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A New Approach to Rapid PN Code Acquisition
Using Iterative Message Passing Techniques

Keith M. Chugg, Member, IEEE, and Mingrui Zhu

Abstract—Iterative message passing algorithms on graphs,
which are generalized from the well-known turbo decoding algo-
rithm, have been studied intensively in recent years because they
can provide near-optimal performance and significant complexity
reduction. In this paper, we demonstrate that this technique
can be applied to pseudorandom code acquisition problems as
well. To do this, we represent good pseudonoise (PN) patterns
using sparse graphical models, then apply the standard iterative
message passing algorithms over these graphs to approximate
maximum-likelihood synchronization. Simulation results show
that the proposed algorithm achieves better performance than
both serial and hybrid search strategies in that it works at low
signal-to-noise ratios and is much faster. Compared with full
parallel search, this approach typically provides significant com-
plexity reduction.

Index Terms—Loopy graphical models, message passing,
pseudonoise (PN) code acquisition, ultrawideband (UWB).

I. INTRODUCTION

SPREAD-SPECTRUM (SS) techniques are used in many
military communication systems to provide some combina-

tion of ranging capabilities, anti-jam protection, low probability
of detection and/or interception, and multiple-access capability.
A common form of SS is direct-sequence spread-spectrum
(DS/SS) in which the transmitter multiplies a binary data
sequence by a higher rate pseudorandom or pseudonoise (PN)
binary sequence. This procedure is referred as spreading
because it results a binary signal occupying a much wider
spectrum than the original data. Other SS methods, such as
frequency hopping (FH) and hybrid DS-FH are also commonly
used in military systems. Ultrawideband (UWB) systems
are extreme cases of SS and are often characterized by low
duty cycle trains of very narrow pulses. In all of these cases,
spreading is achieved via a pseudorandom sequence. To enable
autonomous reception, periodic PN sequences are used. For
military communication systems, long PN sequences (e.g., long
period) are desirable as the use of shorter PN sequences makes
the link susceptible to repeat-back jamming or interception/
detection via delay and correlate methods [2].

At the receiver’s side, despreading must be performed be-
fore the demodulation of the data sequence. This is accom-
plished by generating a local replica of the PN code and syn-
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chronizing it to the one that is embedded in the received signal.
Thus, quickly achieving and then maintaining PN code synchro-
nization is critical because even a small misalignment can cause
catastrophic signal-to-noise ratio (SNR) degradation. Typically,
this task is performed in two steps: PN code acquisition, where
a coarse alignment of the two PN codes is produced to within
one code-chip interval, and code tracking. The SNR of the ob-
servations during this acquisition process is very low since the
processing gain has not yet been realized prior to despreading.

The most widely used and studied methods for acquiring PN
sequences are full parallel search, serial search [3], and hy-
brid search [2]. In each of these, correlations between the in-
coming, noisy SS waveform and the locally generated refer-
ence are formed. In order to acquire a PN code with long period
quickly, the time duration of these correlations must be a small
fraction of the whole PN code sequence. In the full parallel case,
correlations are formed for all possible PN code alignments so
that the minimum time to achieve reliable acquisition is deter-
mined by how long one must correlate to reliably detect the cor-
rect alignment. This is the maximum-likelihood (ML) decision
for the PN code phase based on the set of observations. Since the
number of correlations needed for full parallel search is the pe-
riod of the PN sequence, this method is infeasible for military
systems using very long PN codes. Simple serial search rep-
resents the other extreme wherein only one of the correlations
used in full-parallel search is formed and a threshold test is per-
formed to determine if it is the correct alignment. If the threshold
test fails, another set of observations is collected and used to
correlate against another reference PN code alignment. Since
many such tests are required, simple serial search provides rela-
tively slow acquisition for long PN codes. Hybrid search tests a
small set of possible alignments in parallel and then repeats this
test on another set of observations until the correct alignment is
discovered.

Full parallel search is fast to acquire, but complex. Serial
search is simple, but slow to acquire. Hybrid search provides,
at best, a linear-scale tradeoff between these two extremes (e.g.,
a hybrid search with four parallel correlators is four times faster
and four times as complex as serial search). In this paper, we
present the first method for achieving PN acquisition at low
SNR as fast as full-parallel search, but with significantly lower
complexity.1 Our approach is based on the paradigm of mes-
sage-passing on graphical models and more specifically, itera-
tive message passing algorithms (iMPAs) and graphical models
with cycles [5]–[8]. This is a generalization of the “turbo” de-

1Sequential search [4] is a suboptimal method for fast acquisition, but is
highly vulnerable to noise and interference signals [2]. It is not widely used
and will not be discussed in this paper.
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Fig. 1. Sample waveform and diagram of the associated PN acquisition
problem for two spread-spectrum systems. (a) A low duty cycle UWB
system where the frame epoch and PN code phase must be determined. (b) A
direct-sequence system where only PN code phase need be acquired. The DS
system is modeled with the complex baseband equivalent signal.

coding algorithm [9]. In this approach, no correlation to a single
PN reference signal is computed explicitly. Rather, the global
structure in the PN sequence is modeled as a set of coupled
local constraints and correlations are formed against these in-
complete, local structures. This may be viewed as an approxi-
mation to ML acquisition, much in the same way that a turbo
decoder is an approximation of the ML decoder for a concate-
nated code. Therefore, our approach suffers a small performance
degradation relative to full parallel search.

Our primary motivation for this problem is a UWB system
using long PN sequences, for which fast PN acquisition is a
critical necessity. To illustrate this, consider a low duty cycle
train of narrow pulses with PN sequence randomization received
in noise2

(1)

where is the energy per pulse (“chip”) of duration
is a PN code pattern, is the frame time or

time between pulses, is an unknown shift or frame epoch, and
is additive noise. A sample waveform for a noise-free UWB

signal of this form is shown in Fig. 1(a). The PN acquisition
problem is also diagrammed in Fig. 1 in terms of a search over
potential timing bins. This UWB synchronization problem is
more difficult than the corresponding classical DS/SS problem
because the frame epoch must be acquired simultaneously with
the PN pattern. The number of candidate frame epochs to be
searched is on the order of , and for each of these a
complete PN acquisition search is required. The search bins for
a PN acquisition problem are commonly diagramed with a “PN
phase wheel,” as shown in Fig. 1(b), corresponding to one period

2In this paper, we focus on this model where the PN randomization is done by
antipodal modulation of the pulses, which has been used in the UWB prototype
proposed by Berkeley Wireless Research Center [10]. Other methods use pulse
position modulation (PPM) by the PN sequence. In our method, one needs the
likelihood of the chip value for a given noisy observation, so application to PPM
methods and other models is straightforward.

of the PN code. The corresponding diagram for the UWB system
is the “PN-phase/frame-epoch taurus” shown in Fig. 1(a).

For UWB systems with long PN codes, extremely fast PN
acquisition is required. This is not only due to the high level
of timing uncertainty described above, but also the fact that
the true frame epoch will certainly drift due to oscillator im-
perfection and/or platform mobility. More specifically, if the
bins in Fig. 1(a) are tested sequentially and the frame epoch is
drifting, it is possible that the search will never locate the true
epoch—i.e., this may result in a “chasing one’s tail” situation.
Therefore, for a fixed, hypothesized frame epoch, it would be
desirable to search all possible PN pattern phases in parallel. It
is also desirable to complete this search based on a relatively
small number of observations and with reasonable implementa-
tion complexity. The method presented in this paper provides an
attractive solution to this problem that cannot be achieved using
traditional PN acquisition strategies. Similar methods have been
applied to the sparse intersymbol interference (S-ISI) channels
by Chen [11], [12, Ch. 3].

This paper is organized as follows. Section II contains the
signal models considered, Section III contains approximate
analysis of the traditional approaches to PN acquisition, and
Section IV describes the graphical modeling and iMPAs applied
to PN acquisition. Simulation results are provided in Section V
and conclusions are drawn in Section VI.

II. SIGNAL MODELS

Linear feedback shift register (LFSR) sequences having the
maximum possible period for a -stage shift register are called
maximal-length sequences or m-sequences [13]. They have
been successfully employed in a wide range of SS systems
and many other spreading codes can be derived from them. A
binary -stage LFSR is shown in Fig. 2(a). At time , let be
the output, so that is the value of the th
register and the constraint is

(2)

where is modulo 2 addition and ,
are feedback coefficients. The generating polynomial is

, where is the unit delay op-
erator [13]. The maximum achievable period of a -stage LFSR
is and is achieved for primitive when the
initial register contents are not all zero. Note that for prim-
itive holds. The (infinitely long) peri-
odic output sequence generated then can be written as

, where
. In fact, this LFSR is a finite-state machine (FSM), with

evolution determined entirely by the initial contents of the reg-
isters, or the initial FSM state. Specifically, the initial FSM state
is the vector , where denotes
transposition.

The goal of code acquisition is to find the phase of the se-
quence present in the received signal, where
are defined as phases of . In most practical scenarios with long
PN codes, only part of this long sequence is observable, so the
problem can be stated as: for a given number of noisy obser-
vations estimate the initial state . Also, the number
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Fig. 2. Methods for modeling LFSRs. (a) Shows the generator diagram for an r-stage LFSR. (b)–(d) Shows different graphical models for the same 15-stage
LFSR with g(D) = 1 + D + D .

of observations is much larger than the length of the shift reg-
ister, but much less than the period (i.e., ). A
simplified model for these observations is

(3)

This model captures both the DS/SS and UWB systems illus-
trated in Fig. 1, where is the signal energy per chip (pulse)
and is complex circular additive white Gaussian noise
(AWGN) having variance for each of the real and imagi-
nary parts. The term with is applicable only to the traditional
DS/SS system and models the effect of an unknown carrier
phase, assumed to be constant over the observation interval.
We have explicitly denoted the dependency of and the cor-
responding anitpodally modulated on the initial state of the
LFSR . This model is simplified because it does not consider
the effects of oversampling the chip rate, potential frequency
offsets, jammers, etc. Nonetheless, this is the standard model
used for basic characterization of PN acquisition algorithms
[2]. The model in (3) can be written in vector form as

(4)

where is a complex circular
Gaussian vector with zero mean and covariance matrix

for each the real and imaginary parts, where is
the identity matrix.

Since the simple model in (3) is common in the DS/SS liter-
ature, let us consider how it applies to the UWB system mod-
eled in (1), where is AWGN with power spectral density

level of . Using an estimate the frame epoch , the dis-
crete observation is obtained by the following processing:
during time interval , the UWB receiver aligns
a pulse matched filter at , and samples the output at

. If is constant over the time interval
and , a model of the form (3) results. Specifically, since
the UWB signal in (1) has no sinusoidal carrier, the real part of

from (3) is obtained with . In this example, the chip
interval equals , the frame time, as there is only one pulse
every s. Therefore, while we will characterize acquisition
time in terms of the number of chips observed, this value should
be interpreted appropriately for the UWB and DS/SS cases.

In a DS/SS system, is typically unknown at the point of
PN acquisition because the SNR before despreading is too low
to enable carrier phase synchronization and PN acquisition is
performed noncoherently. In this case, is the time duration
of a single PN chip and is modeled as a random variable
uniformly distributed over . which is constant over the
duration of observations.

For compactness, we will use (3)–(4) for these two cases:
1) the DS/SS system with no carrier phase knowledge and
2) the UWB system. Note that if one had knowledge of for
the DS/SS case, the model would be the same as the model
adopted for the UWB system.

III. PERFORMANCE CHARACTERISTICS OF TRADITIONAL

PN ACQUISITION ALGORITHMS

As briefly described in Section I, the three traditional ap-
proaches to PN acquisition all form correlations between the
noisy observation and a local reference generated with a hy-
pothesized PN phase (i.e., despreaders). Specifically, for the
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chip-spaced model in (3) there are possible PN phases which
we denote by . The correlation to the th PN
phase using observations is

(5)

where is the noise-free signal in (4) with the actual
initial state replaced by the hypothesized state . The cor-
relation statistic comprises two parts: a Gaussian noise
term and a partial-period PN autocorrelation [13] term of
the form . The autocorrelation properties of
m-sequences imply that this is nearly zero for . There-
fore, the statistic in (5) is similar to the correlator output for
a detector for -ary orthogonal modulation in AWGN and
methods similar to those used in evaluating the performance
of orthogonal modulations can be employed for the analysis of
traditional PN acquisition algorithms.

Without loss of generality, assume that the actual initial state
is , so that

(6)

(7)

where the independent identical distributed (i.i.d.) sequence
is complex circular Gaussian with real and imaginary parts

having zero mean and variance . For m-sequences
it can be shown [13], [2] that the set of random variables

can be approximately modeled as independent iden-
tically distributed (i.i.d.) zero-mean complex Gaussian random
variables with variance in the imagi-
nary and real parts. Specifically, the nonzero partial-period
correlation between PN phases has been modeled as a small
amount of additional Gaussian noise. This approximation is
used throughout the analysis that follows in this section and is
justified numerically in Section V.

A. Full Parallel Search

Full parallel search finds the ML estimate of the initial state
through exhaustive search over the possible values, yielding
the estimate , where is the
likelihood of and is defined in (4). The acquisition time
for full parallel search is just the observation length , but the
memory requirements and computational complexity both grow
linearly in , which increases exponentially with the length of
the LFSR.

The probability of correct acquisition, , for full parallel
search can be computed approximately using the model in (6)
and (7), since the set of correlations is a set of sufficient
statistics for the model of (3). More precisely, for UWB systems,

with are the variables to be compared,
while for the DS/SS with unknown is the relevant test
statistic. In the former case, this is the output of a depredator
and in the latter case, this is the output of an in-phase/quadrature
(I/Q) despreader followed by an envelope detector.

For the UWB system, correct acquisition is declared only
when is the largest correlator output so that

(8)

where is the complementary cumulative distribution func-
tion of a standard Gaussian random variable, defined as

.
The probability of acquisition of noncoherent full parallel

search can be computed using the same approximation in (6)
and (7). Correct acquisition is declared only when is larger
than all other , so that, via methods similar to those employed
for analyzing noncoherent orthogonal modulations, we obtain

(9)

where is the modified Bessel function of zeroth order
[14, Ch. 2].

B. Simple Serial Search

For the simplified model in (3), simple serial search computes
the likelihood for one candidate initial phase using the
set of observation [3]. More precisely, for the UWB, the
real part of is compared with a threshold, and for the non-
coherent DS/SS case is compared with a threshold. If the
threshold is not exceeded, the current set of observations is
discarded, and correlation over another observations is com-
puted to test another initial state.3 In this case, the observa-
tions correspond to one dwell time [3], and are assumed to
be nonoverlapping. This process continues until acquisition is
declared.

Simple serial search reduces the memory requirements sig-
nificantly and works well at low SNR. However, it is slow since
one needs to try roughly half of the possible PN alignments in
order to locate the correct one. More formally, without a priori
information on the PN phase, the mean acquisition time is [3]

(10)

where is the probability of detection for a single-dwell test,
is the probability of false alarm, and is the penalty time

for a false alarm, measured in dwell times. Considering the
most optimistic case, where and , we have

. So, unlike full parallel
search, simple serial search takes much more than chip times
to acquire on average.

3The reference state must be adjusted for the fact that the tests take place on
different observation sets and the actual PN phase has continued to evolve.
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Also, it can be shown that4

(11)

where and are the probability of detection and false
alarm, respectively, for a single dwell test. Specifically,

is the probability that the threshold is exceeded when
the correct (incorrect) PN phase is used. These can be computed
using the same method employed to obtain (8) and (9).

C. Hybrid Search

Hybrid (serial/parallel) search uses parallel correlators to
test phases in parallel. Like serial search, multiple dwells on dif-
ferent observation sets are generally required. The performance
is again a function of the single dwell probabilities of detection
and false alarm

(12)

(13)

(14)

where , and are the false alarm proba-
bility, global detection probability and mean acquisition
time of -correlator hybrid search respectively. If is
small and the false alarm penalty is neglected,

, and
. Therefore, hybrid search can only trade

complexity with mean acquisition time linearly. Furthermore,
when is sufficiently large, the false alarm penalty will domi-
nate and no further improvement in will be achieved [2].
The probability of acquisition of hybrid search can be obtained
using (11), with , and replaced by , and

, respectively.

IV. GRAPHICAL MODELS OF M-SEQUENCES AND iMPAS

FOR PN ACQUISITION

Graphical modeling and iterative message-passing algo-
rithms have become widely applicable to inference problems
in communications and signal processing, most notably de-
coding of modern error correction codes. A graphical model
captures constraints on variables by connecting variable nodes
to configuration check nodes that constrain the configurations
of the connected variables.5 For example, consider the set

4It is assumed that the system acquires within one single search of theN pos-
sible PN alignments. If this were not the case, threshold tests are not necessary
and a full search could be achieved [2]. Also, an absorbing false alarm state [2]
is assumed.

5The graphical convention adopted is explicit in time index, so that, for ex-
ample, x and x are distinct nodes, but implicit in value, so that, for example,
x = 0 and x = 1 are captured in one variable node. This differs from trellis
diagrams which are explicit in both time index and variable value.

of m-sequence outputs . One graphical model is a
single check node with these binary variables connected.
While there are possible combinations of these binary
variables, the check node enforces the constraint that only

of these are allowable configurations. There are
other graphical models that can enforce the same set of con-
straints. These are obtained by factoring this global constraint
(i.e., involving all variables) into a sets of interdependent check
nodes, each enforcing only local constraints (i.e., involving
only a subset of variables). An example of this is shown in
Fig. 2(b) for the m-sequence with generating polynomial

of degree 15, where we use
the convention that variable nodes are circles and check nodes
are squares. Note that each check node enforces the constraint
that for the appropriate value of

. Thus, the number of valid local configurations is 4—i.e.,
. In

general, let the number of allowable configurations at a check
node be and index these by a variable —e.g., and the
four configurations correspond to , respectively.

For a given graphical model, there is a well-defined mes-
sage-passing algorithm that repeatedly passes messages across
edges in both directions. The MPA combines and marginalizes
messages on variables over the constraints associated with the
check nodes. Specifically, each check node will accept incoming
messages, characterizing some form of soft-decision informa-
tion, on the variables connected to it. These messages, which are
sent from connected variable nodes, are then combined to obtain
soft-decision information (metrics) on all valid local configura-
tions. Finally, these local configuration metrics are marginal-
ized to produce output metrics. Variable nodes with more than
one connection can be viewed as incorporating an equality con-
straint as will become evident.

As a specific example, consider the graph in Fig. 2(b)
and assume the UWB model. Then there is initial chip-level
soft-decision channel information of the form

at the variable node for . These become the
initial input messages for all three check nodes connected to

. Under this convention, a large message means that the
conditional value for is highly unlikely and small mes-
sage corresponds to high confidence in that conditional value.
Therefore, we use the term metric and message interchange-
ably in the following. Focusing on a check node constraining

, let the incoming message on be .
Note that for each variable the message is a list of numbers
for each conditional value of the variable—e.g., in this case

is shorthand for a list of two numbers: and
. With the valid configurations indexed by

is defined for each of these configurations. The processing
associated with a configuration check node can be viewed as a
two step process

combining (15)

marginalization (16)
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where means all configurations consistent with the con-
ditional value . For example, the output message for pro-
duced by the check node constraining is

which uses the fact that configurations are consistent
with and are consistent with , and input
(output) messages to the configuration check node have been
denoted by .

As mentioned, variable nodes connected to multiple check
nodes have an implicit equality constraint, so that message up-
dates take place at variable nodes too. Specifically, consider a
variable and suppose that this variable is connected to check
nodes and that is the incoming message from the th
check node to a variable node, then the output message returned
to the th check is

(17)

which should be interpreted as an equation for each conditional
value of —e.g., for binary , one for and another for

. Note that this is equivalent to (15) and (16), where
each valid configuration corresponds to all connected variables
taking the same value. As a concrete example, consider the
variable node for in Fig. 2(b), which is connect to three
checks constraining , and

. This node has a channel message
and three messages that were output from the previous activa-
tion of the connected check nodes. The variable node will return
to a given check node the sum of the messages from the other
two checks and the channel metric.

The message update (15)–(17) are general and define the pro-
cessing for all standard MPAs. There are different choices for
the format of the messages and the combining and marginaliza-
tion operators. In the above discussion, we used messages in the
form of negative-log of probabilities and min-sum marginaliza-
tion and combining. In the numerical results, we also consider

-sum marginalization and combining where

(18)

Specifically, -sum algorithms perform the processing in
(15)–(17) with the min operators replaced by operators.

While the above defines the processing associated with mes-
sage updating, in order to specify a MPA, one must define the
graph (connectivity and constraint definitions) and an activa-
tion schedule, which is the order that the variable nodes and
check nodes are activated, including when the processing is ter-
minated. When the algorithm terminates, hard decision infor-
mation can be inferred from the messages by selecting the con-

ditional value with smallest metric. A basic result in this area is
that if a graph has no cycles, then there is a schedule for which
the MPA is optimal. In other words, by repeatedly updating mes-
sages using simple local constraints, one can compute the same
messages that would be computed using a single global con-
straint. The advantage is that the processing of many local con-
straints can be much smaller than that associated with a single
global constraint. Roughly, any activation schedule that passes
messages from each node to all other nodes on a cycle-free graph
is optimal and the MPA converges to the same result that would
have been obtained by processing the global constraint directly.

When the graphical model has cycles, the same message up-
dating rules can be used, but the approaches are suboptimal
heuristics, which we refer to as iMPAs. Specifically, little has
been proven about the convergence properties and the long-
term evolution of the messages for these algorithms when cy-
cles are present. It has been observed empirically, however, that
iMPAs are very effective and often yield performance near that
of the optimal solution. Empirical results suggest that the iMPA
heuristic is most effective when there are no very short cycles
and when the cycle structure is highly irregular (i.e., pseudo-
random). The advantage of using graphs with cycles is that the
complexity of the resulting iMPA can be significantly less than
that of any MPA associated with a cycle-free graphical model.
In the m-sequence example, the global constraint has

configurations, while the graph of Fig. 2(b)
has check nodes, each having four valid configurations.
For cases of practical interest is much less than ,
so that message passing on the graph in Fig. 2(b) may yield sig-
nificantly lower complexity.

The graphical model associated with a particular set of
constraints is not unique and selecting different models will
yield a different MPA. One way to alter a graph is to in-
clude hidden variables that are neither the input nor output of
the system.6 For example, the same m-sequence modeled in
Fig. 2(b) can be modeled by the cycle-free graphical model in
Fig. 2(c), in which the hidden variables , indexing all values
of , have been added and are denoted
with double-lined circles to distinguish them from the output
variables. These hidden variables are simply the state of the
FSM that represents that LFSR. An optimal MPA algorithm on
this graph is known as the forward-backward algorithm (FBA)
[12]. In the FBA, messages are sent forward (left to right)
starting at and ending at , and then backward from
to . This is one activation schedule that results in an optimal
MPA and further activation of the check nodes does not change
the message values. It follows from the definition of the nonzero

for an m-sequence that each state takes values and
each local check node has valid configurations. In fact,
at the end of the forward recursion, the messages at are
the correlations computed by the full parallel
search approach to PN sequence acquisition. This illustrates
the importance of cycles in the graphical model to achieve low
complexity iMPAs.

6The channel messages for these variables are taken to be zero for all condi-
tional values.
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A third graphical model for the m-sequence with
is shown in Fig. 2(d), where hidden variables

are added and the check nodes enforce the constraint
and . The three graphs shown

in Fig. 2 all completely capture the constraint of the m-sequence
structure fully and without redundancy. The graph in Fig. 2(d)
can also be viewed as decomposing the 15-stage shift register
into a two-stage shift register with a long delayed, feedback
loop. This is emphasized by the box in Fig. 2(d) that outlines
the subgraph corresponding to an FSM with state . A natural
iMPA schedule for this graph is to activate the variable nodes
to set the transition metrics of the FSM subgraph, then run the
FBA on the two-state FSM subgraph, then send messages back
to the variable nodes. This will be considered one iteration. The
details of this iMPA are given in the Appendix.

For completeness, the schedule for the iMPA algorithm run
on the graph in Fig. 2(b) will be to activate all variable nodes in
parallel, then all check nodes in parallel, etc. One activation of
all check and variable nodes will be defined as one iteration.

A final, hard decision on the variable is obtained using the
soft decision

(19)

which is the channel metric plus all incoming messages to the
variable node . Specifically, if , then

is decided, otherwise, is decided. We modify
this standard approach slightly for the PN acquisition problem.
Specifically, this method can be used to obtain a hard decision
on for all time indices. Ideally, these decisions would all
be consistent with the same initial state , but this is not al-
ways observed. Note that decisions on for any -consecutive
time indices imply a decision for the initial state and such deci-
sions can be made at any iteration. Thus, to provide better per-
formance, estimates of the initial state are obtained by
using nonoverlapping -variable intervals at each itera-
tion. The iMPA is stopped after a maximum number of iterations
and the state estimate that appears most frequently is selected as
the final decision for the initial state.

A. Graphical Models for Other m-Sequences

Careful inspection of the above development implies that our
approach is most desirable when the generating polynomial is
sparse, i.e., there are only a few ones in . For example,
considering graphical models of the form shown in Fig. 2(b),
the number of configurations for each check node grows expo-
nentially with the number of nonzero feedback coefficients in

and the number of cycles also increases with this param-
eter. Some examples from [15] are listed in Table I.

There are many graphical models for a given set of constraints
and there is no systematic procedure for specifying a good cyclic
graphical model—i.e., one that will yield an iMPA with low
complexity and good performance. Although this process re-
mains more art than science, we illustrate the technique fur-

TABLE I
EXAMPLES OF SPARSE GENERATING POLYNOMIALS FOR m-SEQUENCES [15]

ther by considering other generating polynomials and poten-
tial loopy graphical models. A graphical model with no hidden
variables of the form shown in Fig. 2(b) can be constructed for
any LFSR with specified. If there are some groupings of
nonzero terms in the feedback polynomial, then one may con-
sider defining an FSM to capture these local constraints as was
done in Fig. 2(d), for example.

Consider the generating polynomial
, so that .

The cyclic graph with no hidden variables, corresponding to
Fig. 2(b), is shown in Fig. 3(a). Another model is shown in
Fig. 3(b) that uses hidden variables ,
and . This graph has two acyclic subgraphs
that correspond to two-state FSMs with states given by and

, respectively. Therefore, this may be viewed as decomposing
a 2 -state FSM into two coupled two-state FSMs. One iteration
of the corresponding iMPA on this graph corresponds running
the FBA on the two FSMs with activation of all variable nodes
and hidden variable nodes between before each FBA is run.

B. Relation to Low-Density Parity-Check (LDPC) Codes and
Further Reading

An LDPC code [16], [17] is a linear parity-check code with a
parity-check matrix that has a small number of ones. Specif-
ically, every valid codeword satisfies where is
an binary vector and is an binary
matrix, where we adopt the conventional notation of input
bits mapping to coded bits via parity-check equa-
tions [18]. The standard graphical model for this is similar to
that shown in Fig. 2(b), where there are variable nodes rep-
resenting the coded bits and the check capture the
even-parity constraints. The iMPA algorithm described in the
context of Fig. 2(b) is the same as the standard iterative de-
coder for LDPC codes. In fact, the structure imposed by the
LFSR in (2) can be written as , where
is a binary matrix and is the vector of
values. Viewing m-sequences as a form of error correction code
is not new; the corresponding codes are known as maximum
length codes [18] and are of rate in our notation. Since
we consider only channel observations, our approach
can be considered iterative decoding of punctured maximum
length codes. Thus, the sparse property of the generating poly-
nomial is akin to the low-density property of the LDPC ma-
trix. This interpretation does not imply that the m-sequence de-
fines a code as powerful as an LDPC code because the structure
of the ones in the implies a relatively localized set of
variable constraints and a very regular cycle structure. Both of
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Fig. 3. Two graphical models for the 34-stage LFSR with g (D) = 1 +D +D +D +D .

these properties are avoided in the construction of good LDPC
code parity-check matrices.

Adding hidden variables takes one away from the direct cor-
respondence with LDPC codes, although the hidden binary vari-
ables can be viewed as coded bits that have been punctured from
a larger LDPC code. However, the graph in Fig. 3(b) is very
similar to that of a parallel concatenated convolutional code or
“turbo” code [9]. In fact, it is well known that iterative decoding
of turbo codes, LDPC codes and other turbo-like codes can be
viewed as applying the same iMPA paradigm described above.
The contribution of this work is demonstrate that this same con-
ceptual approach can be applied to the problem of PN acquisi-
tion and this has powerful practical consequences.

There are a number of conventions for graphical modeling
and describing the resulting iMPAs. Our convention most
closely follows that of factor graphs [7], which generalizes the
earlier work of Wiberg [8]. Wiberg generalized the work of
Tanner [19], who developed graphical models without hidden
variables for linear block codes analogous to that shown in
Fig. 2(b), to include hidden variables. Wiberg also noted the
impact of cycles and made the connection between iterative
decoding and previously known optimal algorithms such as
the FBA. Other conventions use configuration variable nodes
in place of check nodes [6], [20] and make connection to
known approaches in computer science [21]. In some of these
conventions, directed graphs are used for modeling [12], [20],
but it is undirected cycles that affect the optimality of the
resulting iMPA because messages propagate in all directions.
Finally, belief propagation, the sum-product algorithm, the
turbo-principle, and other terms are used synonymously with
iterative message passing.

V. SIMULATION RESULTS

A. Simulation Results for M-Sequence

We first consider simulation of the UWB system with per-
fect frame synchronization for the m-sequence generated by an
15-stage LFSR with . Unless other-
wise specified, the performance of the traditional PN acquisi-
tion schemes is computed using the approximations stated in
Section III. The threshold for both serial and hybrid searches is

Fig. 4. Comparison of acquisition performance of various approaches for the
UWB system with perfect frame synchronization and m-sequence generated
by g(D) = 1 +D +D . All iMPA simulations are based on 100 iterations.
Simple serial and hybrid searches use M = 128 chip times per dwell, while
the iMPA and full parallel approaches use M = 128 total observations.
(a) Compares the iMPA against the traditional simple serial and full parallel
approaches. (b) Compares against hybrid search. (a) iMPA versus full parallel
and simple serial, M = 128; T = 128 T ; � = 0, (b) iMPA versus hybrid
search, M = 128; T = 128 T ; � = 0.

determined using of 10 . Algorithms are evaluated using
versus , acquisition time, and complexity.

1) UWB Systems With Perfect Knowledge of Frame Epoch:
The performance of serial, full-parallel, hybrid, and the iMPA
corresponding to Fig. 2(d) is shown in Fig. 4. The min-sum
and min -sum iMPAs have similar performance, each approxi-
mately 1.6 dB (in ) worse than that of the ML exhaustive
search and 0.3 dB worse than that of the simple serial search.
This quantifies the performance degradation due to cycles in the
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TABLE II
COMPARISON OF ACQUISITION TIME (T ), MEMORY COMPLEXITY (R ) AND COMPUTATIONAL COMPLEXITY (R )

FOR THE m-SEQUENCE DEFINED BY g(D) = 1 + D + D . BOTH FULL PARALLEL SEARCH AND iMPA HAVE

M OBSERVATIONS, T = MT FOR SIMPLE SERIAL SEARCH AND HYBRID SEARCHES, AND

THE iMPA RUNS 100 ITERATIONS. THE iMPA IS BASED ON THE GRAPH OF FIG. 2(d)

model of Fig. 2(d) and also suggests that min-sum processing
is preferred in practice for this application since it is less com-
plex and more robust to imperfect gain control [12]. The perfor-
mance gain of -correlator hybrid search, relative to simple
serial search, even for large , is insignificant. Though not
explicitly presented here, simulations also show that the iMPA
over Fig. 2(d) is about 0.5 dB better than the iMPA over Fig. 2(b)
(i.e., the Tanner Graph).

The acquisition times of these algorithms are also given in
Fig. 4. Both full parallel search and iterative MPAs achieve code
acquisition in , where is the chip interval [the frame
time for the UWB system in Fig. 1(a)]. In contrast, the mean
acquisition times of simple serial search and 4-correlator and
896-correlator hybrid search are , and

, respectively. Thus, the iMPAs are 16 000 times faster
than the simple serial search and 18 times faster than 896-corre-
lator hybrid search. These are conservative estimates since the
penalty time for false acquisition in the serial and hybrid case
has been assumed to be zero.

The complexity of these algorithms, measured both in terms
of memory requirements and the total number of arith-
metic operations , is summarized in Table II. Values in
parenthesis correspond to numerical results obtained using

. Full parallel search requires a memory 36 times
more than the iMPA, and the iMPA requires a memory 896
times more than the simple serial search but the same as the

hybrid search. In terms of computational complexity,
the full parallel requires about 20 times the number of compu-
tations required for the iMPA, and simple serial and the two
hybrid strategies each requires about 10 times the number of
computations required for the iMPA. Thus, the iMPA provides
a relatively low complexity approach to search all PN code
alignments in parallel with reasonable performance.

Since all of the computations must be performed during the
acquisition time, another measure of interest is this complexity
normalized by the mean acquisition time . This is also
shown in Table II, where the of full parallel
search is about 20 times that of the proposed iMPA. The pro-
posed iMPA is 1700 times as complex as simple serial search
but only 2 times as complex as the hybrid search
when measured by this metric.

Fig. 5. Effects of increasing the observation window for various approaches
for the UWB system with perfect frame synchronization and m-sequence
generated by g(D) = 1 +D +D . All iMPA simulations are based on 100
iterations. Simple serial search use M chip times per dwell, while the iMPA
and full parallel approaches use M total observations. (a) Shows M = 256
and (b) shows M = 512.

As illustrated in Fig. 5, doubling the length of the observation
window provides approximately 3 dB of improvement
for both the serial and full parallel search. This is expected
since doubling the number of observations roughly doubles
the ratio between the partial-period correlation [13] under the
correct (in-phase) and out-of-phase alignments. On the other
hand, the performance of the iterative MPA does not improve
much when the observation length increases. This is shown in
Fig. 6, where the minimum value of required to achieve

, is plotted against for the various
approaches. The degradation in for the iMPA
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Fig. 6. Summary of the performance gain obtained with larger observation
windows for the iMPA, serial search, and full parallel search for the UWB
system with perfect frame synchronization and m-sequence generated by
g(D) = 1 + D + D . Traits are summarized using (E =N ) versus
M , where (E =N ) is the lowest SNR for which P = 0:9 can be
achieved. Both full parallel search and min-sum iMPA have M observations
and T = MT in simple serial search.

relative to full parallel search is less than 2 dB when ,
but is more than 5 dB when . It is reasonable to
conclude that this property of the iMPA is due to the regular
cycle structure of the graph in Fig. 2(d)—i.e., each variable is
involved in a cycle with minimum length 30.

Finally, as demonstrated in Figs. 4 and 5, the approximate
analysis in Section III matches the simulated performance for
full parallel search reasonably well. In the subsequent results,
only the approximation analysis from Section III is presented.

2) Traditional DS/SS Systems With No Carrier Phase Knowl-
edge: As described in Section III, traditional approaches use
envelope detectors after I/Q PN code correlators to provide a test
statistic when the carrier phase is unknown. This approach is not
applicable to the iMPA because the iMPA does not directly com-
pute correlations against the PN code, but rather over sequences
that capture some substructure [e.g., the two-state FSM struc-
ture in Fig. 2(d)].

In order to apply the iMPA approach for the noncoherent
DS/SS case, we use a method based on generalized likelihood
[12]. Specifically, a finite number of candidate values are con-
sidered. For example, suppose four candidate phase values were
considered: . Then, four versions of the
iMPA can be run, each using for the
specific value of . The final decision for the PN alignment
is taken from the iMPA with the best soft-decision information
(i.e., largest difference between best decision and second best
decision).

Simulation results are shown in Fig. 7 along with the curves
of the ideal case where is known. The eight candidate phase
approach works well, at the cost of an increase in complexity by
a factor of 8, whereas an additional 2 dB degradation is observed
when four candidate phase values are used.

Fig. 7. Performance of iterative MPA in traditional DS/SS system with
unknown carrier phase and m-sequence generated by g(D) = 1 +D +D .
The block size M of both full parallel search and 100-iteration min-sum iMPA
over Fig. 2(d) is 512, dwell time T for simple serial search is 512T .

This approach can also be viewed as a simple form of
joint phase estimation and PN acquisition, where the phase
estimator is based on a simple quantized approximation. Other
approaches for joint parameter estimation and iterative message
passing [12, Ch. 4] can also be applied and other unknown
parameters (e.g., a frequency offset) could be included as well
using similar techniques.

B. Simulation Results for Other m-Sequences

In Section V-A, the iMPA based on the graphical model in
Fig. 2(d) was investigated for one specific m-sequence with

, where three nonzero ’s appear at the
two ends. Noting that since binary primitive polynomials have
at least three nonzero ’s and the shortest cycle in the graphs
representing an -stage LFSR has length at most , this is
the “most favorable” m-sequence with for the proposed
iMPA acquisition algorithm.

In this section we evaluate our approach for different
graphical models and for different generating polynomials
using the UWB system model. The generators considered
are

, and
. The

generated m-sequences are denoted as , and ,
respectively, and the corresponding 100 iteration min-sum
iterative MPAs are denoted as ,
and , respectively. More specifically, these are based
on the following graphical models: is based on a
graph similar to that in Fig. 2(d) with ,
and are based on (Tanner) graphs similar to that in
Fig. 2(b), and is based on the graph in Fig. 3(b). For
comparison purposes, the m-sequence used in Section V-A is
denoted as and the corresponding iterative MPA is denoted
as .
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Fig. 8. Performance of iMPA : 100 iteration min-sum, g (D) = D +
D + 1; N = 2 � 1 = 4194303 for the UWB system with perfect frame
synchronization.

Fig. 9. Performance of iMPA and iMPA : 100 iteration min-sum
processing over Tanner graphs. For the UWB system with perfect frame
synchronization.

Fig. 8 contains simulation results for . Since
has three nonzero coefficients appearing at the two ends, it
is another “most favorable” m-sequence with longer period

2 . Comparing with curves in Figs. 4
and 5, we observe that the performs 1.5 dB better than

when is 128. A likely explanation for this effect
is that the length-128 out-of-phase partial-period correlation
[13] of is much larger than that of . However, when

is doubled, gains more than does, and
when , they have nearly the same performance. This
effect is most likely due to the fact that the underlying graph of

has shortest cycles of the length 44, whereas
is running on graph with shortest cycles of length 30. This is
evidence that the property of diminishing benefits of increasing

Fig. 10. Performance of iMPA for 34-stage LFSR with g (D) = 1+D +
D +D +D : 100 iteration min-sum over Fig. 3(a) and (b). For the UWB
system with perfect frame synchronization.

the observation interval is due in part to the length of the
shortest cycle in the graph.

Fig. 9 contains simulation results for and .
Although provides performance gain when is dou-
bled, it does not perform as well as (the with

has nearly the same performance as with
). The length of cycles, six in this case, is a likely

explanation for this effect. On the other hand, the per-
forms poorly: for , the is 3 dB better than the

; and when is doubled, the has less than
1 dB performance gain.

Simulation results of are plotted in Fig. 10. This in-
cludes results for both , based on the graph in Fig. 3(b),
and the iMPA based on the graph of Fig. 3(a). The former per-
forms approximately 0.5 dB better than the latter, but both per-
form poorly relative to that of full parallel search.

Summarizing the results of the iMPA simulations, we con-
clude that good performance is possible for relatively small ob-
servation windows, but the performance does not improve with
increasing as quickly as that of traditional approaches. The
likely cause for this is the regular cycle structure in the under-
lying graphical models. One possible way to alleviate the ef-
fects of cycles is to damp the messages to avoid convergence
to a poor solution. In [1], the method of filtering messages to
damp out rapid fluctuations was applied to the problem at hand.
This yielded a performance gain of approximately 0.5 dB at
the cost of significantly more memory complexity. In the fol-
lowing section, we suggest an approach that achieves a similar
performance enhancement with less complexity than the base-
line iMPA.

C. Verification Scheme

A verification scheme is required if there is the possibility
that no signal is present. For example, in the UWB system in
Fig. 1(a), if the hypothesized frame epoch is incorrect, there is
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no signal present during observation times, so the null-hypoth-
esis should be considered. In this section, we suggest a veri-
fication scheme and also use this verification scheme to better
capitalize on additional observations by using the iMPA over
multiple time windows. The following development assumes
the UWB model but can be directly generalized to the nonco-
herent DS/SS case.

The iMPA can be viewed as a method for generating likely
initial states, for each of which a traditional correlation threshold
test could be performed. The proposed heuristic for postpro-
cessing the iMPA decisions is based on this observation. Specif-
ically, the baseline iMPA using iterations is run up to times,
each time with a slightly perturbed set of channel observations.
After each of these runs, a state estimate is obtained and the
correlation statistic , where is defined in
(5), is computed. If , acquisition is declared, otherwise,
the observation set is perturbed and the process is repeated. As-
suming that is required to be at least 0.9, which is com-
monly used in the code acquisition literature [2], the threshold
can be selected as

(20)

The way in which the observation set is perturbed is that the
signs of the least reliable observations are flipped. More pre-
cisely, since the sign of provides a decision on without
regard to the PN code structure, is a measure of the
quality or reliability of this chip-level observation [i.e., a large
positive (negative) value corresponds to high confidence that

] So, after each run of the iMPA, the signs
of the least reliable observations are flipped. Note that after
each time the iMPA is run, the signs of the observations already
flipped remain flipped and another are selected to be altered.
Simulation results not presented here indicate that this modifica-
tion provides an improvement of approximately 0.5 dB, relative
to the , with the total number of iterations decreased by
roughly 30%.

To further improve performance, multiple time windows
of size can be combined together. Specifically, given
nonoverlapping windows of size observations each, the
above modified iMPA can be used to obtain an initial state
estimate and a correlation statistic for each. The state estimate
with largest correlation is then selected as the final decision.
Clearly, the larger the is, the better the algorithm per-
forms. However, the larger the , the longer the acquisition
time and since rapid acquisition is desired, a small is
preferred. This defines a modified iMPA, which we denote by

, where is the number of nonover-
lapping observation sets of size . The parameters and
set the maximum number of times the baseline, iteration,
iMPA is run per observation set and the number of signs flipped
between these runs, respectively.

Simulation results for
, and are shown in Fig. 11. Compared

with the iMPA using one window of observations,
this modified algorithm has a 3-dB performance gain. Also,

Fig. 11. Improvement obtained by verification scheme to combine multiple
windows of observations together. For the UWB system with perfect frame
synchronization and m-sequence generated by g(D) = 1 +D +D .

using to combine four windows of size 512 outper-
forms the baseline iMPA operating on 2048 observations with
significantly less complexity.

Considering a practical scenario where the energy per
bit to ratio required is 7 dB and the spreading ratio is

dB, the PN code acquisition algorithm should work
at dB. Results from Fig. 11 show that this
can be achieved with an acquisition time of 2048 chip times
using . Referring to
Fig. 5, simple serial search works at , but requires

10 observations on average, which is substantially
slower than the proposed approach.

1) Joint PN and Frame Epoch Acquisition for the UWB
System: As a final example we return to the UWB system in
Fig. 1(a) when neither the PN alignment nor the frame epoch
is known at the receiver. A PN acquisition algorithm should be
able to detect the null-hypothesis rapidly so that a hypothesized
frame epoch can be discarded and another is investigated. This
cannot be achieved by either serial search or hybrid search
because the whole uncertainty region must be searched before a
null declaration can be made. On the other hand, the iMPA not
only achieves rapid code acquisition when the signal is present,
but also can determine null-hypothesis quickly. This is further
enhanced by “early stopping,” i.e., it is not necessary to run all
the iterations to recognize a null-hypothesis. To do this, another
threshold is needed.

The frame epoch is estimated in a serial manner (i.e., starting
with , then , then , etc.) until the correct frame
epoch is detected. For a given hypothesized frame epoch, refer-
ring to the in Section V-C, if the best initial state esti-
mate obtained has , the null-hypothesis is declared.
Then, a new hypothesized frame epoch is considered and the

restarts with a new set of observations based on this
hypothesized frame epoch.

Both the hybrid search and
are examined for the UWB system since
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they have similar memory requirements. Referring to (1), the
m-sequence is generated by and the frame
epoch is estimated in a serial manner. Results are summarized
in Table III, where the number of observations of the
is and the dwell time for hybrid search
is . Furthermore, there are 1000 possible
bins to be searched for the frame epoch in each frame (i.e.,

). The modified iMPA compares very favorably
to hybrid search both in terms of complexity and acquisition
time. Specifically, the proposed iMPA is about 18 times faster
and 46 times less complex than the hybrid search.
Thus, the proposed iMPA-based acquisition algorithm is even
more favorable relative to traditional hybrid/serial search strate-
gies for low duty-cycle UWB systems where joint frame/PN
synchronization is required.

VI. CONCLUSION AND FUTURE WORK

Iterative techniques are well known to be applicable in a wide
range of applications, and in this paper we applied this principle
to address the PN code acquisition problem. Simulation results
showed that the iterative message passing algorithms based on
sparse cyclic graphical models worked well. Specifically, it is
the first method that can search all possible PN phases in par-
allel with complexity significantly lower than optimal full par-
allel search and good low SNR performance. This approach is
especially favorable when the block size is relatively small.

One undesirable characteristic of the iMPA approach is that
the availability of larger observation sets does not improve per-
formance as much as in traditional approaches. This is appar-
ently due to the regular, short cycle structure in the underlying
graphical model which causes the algorithm to converge based
predominately on an initial portion of the observation window.
We addressed this shortcoming by considering verification post-
processing that allows the results of the iMPA operating on sub-
windows to be combined. This same verification processing also
enabled us to detect the absence of signal quickly, thus making
this approach even more attractive for low duty cycle UWB
waveforms.

A message passing PN search algorithm with low complexity
may also find other applications in noncooperative military
communication links. For example, the ability to acquire a long
PN code with a short observation interval would enable one to
acquire a spread-spectrum signal with data modulation present.
Evaluating the iMPA acquisition algorithm when multipath
is present, joint channel estimation/PN synchronization, and
hardware architectures are interesting topics for future research.

Finally, it is interesting to consider the design of pseu-
dorandom sequences that are inherently generated by more
random-like sparse loopy graphical models. In this paper,
we considered existing m-sequences and suggested simple
graphical models that are not ideal for application of the iMPA
heuristic due to the regular structure of short cycles. Also, the
complexity of the local constraints used is low (e.g., two-state
FSMs), thus making the effects of this cycle structure likely
more detrimental and slowing convergence. It may be useful to
consider LFSR sequences that do not achieve maximum period,
but have generating polynomials with more consecutive ones

TABLE III
T AND R OF C = 896 HYBRID SEARCH AND THE PROPOSED

iMPA : JOINT FRAME/PN SYNCHRONIZATION IN THE

UWB EXAMPLE CONSIDERED IN SECTION V-C1

Fig. 12. Detailed notation of the input and output messages associated with
one check node in Fig. 2(d).

that can be grouped into FSM subgraphs with stronger local
structure. Finally, investigating systematic methods for ex-
tracting effective cyclic graphical models for arbitrary systems
is a challenging and interesting direction for further research
and significant progress in this direction would directly apply
to the PN acquisition problem considered.

APPENDIX

In this appendix, we clarify the messages passed along edges
in Fig. 2(d). A check node from Fig. 2(d) is redrawn in Fig. 12.
The configurations of this check node are indexed by the value
of the transition variable . Also shown in
Fig. 12, specific labels are given to messages passed along
these edges. The chip-level soft-decision channel information
is

(21)

where is the relevant real part of the observation in (3) and
the local configuration metric is

(22)

Note that the values of the variables , and
are determined when a conditional value of is set and the de-
pendency of these variables on is not explicitly shown in this
Appendix. Excluding the and from , the
remaining sum may be viewed as a generalized state transition
metric used during the FBA stage of the iMPA.

With (22), a compact way of expressing the message updating
in min-sum form is7

(23)

7Since the term subtracted in each of (23)–(29) is constant over all terms in the
minimization, each equation can be written in a form where (22) is simplified
by cancelling that term priori to minimization.
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(24)

(25)

(26)

(27)

(28)

(29)

Similarly, min -sum messages can be obtained by replacing
operators in (22)–(26) by .

PSEUDOCODE OF THE PROPOSED

iMPA ALGORITHM ON FIG. 2(d)

Step 1) Initialization: max-
imum number of iterations

Step 2) Forward-backward algorithm: Updating
and , sequentially
using (23) and (24), respectively.

.
Step 3) Update and

, using (25) and (26), respectively. Then,
, and are updated using

(28) and (29), respectively.
Step 4) Selecting candidate decisions: nonoverlap

(intermediate) estimates of the initial state are ob-
tained using

. The decision
rule is when ,
and , otherwise.

Step 5) If , go to Step 2); otherwise, the estimate that
appears the most times in Step 4) is selected to be
final estimate of the initial state.

REFERENCES

[1] M. Zhu and K. M. Chugg, “Iterative message passing techniques for
rapid code acquisition,” in Proc. IEEE Military Commun. Conf., 2003.

[2] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spec-
trum Communications Handbook. New York: McGraw-Hill, 1994.

[3] A. Polydoros and C. L. Weber, “A unified approach to serial search
spread-spectrum code acquisition,” IEEE Trans. Commun., vol. 32, no.
5, pp. 542–560, May 1984.

[4] R. B. Ward, “Acquisition of pseudonoise signals by sequential estima-
tion,” IEEE Trans. Commun., vol. COMM-13, no. 4, pp. 475–483, Dec.
1965.

[5] S. M. Aji, “Graphical Models and Iterative Decoding,” Ph.D. disserta-
tion, California Inst. Technol., Pasadena, CA, 1999.

[6] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, pp. 325–343, Mar. 2000.

[7] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[8] N. Wiberg, “Codes and Decoding on General Graphs,” Ph.D. disserta-
tion, Linköping Univ., Linköping, Sweden, 1996.

[9] C. Berrou, A. Glavieux, and P. Thitmajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. Int. Conf.
Commun., Geneva, Switzerland, May 1993, pp. 1064–1070.

[10] I. D. O’Donnell, S. W. Chen, B. T. Wang, and R. W. Brodersen, “An
integrated, low power, ultra-wideband transceiver architecture for low-
rate, indoor wireless systems,” in Proc. IEEE CAS Workshop Wireless
Commun. Netw., Sep. 2002.

[11] X. Chen, “Iterative Data Detection: Complexity Reduction and Applica-
tions,” Ph.D. dissertation, Univ. Southern California, Los Angeles, CA,
Dec. 1999.

[12] K. M. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection:
Adaptivity, Complexity Reduction, and Applications. Norwell, MA:
Kluwer, 2001.

[13] S. W. Golomb, Shift Register Sequences, Revised Edition. Laguna
Hills, CA: Aegean Park, 1982.

[14] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

[15] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to
Spread-Spectrum Communications. Englewood Cliffs, NJ: Pren-
tice-Hall, 1995.

[16] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[17] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Inst. Elect. Eng. Electron. Lett., vol. 32,
pp. 1645–1646, Aug. 1996.

[18] S. Lin and J. D. Costello, Error Control Coding: Fundamentals and Ap-
plications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[19] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[20] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as an
instance of Pearl’s “belief propagation” algorithm,” IEEE J. Sel. Areas
Commun., vol. 16, no. 2, pp. 140–152, Feb. 1998.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

Keith M. Chugg (S’88–M’95) received the B.S.
degree (high distinction) in engineering from Harvey
Mudd College, Claremont, CA, in 1989, and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Southern California (USC),
Los Angeles, in 1990 and 1995, respectively.

During the 1995–1996 academic year, he was an
Assistant Professor with the Electrical and Computer
Engineering Department, University of Arizona,
Tucson, AZ. In 1996, he joined the Electrical Engi-
neering Department, USC, where he is currently an

Associate Professor. Along with his former Ph.D. students, A. Anastasopoulos
and X. Chen, he is coauthor of the book Iterative Detection: Adaptivity,
Complexity Reduction, and Applications (Norwell, MA: Kluwer). He is a
cofounder of TrellisWare Technologies, Inc., where he is Chief Scientist. His
research interests are in the general areas of signaling, detection, and estimation
for digital communication and data storage systems. He is also interested in
architectures for efficient implementation of the resulting algorithms.

Dr. Chugg has served as an Associate Editor for the IEEE TRANSACTIONS ON

COMMUNICATIONS and was Program Co-Chair for the Communication Theory
Symposium at GLOBECOM 2002.

Mingrui Zhu received the B.S. degree in electronics
engineering from Tsinghua University, Beijing,
China. He is currently working towards the Ph.D.
degree in electrical engineering at the University of
Southern California (USC), Los Angeles.

His research interests are in the areas of iterative
detection algorithms and wireless communication
systems.

Mr. Zhu received the Fred W. Ellersick Award for
the best unclassified paper at MILCOM 2003.


	toc
	A New Approach to Rapid PN Code Acquisition Using Iterative Mess
	Keith M. Chugg, Member, IEEE, and Mingrui Zhu
	I. I NTRODUCTION

	Fig.€1. Sample waveform and diagram of the associated PN acquisi
	II. S IGNAL M ODELS

	Fig.€2. Methods for modeling LFSRs. (a) Shows the generator diag
	III. P ERFORMANCE C HARACTERISTICS OF T RADITIONAL PN A CQUISITI
	A. Full Parallel Search
	B. Simple Serial Search
	C. Hybrid Search

	IV. G RAPHICAL M ODELS OF M-S EQUENCES AND iMPA S FOR PN A CQUIS
	A. Graphical Models for Other m-Sequences


	TABLE I E XAMPLES OF S PARSE G ENERATING P OLYNOMIALS FOR m-S EQ
	B. Relation to Low-Density Parity-Check (LDPC) Codes and Further

	Fig. 3. Two graphical models for the 34-stage LFSR with $g_{34}(
	V. S IMULATION R ESULTS
	A. Simulation Results for M-Sequence $[100\thinspace003]_8$


	Fig.€4. Comparison of acquisition performance of various approac
	1) UWB Systems With Perfect Knowledge of Frame Epoch: The perfor

	TABLE II C OMPARISON OF A CQUISITION T IME $(T_{\rm ACQ})$, M EM
	Fig.€5. Effects of increasing the observation window for various
	Fig.€6. Summary of the performance gain obtained with larger obs
	2) Traditional DS/SS Systems With No Carrier Phase Knowledge: As

	Fig.€7. Performance of iterative MPA in traditional DS/SS system
	B. Simulation Results for Other m-Sequences

	Fig. 8. Performance of ${\rm iMPA}_{22}$: 100 iteration min-sum,
	Fig. 9. Performance of ${\rm iMPA}_{18}$ and ${\rm iMPA}_{15}$: 
	Fig. 10. Performance of iMPA for 34-stage LFSR with $g_{34}(D)=1
	C. Verification Scheme

	Fig.€11. Improvement obtained by verification scheme to combine 
	1) Joint PN and Frame Epoch Acquisition for the UWB System: As a
	VI. C ONCLUSION AND F UTURE W ORK

	TABLE III $T_{\rm ACQ}$ AND $R_a$ OF $C_p=896$ H YBRID S EARCH A
	Fig.€12. Detailed notation of the input and output messages asso
	P SEUDOcode OF THE P ROPOSED iMPA A LGORITHM ON F IG. 2(d)
	M. Zhu and K. M. Chugg, Iterative message passing techniques for
	M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Sprea
	A. Polydoros and C. L. Weber, A unified approach to serial searc
	R. B. Ward, Acquisition of pseudonoise signals by sequential est
	S. M. Aji, Graphical Models and Iterative Decoding, Ph.D. disser
	S. M. Aji and R. J. McEliece, The generalized distributive law, 
	F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, Factor graphs
	N. Wiberg, Codes and Decoding on General Graphs, Ph.D. dissertat
	C. Berrou, A. Glavieux, and P. Thitmajshima, Near shannon limit 
	I. D. O'Donnell, S. W. Chen, B. T. Wang, and R. W. Brodersen, An
	X. Chen, Iterative Data Detection: Complexity Reduction and Appl
	K. M. Chugg, A. Anastasopoulos, and X. Chen, Iterative Detection
	S. W. Golomb, Shift Register Sequences, Revised Edition . Laguna
	J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-
	R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to S
	R. G. Gallager, Low-Density Parity-Check Codes . Cambridge, MA: 
	D. J. C. MacKay and R. M. Neal, Near Shannon limit performance o
	S. Lin and J. D. Costello, Error Control Coding: Fundamentals an
	R. M. Tanner, A recursive approach to low complexity codes, IEEE
	R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, Turbo decoding
	J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networ



