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A Generalized Signal Flow Graph Approach for Hybrid
Acquisition of Ultra-Wideband Signals

Eric A. Homier1,2 and Robert A. Scholtz

This paper establishes a general framework for the study of various search procedures in which a
group of observers is searching for a group of items in some arbitrary manner. A generalized sig-
nal flow graph approach yields a complete statistical description of the search time as well as the
probability of correctly terminating the search. The motivation for this study comes from the acqui-
sition of an ultra-wideband (UWB) signal in a dense multipath channel. In this particular problem
many resolvable paths tend to cluster at a receiver containing multiple correlators allowing for a
hybrid serial/parallel search. This hybrid search, as well as a bound on a sorted hybrid search, is
analyzed using the generalized signal flow graph approach. Rapid code and frame acquisition at the
receiver is desired and it is shown that a specific nonconsecutive search, the bit reversal search,
yields an optimum hybrid search procedure under certain conditions. The acquisition of UWB sig-
nals also leads to the concept of a self-similar signal flow graph, in which a new search is initiated
upon the completion of the previous one.
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1. INTRODUCTION

The general problem of searching for an object in
some uncertainty region arises in a large number of situa-
tions. A specific example includes the acquisition process
for a wireless communication system. Traditionally, how-
ever, a single observer is searching for a single object. This
restriction is removed in this paper, and the general case of
multiple observers searching for multiple objects is exam-
ined. For this general problem the search pattern, that is,
the pattern in which the locations in the uncertainty region
are examined, is of interest. Typically, a pattern is desired
so as to optimize some parameter, for example, to mini-
mize the search time or to maximize the probability of cor-
rectly ending the search. This pattern, or sequence, design

problem is discussed briefly in Section 2, in which the
search problem is analyzed using a generalized signal flow
graph. It will be assumed throughout this paper that the
uncertainty region is comprised of a finite set of bins, some
subset of which contain objects that when found will ter-
minate the search. This scenario is seen during spread spec-
trum, for example, CDMA or ultra-wideband (UWB), code
acquisition in dense multipath channels. Initial studies in
CDMA code acquisition usually neglected multipath [1],
whereas recent investigation has included multipath ([2–5]
and the references contained therein).

Dense multipath channels, as found in the indoor or
urban environments, are characterized by many paths
arriving at a single point clustered very closely in time.
For narrowband systems, this generally leads to destruc-
tive interference, or spatial nulls. One advantage of
UWB signals, those with large fractional bandwidths, is
that the paths arriving at any one point in space are gen-
erally resolvable because of the short time duration of
the transmitted signal. The UWB signal and the dense
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multipath channel model are both discussed in Section 3.
The acquisition of this time-hopped UWB signal in the
multipath channel is investigated in Section 4. This
includes acquisition of both the time-hopping code and
the frame boundaries.

The codes considered in this paper are assumed to be
short codes, that is, a single dwell time over a code period
is possible in a reasonable amount of time. The use of long
codes in spread spectrum systems requires the use of par-
tial code correlations, but the search problem is still the
same. In either case, a fully parallel search of the uncer-
tainty region is often prohibitive. Thus fixed dwell time
serial searches are often used as a less complex alternative
to fully parallel searches. Other search techniques exist,
including nonserial or variable dwell time techniques,
which tend to offer slightly better performance compared
to fixed dwell time serial search techniques. The cost of
increased performance, however, is increased complexity
in the receiver architecture [5,6]. Another method of code

acquisition, which will not be discussed here, involves
message passing algorithms [7]. The approach chosen
here is a hybrid scheme in which some subset of bins are
searched simultaneously. This is accomplished using mul-
tiple correlators, for example, the taps of a RAKE
receiver. Section 5 discusses the hybrid search, and
Section 6 discusses a sorted hybrid search in which the
most likely bins are examined first. Section 7 briefly dis-
cusses a bound on the single observer mean search time.
Finally, Section 8 discusses the process of fine acquisition.

2. GENERALIZED SEARCH ANALYSIS

The generalized signal flow graph considered in this
paper is shown in Figure 1. This signal flow graph,
which is an extension of the basic signal flow graph
of [1], will be used to analyze the UWB acquisition. As
can be seen from Figure 1, the generalized signal flow

Fig. 1. Generalized acquisition signal flow graph.
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graph allows for an arbitrary search permutation �(n). An
arbitraty detection scenario is also now possible such that
any of the states can terminate the search by entering the
single trapping state in the middle of the graph, termed
the ACQ state. Thus there are Ns � 1 states in the flow
graph: one trapping state and Ns states representing the
bins in the uncertainty region. These bins are labeled
0, 1, . . . , Ns � 1, and the specific order in which they
are searched is determined by the permutation �(n) of the
integers 0, 1, . . . , Ns � 1. The initial distribution of
the states is given by ��(n). The generating function into
the acquisition state can be found by various flow graph
loop reduction techniques, Mason’s gain formula, and so
on, and is given below, where � represents modulo Ns

addition and is defined to be unity:

(1)

The path gains H�(n)(z) and G�(n)(z) are polynomials in
the complex variable z and include the transition proba-
bilities and the transition times. For example, a path gain
of 0.9z2 between any two states means that with proba-
bility 0.9 that particular transition occurs and requires
2 “units” of time. The basic unit of time considered here
is a single dwell-time, that is, the amount of time an
observer dwells on a particular bin when the search is
underway. Dwelling longer on a particular bin increases
the overall detection probability or decreases the overall
false alarm probability depending on whether or not that
bin leads to the acquisition state.

The generating function in (1) can be used to deter-
mined the probability that the search correctly terminated
simply by setting z � 1. It also yields a complete statis-
tical description of the acquisition time through the in-
verse transform relation:

(2)

where pACQ(n) is the probability mass function of the
acquisition time (in integer multiples of the dwell-time)
and the contour of integration is a counterclockwise
closed circular contour in the region of convergence of
PACQ(z) centered around the origin of the complex plane.
Typically, only the first few moments of the acquisition
time are analyzed for a specific problem and are related
to the first few derivatives of the generating function.

pACQ (n) �
1

2pj H
PACQ (z)

zn�1 dz

PACQ(z) �

a
Ns�1

k�0
pe( k) a

Ns�1

i�0
He(i� k) (z)q

i�1

j�0
Ge ( j� k) (z)

1 � q
Ns�1

i�0
Ge(i) (z)

.

q
�1

j�0
(.)

In this document only the mean search time is examined,
which can be computed as:

(3)

A general sequence design problem can now be formu-
lated, even though a solution in the general case seems,
at best, very difficult to obtain. Namely, the minimum
mean search time can be found from the right choice of
search sequence:

(4)

Several specific examples are now considered to
demonstrate the applicability of the generalized signal
flow graph and its associated generating function in (1).
First consider the classical scenario of [1], in which the
search pattern is linear or consecutive, that is, �(n) � n,
and there is only one state leading to the acquisition
state. This implies that the path gains, Hn(z), are all zero
except for HNs�1(z) � HD(z). The path gains between
states are set equal to:

GNs�1(z) � HM(z) and Gn(z) � HF (z)
for n � 0, 1, . . . , Ns � 2.

This leads to the generating function in (4) of [1], part I:

(5)

Here the superscript on PACQ(z) represents the search
type and the number of detection states, that is, (LIN-
EAR,1) means a linear search and one detection state.

A second example is examined in [4] in which L con-
secutive states (0, 1, . . . , L � 1) lead to the acquisition
state and the search pattern is again linear, �(n) � n. Thus
the path gains are Hn(z) � HD(z) for n � 0, 1, . . . , L � 1
and zero for other n while Gn(z) � HM(z) for n � 0, 1, . . . ,
L � 1 and Gn(z) � HF(z) for all other n. The prior initial
distribution of the states is uniform, �n � 1/Ns for all n.
Using (1) with these path gains and initial distribution leads
to the generating function in (3) of [4]:

(6)

As one final example, it is noted that the generating func-
tion found in [3] also can be found using the generalized
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Fig. 2. Mean acquisition time for PD � 0.9, PFA � 0.1, Ns � 16
and a false alarm penalty time of J � 10.

flow graph of Figure 1. The search permutation found in
that particular reference, here termed the look and jump
search, as in [8], is discussed in more detail below.

The mean acquisition time can be found from the
generating function of (1) as:

(7)

where Num and Den are the numerator and denominator
of (1), respectively, evaluated at z � 1. Num� is the deri-
vative of the numerator evaluated at z � 1:

(8)

Here the summation is defined as zero. Den� is

the derivative of the denominator evaluated at z � 1:

(9)

Figure 2 gives an example of the mean search time,
E(TACQ), for three different search patterns, K consecutive
detection states, Ns � 16, and the path gains, as follows:
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(11)

The index set, I, represents those indices i of �(i) that lead
to the acquisition state. Here these states are assumed to be
0, 1, . . . , K � 1 so that the size of the set I is K. Because
�(j) is simply a permutation of the integers, its inverse
��1( j) exists and can be used to produce the index set. That
is, I � {��1(0), ��1(1), . . . , ��1(K � 1)} for the example
currently being considered, namely K consecutive detection
states. The false alarm penalty time is shown in the path
gains to be J dwell-times, where J is a known value. This
represents a deterministic amount of time, via some level of
verification, that is added to the overall search time at every
occurrence of a false alarm. In practice the verification
phase produces a random penalty time but in order to sim-
plify the acquisition problem it is often assumed to be fixed.
Section 8, which deals with fine acquisition, discusses the
process of verification in a little more detail.

The search permutations shown in Figure 2 are the
linear, look and jump, and bit reversal searches. The lin-
ear search, as mentioned above, is simply a consecutive
search with �(n) � n. The index set for this linear case is
I � {0, 1, . . . , K � 1}. The look and jump search is the
permutation 0, K, 2K, . . . , 1, K � 1, 2K � 1, . . . with
the index set being computed as discussed earlier. For
example, when K � 3 the index set is seen to be I � {0,
6, 11} for Ns � 16. As it turns out, the look and jump
search is the optimum serial search permutation for K
consecutive detection states. However, one issue with this
type of search is that K, which must be known to gener-
ate this search permutation, is related to the number of
detectable paths in the multipath channel for the UWB
acquisition problem. As will be discussed in the next sec-
tion, this quantity may not be known to the receiver.

In lieu of this fact, a class of searches is introduced that
yield minimum mean search times but do not require
knowledge of K. The searches are known as the base-b
reversal searches. For example, the b � 2, or bit, reversal
search is the specific permutation obtained from a bit rever-
sal of the binary representation of the integers 0, 1, . . . ,
Ns � 1, assuming Ns is a power of 2. For Ns � 16, the bit
reversal search pattern is (in binary) 0000, 1000, 0100, 1100,
. . . , 0111, 1111 or (in decimal) 0, 8, 4, 12, . . . , 7, 15.
The index set for the bit reversal search is the first K ele-
ments of the bit reversal search permutation, namely I � {0,
8, 4, 12, . . . }, because this permutation is its own inverse.

As can be seen in Figure 2, the bit reversal search and
the look and jump search yield identical mean acquisition
times when K is a power of 2 and the two search schemes

Ge (i) (z) � e (1 � PD)z if i � I

(1 � PFA)z � PFAzJ�1 else
 .
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yield very similar acquisition times for all other values of
K. In fact, the mean acquisition time is linear in K between
values where K is a power of 2. Similarly, it can also be
shown that the base b reversed indices yield minimum
search times when K and N are powers of b. The b � 2
case is well suited for digital architectures and also has an
advantage over base-b reversal searches for b � 2.
Specifically, for a fixed N there are more points in the range
K � 1, . . . , N that are powers of 2 than any other power.
Thus when K is not known an appropriate search permuta-
tion for minimizing the mean search time is the bit rever-
sal search. As will be seen in Section 5, the bit reversal
search also yields an optimum hybrid search when multi-
ple observers are introduced given that K is unknown.

3. UWB SYSTEM OVERVIEW

Before the results of the previous section are applied
to study UWB acquisition, the signal and channel models
must first be discussed. The pulse shape at the receiver is
a 2nd derivative Gaussian pulse:

(12)

This pulse has unit energy and the scale factor, �, which
determines the pulse width in time, will be set equal to

. This propagation model is very sim-
plistic, but will suffice for the present purpose. For detailed
propagation studies of UWB signals see [9] or [10] and the
references therein.

The multipath channel assumed here is specular and
has the impulse response:

(13)

The multipath channel considered here is assumed to be
static and is based upon a single realization of a UWB
channel. This single realization is a measured UWB sig-
nal in an office environment as was done in [8]. The am-
plitude coefficients and time delays, which are ordered
so that 	0 
 	1 
 . . . , are thereby also fixed. The worst
case multipath channel (channel model 4) in the IEEE
802.15.SG3a channel model final report [11] produces
single realizations which are comparable to the one as-
sumed here. At the channel output the received signal,
without any data modulation, is:

(14)
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The mean zero Guassian random process, n(t), is addi-
tive noise with autocorrelation function N0�(t1 � t2). The
time hopping code assumed here, cn, is a length Nc

sequence of nonnegative integers and Tc is the code chip
time. The frame time, Tf, is assumed to be an integer
multiple of the code chip time so that Tf � NfTc. The
receiver and transmitter frame times are assumed equal
while the transmitter/receiver separation is not known.
This gives rise to a uniformly random direct-path arrival-
time over the period of the received signal, thus imply-
ing that the direct path delay, 	0, is uniform on (0, NcTf).

At the receiver, a group of M correlators is present,
with received signal in (14) acting as the input to each of
these correlators. It is assumed that there are at least as
many arrival paths as there are correlators, that is, M 
 Lp.
The received signal is multiplied by an individual correla-
tor template waveform, which for the m-th correlator is:

(15)

The time offset for the m-th correlator template can can
vary over a code period and is set by the term �(m)

j,k. This
term is defined as:

�(m)
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Proper code phase is accounted for with this term, as
well as the proper timing offset within each frame for
an arbitrary time shift of (m)
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varies over [0, NcTf). The integer term k(m)

, j is a non-
negative integer and the remainder term (m)

r,j varies
over [0,Tc). The frame time is divided into N bins
so that (m)

j can be selected from a set of N � Nc time
offsets.

As discussed earlier, the codes considered here are
short codes so that the correlator dwell-time is one code
period in length. Straightforward analysis reveals the out-
put of the m-th correlator: z(m)
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j � n(m)

j , where the cor-
relator noise sequence (n(m)

j ) is an i.i.d. sequence of mean
zero, variance NcN0 Gaussian random variables. The cor-
relator output mean is:
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where the pulse autocorrelation function of (12) is:
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Fig. 3. Normalized correlator mean for 	0 � 0 ns.

Now an example of the correlation mean, normalized by
, is shown, where it is assumed that Tc � 10 ns,

Tf � 1000 ns, Nf � 100, Nc � 16, and N � 256. The nor-
malized correlation mean, computed at each of the bin
centers for j � j � Tf /N with j � 0, 1, . . . , N � Nc � 1,
is shown in Figure 3 for 	0 � 0 ns. The code sequence,

� {0, 13, 52, 43, 61, 30, 26, 48, 21, 21, 48, 26,
30, 61, 43, 52}. This code sequence is based upon tech-
niques found in [12] and is a sequence of integers
between 0 and 70, where the maximum value of 70 pro-
vides some guard time in each frame. A method of code
design for rapid acquisition is studied in [13] for a slightly
different modulation scheme.

4. UWB ACQUISITION ANALYSIS

The generalized signal flow graph approach is now
used to study the acquisition of an UWB signal in dense
multipath. The code length and the number of bins per
frame are set as in the previous section; thus there are
Ns � N � Nc � 256 � 16 � 4096 bins in the uncertainty
region. The code chip time and the frame time are Tc �
10 ns and Tf � 1000 ns, respectively, as in the last sec-
tion and the code sequence and multipath channel are
also unchanged. Thus the normalized correlator mean of
(17) and shown in Figure 3 is now used. The acquisition
process considered here uses a single correlator and
detection occurs when the correlator output crosses a
predetermined threshold. This is extended in the next
section to use multiple correlators for the hybrid search.

The correlator output, zj � sj � nj, is Gaussian with
mean sj and variance NcN0. The probably of exceeding
the threshold for the j-th code correlator output for a

{cn}n�0
Nc�1

2Ep

detection threshold of � where � is the normal-
ized detection threshold, is:

(19)

The quantity sj is given in (17), and the function Q(x) is
the Gaussian integral function. The permutation �( j) of
the integers 0, 1, . . . , N � Nc � 1 is related to the search
variable j as:

j � �( j) � Tf /N . (20)

The initial distribution is set by the uniform nature of the
direct path arrival time, 	0, so that ��( j) � 1/(N � Nc). In
the next section an alternative method of setting the ini-
tial distribution is examined. The signal flow graph path
gains in Figure 1 are

(21)

and

(22)

The index set I is selected based on the number of detect-
able paths in the multipath channel and for simplicity was
selected as the first K � 50 bins. This assumption of K con-
secutive bins is a reasonable assumption since the arrivals
are clustered, even though some paths within the cluster are
small in amplitude. The mean search time in (8) is shown
in Figure 4. Here the normalized detection threshold (�) is
optimized for minimum mean acquisition time at each
Ep/N0. Again, J is the false alarm penalty time.

5. HYBRID SERIAL/PARALLEL SEARCH
ANALYSIS

A fully parallel search would minimize the mean
acquisition time but is often too complex to actually
implement. Even for the short code length (Nc � 16) in
the last section, N � Nc � 4096 correlators are required to
implement a parallel search. A hybrid search offers a rea-
sonable trade-off between acquisition time and receiver
complexity. It is intuitively obvious that multiple corre-
lators will always reduce the mean acquisition time ver-
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Fig. 4. Mean UWB acquisition time for a single correlator, Tf �

1000 nsec, Tc � 10 ns, N � 256, Nc � 16, J � 1000, and optimized
threshold, �.

sus a single correlator because each correlator can search
a different code phase. It also seems reasonable that the
individual correlator search patterns should not be inde-
pendent of one another. In fact, dividing a single search
permutation amongst multiple correlators provides an
optimum method of searching the entire uncertainty
region as quickly as possible with no redundancy.

The bit reversal search pattern, being the optimum
search permutation without knowledge of K, is now

divided amongst M correlators. The permutation can
be listed as 0, 1, 2, . . . , N � Nc � 1. Then the first
correlator is assigned to search as per (0)

j � {0, M,
2M, . . .}, the second correlator searches as per (1)

j �
{1, M�1, 2M�1, . . .}, and so on. If M and N � Nc are
both powers of 2, then M divides N � Nc into smaller
regions of Nh bins, where Nh is also power of 2. Each
correlator then performs a bit reversal search over this
smaller region of Nh bins. Figure 5 shows an example
of this phenomenon for Ns � 16 search bins and M �
4 correlators. This same phenomenon is also exhibited
for other base b reversal searches when both Ns and M
are powers of b.

The generating function for the hybrid search can be
computed from the generalized acquisition signal flow
graph in Figure 1. Before this generating function is
found, an alternative method of determining the mean
acquisition time is given. Specifically, the initial distri-
bution of the signal flow graph is set to ��(0) � 1 and
��(j) � 0 for all j � 0 so that the search always starts in
state �(0). The resulting generating function is condi-
tional on the set of states, K � [k1, k2, . . . , kK]T, that
lead into the acquisition state:

(23)PACQ(z 0K ) �

a
Ns�1

i�0
He (i) (z)q

i�1

j�0
Ge( j) (z)

1 � q
Ns�1

i�0
Ge (i) (z)

 .

Fig. 5. Hybrid bit reversal search example for Ns � 16 bins and M � 4 correlators.
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The dependence of this conditional generating func-
tion on the set K occurs via the path gains, H�( j)(z) and
G�( j)(z), which are both inherently functions of K. The
mean search time found from the conditional generat-
ing function is also conditional on the set K, and the
overall mean search time is found as E(TACQ) �
E(E(TACQ | K)), where the outer expectation is with
respect to K. If the first component of K is uniform on
the integers from 0 to Ns � 1 while the other values
are simply some known offset away from the first ran-
dom component then the mean search time can be
computed as:

(24)

The conditional mean, E(TACQ | k1), is computed as the
first derivative of the conditional generating function
in (23) evaluated at z � 1. For the case of the UWB
acquisition problem the uniform nature of the direct
path arrival time, 	0, must be incorporated into the

E(TACQ) �
1

Ns
a

Ns�1

k1�0
E(TACQ 0k1) .

mean acquisition time. It is fairly straightforward to
show:

(25)

The first M search locations are �(0), �(1), . . . ,
�(M � 1), the next M locations are �(M), �(M � 1), . . . ,
�(2M � 1), etc. It will be assumed that M divides Ns evenly
into Ns/M regions. Only after the signal flow graph has
exited one of these regions has one dwell-time elapsed,
because M correlation outputs are available every dwell-
time. This can be expressed by defining a boundary set B �
{M � 1, 2M � 1, . . . , Ns � 1} and redefining (22) as:

(26)
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Fig. 6. Signal flow graph for the hybrid search using M correlators.
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The path gain H�(j)(z) can only be non-zero when j � I as
in (21). The signal flow graph for the hybrid search is
seen in Figure 6. Some results for a bit reversal hybrid
search example are shown in Figure 7a.

One method of decreasing the acquisition time for the
hybrid case is to first sort the M correlator outputs based
upon magnitude. The bins are then searched in the order of
decreasing magnitude. This idea was first introduced in
[14]. The next section discusses this sorted hybrid search.

6. SORTED HYBRID SEARCH

Once the M correlator outputs have been determined,
the bin in the uncertainty region corresponding to the largest
magnitude is searched first, followed by the second largest
magnitude, etc. The acquisition time cannot be computed
using the particular signal flow graph discussed earlier
because the specific search order now depends upon the
outcome of the correlators, which are all random variables.
It is possible that a more general framework, obtained by
combining Markov Decision Theory and signal flow
graphs, could be used to study this type of search. Computer

simulations have revealed, as expected, that sorting in this
fashion does indeed reduce the acquisition time.

A bound on the sorted hybrid search can be
found using the generalized signal flow graph approach
of Section 2. This bound is obtained by first searching
those cells with the largest transition probabilities into
the acquisition state. Specifically this is done by defining
a new search order �s( j) where:

(27)o

es (2M �1) � {e ( j2M�1) : Pe ( j2M�1) � min
i�M,p , 2M�1

Pe (i)}
o

es (M � 1) � {e ( jM�1) : Pe( jM�1) � max
i�M,p , 2M�1

i ZjM

Pe (i)}

es (M) � {e ( jM) : Pe( jM) � max
i�M,p , 2M�1

Pe(i)}

es (M � 1) � {e( jM�1) : Pe ( jM�1) � min
i�0,p , M�1

Pe (i)}
o

es (1) � {e( j1) : Pe( j1) �   max
i�0,p , M�1 

iZ j0

Pe(i)}

es (0) � {e ( j0) : Pe( j0) � max
i�0,p , M�1

Pe (i)}

Fig. 7. Bit reversal search mean acquisition time for the (a) hybrid case of M correlators and (b) the corresponding sorted hybrid bound for K con-
secutive detection bins, PD � 0.9 and PFA � 0.1 for each bin, Ns � 16, and a false alarm penalty time of J � 10.
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The signal flow graph and thus the generating function
from the previous section are now updated with �s(j)
replacing �(j). Figure 7 shows some hybrid bit reversal
search results for a very simple case of Ns � 16 bins
each, with a certain detection and false alarm proba-
bility, PD and PFA, as was done in Section 2. The asso-
ciated bound on the sorted hybrid search is also shown.

7. BOUND ON MEAN SEARCH TIME
FOR A SINGLE OBSERVER

This section briefly discusses the possibility of a
single observer nearly attaining the search perform-
ance of two observers. Recall that an observer is the
object performing the search, for example, the correla-
tor in the last section. A single observer bound under
perfect conditions (PD � 1 and PFA � 0) is derived
based upon Markov’s inequality and compared to an
M � 2 hybrid bit reversal search for the same perfect
conditions. It is seen that the single observer bound sits
just above the two observer hybrid bit reversal search
mean acquisition time.

Markov’s inequality for a random variable, X, states
that if X � 0 and � � 0, then:

(28)

If the random variable is assumed to be the search time,
X � TACQ, and � � 1, 2, . . . , Ns � K � 1, with the
probability Pr(TACQ � �) computed directly then repeated
application of Markov’s inequality yields the greatest
lower bound on the mean search time:

(29)

As before is defined to be unity, Ns is the
number of search locations, or bins, and K is the num-
ber of consecutive locations that will terminate the
search. The single observer bound is shown in Figure 8
along with the hybrid bit reversal search results for the
case of Ns � 16. It is seen that indeed the bound on sin-
gle observer performance is very near but slightly
above the two observer case. In fact, this same phe-
nomenon was observed for a wide range of scenarios
involving different values of Ns. This raises the ques-
tion: Does a single observer search pattern exist such
that the mean search time approaches that of two
observers?

�j�0
�1 ( # )

E (TACQ) � max
1�k�Ns�K�1

ak # �
j�0

k�2 a1 �
1

Ns � j
bb

Pr (X � �) �
E(X)

�

8. FINE ACQUISITION AND THE
SELF-SIMILAR SIGNAL FLOW GRAPH

The acquisition process described up to this point
has only determined the location of the group of bins in
the uncertainty region, e.g., for the UWB acquisition
problem the multipath “cluster” has been located. This
can be termed coarse acquisition. The process of fine
acquisition is now briefly discussed, which is simply
finalizing the locations of the M strongest paths within
the multipath cluster of arrival paths.

At the start of the fine acquisition process it is
known that a single path within the cluster of paths has
been located. Measurements of UWB channels has
revealed that different paths arrive in the same general
temporal neighborhood at the receiver, that is, they tend
to cluster in groups. Thus the M strongest paths that have
arrived at the receiver should be in the vicinity of the
coarse acquisition termination point. Some level of veri-
fication is always required to ensure that acquisition has
indeed occurred. Up to this point a perfect verification
phase has been assumed, which introduces a fixed delay
of J dwell times to the overall code acquisition time
when a false alarm is encountered. The simplest verifi-
cation phase would involve dwelling for an extended
length of time so as to increase the probability of correct
acquisition. This concept is now extended for the case of
multiple correlators that are perturbed around the coarse
acquisition termination point.

Figure 9 shows an example of the fine acquisition
process. The coarse acquisition point has terminated at the

bin, nc, which corresponds to a time offset of .nc
# Tf

N

Fig. 8. Comparison of the mean search time for the single observer
bound versus the two observer hybrid bit reversal search (PD � 1,
PFA � 0).
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Fig. 9. Normalized correlator mean for a code length of Nc � 64. The
coarse acquisition termination point is denoted as nc, which is the
starting point for fine acquisition.

The M correlators then search the neighboring bins, going
outward away from nc until some stopping criterion is sat-
isfied. Generally, an upper bound, say � J1, is set on the
distance that can be traveled before declaring a false alarm
and returning to coarse acquisition. This upper bound
directly affects the false alarm penalty time, as does the
specific stopping criterion used.

The m-th correlator output is defined as z(m)
j � s(m)

j �
n(m)

j for m � 0, 1, . . . , M � 1. The correlator mean is
given in (17). Some example stopping criteria include the
following:

1. Search in both directions and stop after some
fixed offset, for example, � J2 where J2 
 J1.

2. Search in both directions until | z(m)
j | 
 T for all

m and for some T.
3. Search in both directions until �m |z(m)

j | 
 T for
some T.

Independent of the stopping criterion is a verification criterion,
which basically determines if a false alarm has occurred. It
is assumed that the largest correlator magnitudes are stored
during the fine acquisition process in a vector � � [�0, �1, . . . ,
�M�1], where �0 is the largest correlator magnitude seen dur-
ing the search thus far, �1 is the second largest, and so on.
Some example verification criteria include the following:

1. Detection has occurred if �m � T for all m
and for some T.

2. Detection has occurred if �m� n
m � T for some T

and n � 1 or 2.
3. False alarm has occurred if �m 
 T for some m

and some T.

No matter which stopping or verification criteria are
employed, the problem is still basically the same.
Namely, a hybrid search with Ns � 2J1 states is con-
ducted so that the generalized signal flow graph
approach can again be used. In this case, the path gains
are now functions of the specific stopping and verifi-
cation criteria.

As an example consider stopping criterion (1)
with a verification criterion of (1). Assuming that M
divides 2J2 evenly, the hybrid signal flow graph of
Figure 6 can be used, where G�(n)(z) � 1 for all
n � B and G�(n)(z) � z for all n � B where B � {M,
2M, . . .}. Finally the path gains for the state �(2J2 � 1)
are given as:

(30)

The overall process of UWB acquisition includes
coarse and fine acquisition. The overall signal flow
graph representing this search process is seen in Fig-
ure 10 and is termed a self-similar signal flow graph, for
obvious reasons. Once coarse acquisition has termi-
nated, fine acquisition begins where coarse acquisition
left off, giving rise to the self-similar nature of the graph.
If the fine acquisition process is collapsed into two indi-
vidual path gains, one leading to the ACQ state and one
leading to the next coarse acquisition state, the the
resulting graph is simply the generalized signal flow
graph of Figure 1.

9. CONCLUSIONS

A generalized signal flow graph and the associated
moment generating function, suitable for studying a
large class of search problems, were presented in this
paper. This flow graph approach was used to study
acquisition of a UWB signal in a dense multipath chan-
nel. Hybrid serial/parallel search schemes were investi-
gated, as well as sorted hybrid search schemes. The
hybrid bit reversal search was shown to be optimum
under certain conditions. Finally, fine acquisition was
investigated using the signal flow graph approach for
arbitrary stopping and verification criteria. The concate-
nation of coarse acquisition and fine acquisition into a
single graph led to the concept of a self-similar signal
flow graph.

Ge (2 J2�1) (z) � z # a1 � Pr at
M�1

m�0
�m � Tbb  .

He (2J2�1) (z) � z # Pr a t
M�1

m�0
�m � Tb
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