(57)

(58)

(59)

The gradient of J with respect to the taps of  for SSE is

(60)
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Λe0
H  Λe1

H[ ] Λs
H ρ0

H ρ1
H[ ]

∇scJ

Ce
H

Λs
H

∇sλ a– Hâ( ) ρ0
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