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Overview

• Multipath (Ali Taha)
– Energy Capture
– Multiple Access Interference (“Capacity”)

• FEC (Durai Thirupathi)
– Very Low-rate Turbo-Like Codes

• Rapid PN Acquisition (Mingrui Zhu)
– Sparse Graphical Modeling 
– Iterative (Message Passing) Detection 
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Basic Signal Format (typical)

• Much of the multipath work based on this
• Other work is more general

Frame Time Hop Range Hop 
Spacing

Unmodulated Pulse Train 
(carrier)

Hopped Pulse Train 

Modulated Signal

Modulation 
Dither
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Multipath Effects on TH UWB

• Energy Capture
– Design a simple correlator template to  collect 

substantial energy? (No!)
– Then, how much is gained by optimization of 

narrow pulse correlation template?
• Multiple Access

– How does delay spread impact MAI?
– What are the trade-offs in design choices and 

MAI?
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Multipath Delay Spread

• Signal resolves many paths which need to be 
collected using multiple correlations (Rake)

• Multipath delay spread seems to cause more MAI

Modulated and Hopped Signals in Multipath

User 1

User 2

User 3
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Template Updater

Nonlinear L.S. 
Exhaustive Search

on Delays and 
Linear L.S. on 

Amplitudes

Template

Convergence
CheckDelay

No Yes Designed 
Template

Delays and Amplitudes

Initial Template

Iterative Correlator Template Extraction 
Algorithm
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Typical Correlator Template Extracted
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• ~ 0.9 dB 
improvement in 
energy capture for 3 
correlators

• Suggests little gain 
in correlator 
optimization 

• Can be useful for 
extracting a clean 
pulse from lab. data
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• Channels are from 
lab. Measurements

• Basic Trade

• longer frames yield 
fewer collisions

• shorter frames 
yield more pulses 
per bit & better 
collision mitigation

Frame Length Variation in Multipath
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Hopping Range Variation in Multipath

• Channels are from 
lab. Measurements

• Basic Trade

• longer ranges yield 
more collisions

• shorter ranges 
yield worse collision 
mitigation
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• Motivation
– Pure power-limited channel!
– Very low rate codes can enhance the performance of 

the spread spectrum system with no additional penalty
– Turbo-like codes (TLC) can be designed to approach 

capacity at any code rate
– Existing low rate TLC designs require either

- large number of iterations (or)
- large number of states in constituent codes

• Goal
– To construct very low rate turbo-like codes

- with low complexity constituent codes
- with fast convergence of the iterative decoder

Very Low Rate Turbo-like Code Design
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Low Rate TLC Design Method

• Design Low Rate Constituent 
Convolutional Codes
– Based on super-orthogonal designs
– Key notion is to decouple the rate and the 

number of states
– Results in “simple” super-orthogonal 

convolutional codes
• Use Such Codes as constituent codes 

for TLC
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Example: Results - AWGN Channel

• Rate 1/3 parent 
code vs 1/63 low rate 
code constructed 
using our algorithm

• PCCC: Constituent 
codes have 16 states 
each

• 1024 bit interleaver 

• 15 iterations

• Roughly about 1 
dB additional coding 
gain is possible 
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Reminder: Coding Gain in a Spread System

• ‘Estimated’ multiple 
access capacity of low 
rate coded system vs 
conventionally coded 
and spread system

• Coding gain 
translates to multi-user 
capacity in heavily 
spread systems

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Additional required power in dB

N
um

be
r o

f a
ct

iv
e 

us
er

s

Rate 1/63 TLC + scrambling 

Rate 1/3 TLC + spreading

Rate 1/2 TLC + spreading 

Rate 1/2 CC + spreading
(K = 7 ,soft decoding) 



May 23, 2002 K. M. Chugg, USC 14

Example Results - Fading Channel

• Fading amplitude 
constant over blocks 
of 63 coded symbols 

• Independent 
fading among blocks

• 10 iterations

• About 2 dB gain 
possible
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Sychronization for Low Duty Cycle UWB Signals

• Frame Synch
• Coarse PN Synch
• Fine PN Sych.

Frame Epoch

PN Epoch

PN Epoch

Traditional Direct Sequence Low Duty Cycle UWB
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Rapid PN Acquisition Using 
Iterative Detection Techniques

• UWB systems may require very fast coarse 
PN pattern synchronization 
– Many resolution bins to search and true epoch will vary with 

time 
– "chasing tail" situation may arise 

• Fully Parallel Acquisition
– ML detection of initial state of an FSM evolution 
– Very complex in general, but fast 

• Iterative Message Passing Algorithms
– Require graphical model for problem/signal structure 
– Sparse Loopy Graphs => near ML performance & significant 

complexity reduction 
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Rapid PN Acquisition Using 
Iterative Detection Techniques

• Represent good PN patterns using 
sparse graphical models (new PN 
structures or existing) 

• Apply standard message-passing 
iterative detection to approximate full 
parallel search
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M-sequence Example: r-stage shift register
• Observation: for M-sequences with long period, 

there are many sparse generator polynomials & 
these directly provide sparse loopy graphical 
models. 

• Example
– An 15-stage shift register with generating polynomial of 

[180001]oct. And the period of this m-sequence is 215-1 = 
32767.

– Sparse Connections!

D D D D

r0 r1
r13 r14

xk

+
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Sparse Loopy Graphical Model of 
15-stage shift register
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Message Passing Algorithm
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Preliminary Results for Iterative Rapid PN Acq.

• Observation is 1024 Chips
– Only observation for 

parallel and MPA
– Dwell time for the Serial 

Search
• Serial Search Mean Time to 

Acquire
– ~ 16,000 dwells for 

Pfa=5e-5
– ~ 21,000 dwells for 

Pfa=1e-8
• Complexity

– MPA ~ 1/30 Full Search 
for this example

– MPA Complexity is 
exponential only in number 
of nonzero feedback taps
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Summary & Future Work
• Multipath

– Compare LOS power in chamber vs. Multipath in 
Lab.

– Link budget work & FCC guidelines
• FEC

– Explore non-AWGN advantages more completely 
for UWB

– Tie closer to the UCB prototype needs
• PN Acquisition

– Integrate to a verification/restart procedure
– Integrate with frame sych. & determine capabilities 

in drift


