UWB Research Overview (MURI Annual Review)

Keith M. Chugg Electrical Engineering Dept. USC chugg@usc.edu

Overview

- Multipath (Ali Taha)
 - Energy Capture
 - Multiple Access Interference ("Capacity")
- FEC (Durai Thirupathi)
 - Very Low-rate Turbo-Like Codes
- Rapid PN Acquisition (Mingrui Zhu)
 - Sparse Graphical Modeling
 - Iterative (Message Passing) Detection

Basic Signal Format (typical)

Much of the multipath work based on this

• Other work is more general

May 23, 2002

Multipath Effects on TH UWB

• Energy Capture

- Design a simple correlator template to collect substantial energy? (No!)
- Then, how much is gained by optimization of narrow pulse correlation template?
- Multiple Access
 - How does delay spread impact MAI?
 - What are the trade-offs in design choices and MAI?

Multipath Delay Spread

- Signal resolves many paths which need to be collected using multiple correlations (Rake)
- Multipath delay spread seems to cause more MAI

Iterative Correlator Template Extraction Algorithm

Typical Correlator Template Extracted

 ~ 0.9 dB improvement in energy capture for 3 correlators

 Suggests little gain in correlator optimization

• Can be useful for extracting a clean pulse from lab. data

Frame Length Variation in Multipath

- Channels are from lab. Measurements
- Basic Trade
 - longer frames yield fewer collisions
 - shorter frames
 yield more pulses
 per bit & better
 collision mitigation

Hopping Range Variation in Multipath

Channels are from lab. Measurements
Basic Trade

longer ranges yield more collisions

shorter ranges yield worse collision mitigation

Very Low Rate Turbo-like Code Design

Motivation

- Pure power-limited channel!
- Very low rate codes can enhance the performance of the spread spectrum system with no additional penalty
- Turbo-like codes (TLC) can be designed to approach capacity at any code rate
- Existing low rate TLC designs require either
 - large number of iterations (or)
 - large number of states in constituent codes
- Goal
 - To construct very low rate turbo-like codes
 - with low complexity constituent codes
 - with fast convergence of the iterative decoder

Low Rate TLC Design Method

- Design Low Rate Constituent Convolutional Codes
 - Based on super-orthogonal designs
 - Key notion is to decouple the rate and the number of states
 - Results in "simple" super-orthogonal convolutional codes
- Use Such Codes as constituent codes for TLC

Example: Results - AWGN Channel

Rate 1/3 parent
 code vs 1/63 low rate
 code constructed
 using our algorithm

• PCCC: Constituent codes have 16 states each

- 1024 bit interleaver
- 15 iterations
- Roughly about 1
 dB additional coding gain is possible

May 23, 2002

Reminder: Coding Gain in a Spread System

 'Estimated' multiple access capacity of low rate coded system vs conventionally coded and spread system

 Coding gain translates to multi-user capacity in heavily spread systems

May 23, 2002

Example Results - Fading Channel

- Fading amplitude constant over blocks of 63 coded symbols
- Independent fading among blocks
- 10 iterations
- About 2 dB gain possible

Sychronization for Low Duty Cycle UWB Signals

- Frame Synch
- Coarse PN Synch
- Fine PN Sych.

PN Epoch

Traditional Direct Sequence

Low Duty Cycle UWB

May 23, 2002

Rapid PN Acquisition Using Iterative Detection Techniques

- UWB systems may require very fast coarse PN pattern synchronization
 - Many resolution bins to search and true epoch will vary with time
 - "chasing tail" situation may arise
- Fully Parallel Acquisition
 - ML detection of initial state of an FSM evolution
 - Very complex in general, but fast
- Iterative Message Passing Algorithms
 - Require graphical model for problem/signal structure
 - Sparse Loopy Graphs => near ML performance & significant complexity reduction

Rapid PN Acquisition Using Iterative Detection Techniques

- Represent good PN patterns using sparse graphical models (new PN structures or existing)
- Apply standard message-passing iterative detection to approximate full parallel search

M-sequence Example: r-stage shift register

- Observation: for M-sequences with long period, there are many sparse generator polynomials & these directly provide sparse loopy graphical models.
- Example
 - An 15-stage shift register with generating polynomial of $[180001]_{oct}$. And the period of this m-sequence is $2^{15}-1 = 32767$.

Sparse Loopy Graphical Model of 15-stage shift register

Message Passing Algorithm

Preliminary Results for Iterative Rapid PN Acq.

- Observation is 1024 Chips
 - Only observation for parallel and MPA
 - Dwell time for the Serial Search
- Serial Search Mean Time to Acquire
 - ~ 16,000 dwells for Pfa=5e-5
 - ~ 21,000 dwells for Pfa=1e-8
- Complexity
 - MPA ~ 1/30 Full Search for this example
 - MPA Complexity is exponential only in number of nonzero feedback taps

Summary & Future Work

• Multipath

- Compare LOS power in chamber vs. Multipath in Lab.
- Link budget work & FCC guidelines
- FEC
 - Explore non-AWGN advantages more completely for UWB
 - Tie closer to the UCB prototype needs
- PN Acquisition
 - Integrate to a verification/restart procedure
 - Integrate with frame sych. & determine capabilities in drift