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Rate Control for Robust Video Transmission over

Burst-Error Wireless Channels

Chi-Yuan Hsu, Antonio Ortega, and Masoud Khansari

Abstract|We study the problem of rate control for trans-
mission of video over burst-error wireless channels, i.e.,
channels such that errors tend to occur in clusters during
fading periods. In particular we consider a scenario con-
sisting of packet based transmission with Automatic Repeat
reQuest (ARQ) error control and a back channel. We start
by showing how the delay constraints in real time video
transmission can be translated into rate constraints at the
encoder, where the applicable rate constraints at a given
time depend on future channel rates. With the acknowl-
edgments received through the back channel we have an
estimate of the current channel state. This information,
combined with an a priori model of the channel allow us to
statistically model the future channel rates. Thus the rate
constraints at the encoder can be expressed in terms of the
expected channel behavior. We can then formalize a rate
distortion optimization problem, namely, that of assigning
quantizers to each of the video blocks stored in the encoder
bu�er such that the quality of the received video is maxi-
mized. This requires that the rate constraints be included in
the optimization, since violating a rate constraint is equiva-
lent to violating a delay constraint and thus results in losing
a video block. We formalize two possible approaches. The
�rst one seeks to minimize the distortion for the expected
rate constraints given the channel model and current obser-
vation. The second approach seeks to allocate bits so as to
minimize the expected distortion for the given model. We use
both dynamic programming and Lagrangian optimization
approaches to solve these problems. Our simulation results
demonstrate that both the video distortion at the decoder
and packet loss rate can be signi�cantly reduced when incor-
porating the channel information provided by the feedback
channel and the a priori model into the rate control algo-
rithm.

Keywords|ARQ, channel model, channel feedback, packet
video, delay constraint, VBR video.

I. Introduction

W
IRELESS channels are increasingly being considered
as a transport medium for various types of multi-

media information. While the appeal of tetherless mobility
is great, numerous issues need to be resolved in order for
wireless transport of real time multimedia data to become
a reality (including communications issues, low power im-
plementation, etc.) We consider a scenario where, due to
the user's mobility, the channel behavior will be inherently
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time-varying, with periods of correct transmission alter-
nating with periods of high error rates. In this paper, we
concentrate on how a real time video application can be
supported over such a time varying burst-error channel,
rather than on the speci�cs of the physical layer of the
channel. We will only assume that the channel behavior
can be characterized by simple burst-error models and will
provide experimental results for two such models [1], [2].
However, the proposed techniques are applicable to more
general cases. In particular, our goal is not to validate spe-
ci�c channel models but rather to show how, given such
channel models, optimized rate control strategies can be
implemented. Thus, our techniques could be applied with
alternative channel models for the same wireless environ-
ments considered, or they could be used, with appropriate
models, for other time-varying channel scenarios. There-
fore, the performance of the described techniques will de-
pend in part on how well the channel model matches the
actual channel behavior.
Transmission of real time video is challenging because

of the delay constraints involved (i.e., information which
arrives too late at the decoder is considered lost), and be-
cause of the negative impact of channel losses on the per-
ceptual quality of video at the decoder. Thus to achieve
high �delity video quality at the decoder requires a robust
transmission scheme [3]. Indeed, uncorrected channel er-
rors may result in signi�cant quality degradation at the de-
coder. This is particularly evident in standard coders, such
as those based on MPEG or H.263, where variable length
coding is used (the variable length decoder is likely to lose
synchronization) or where compression involves a predic-
tive coding scheme, such as motion compensation (error
can therefore propagate through several frames.) While
numerous approaches for error concealment have been de-
scribed in the literature [4], it is in general preferable to
ensure as error-free a transmission as possible.
To provide the required protection one can use error

control techniques, which can be roughly categorized into
open-loop (e.g., forward error correction, FEC) and closed-
loop (e.g., automatic repeat request, ARQ). Obviously er-
ror correction comes at the cost of reduced bandwidth avail-
able for transmission: this is due to the error correction
overhead in the FEC case and to the need to retransmit
data in the ARQ case. While FEC is often used for wire-
less mobile channels [5], [6], in a two-way communication
system the available feedback channel can be used for error
resilience by allowing the receiver to request the retrans-
mission of erroneous packets using ARQ [7]. Using ARQ
error control for the mobile radio channels has been re-
cently proposed as an alternative to a purely FEC based



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 5, MAY 1999 2

approach [2], [1]. In [8], [9], ARQ feedback is also used for
error concealment of the transmitted video. ARQ informa-
tion can also be used within the recently �nalized H.263+
standard to ensure that motion compensated prediction is
only performed with respect to frames that have already
been acknowledged [10].

ARQ approaches, assuming the existence of a back chan-
nel and suÆciently long end-to-end delays, are appealing
in that retransmission is only required during periods of
poor channel conditions. Thus ARQ schemes are inher-
ently variable rate. However, to take full advantage of the
error control capabilities of an ARQ scheme, we propose to
combine the ARQ feedback mechanism with the rate control

mechanism at the video encoder. By combining the ARQ
feedback with a rate control algorithm at the encoder one
can achieve an intuitively appealing result: the rate for
the encoded video is reduced during the periods of poor
channel conditions.

We concentrate here on selective-repeat ARQ where
packets are continuously transmitted without waiting to
receive acknowledgments of previously transmitted pack-
ets. We consider a general framework for the real time
transmission of video data over a channel subject to ran-
dom bursty losses. We �rst show how the end-to-end delay
constraints on the video delivery can be translated into rate
constraints at the encoder. These rate constraints depend
on the channel behavior, which is assumed to be random
but can be estimated based on a priori models and the
channel state feedback.

In order to achieve higher compression ratios, video en-
coders typically utilize lossy compression techniques, that
is, the decoded video is not an exact reproduction of the
original. Thus, one can reduce the source rate at the cost
of reduced quality (distortion) at the decoder. This leads
to Rate-Distortion (R-D) techniques being natural frame-
works to evaluate the performance of video transmission
systems. Our goal will then be to design systems which
minimize the distortion at the decoder for the given set
of rate constraints, as derived from the end-to-end delay
constraints. While perceptual quality does not always cor-
relate exactly with the measured objective distortion (e.g.,
mean square error, MSE, which will be used in this pa-
per), objective distortion measures are still a useful tool to
evaluate received video quality.

Most commonly used video compression standards, such
as MPEG, H.261 or H.263, (see [11], [12] for example)
share a similar structure based on motion compensated
frame prediction and block-based Discrete Cosine Trans-
form (DCT) coding. In such DCT-based video source en-
coders, the resulting encoding rate and the incurred distor-
tion are determined by how coarsely the DCT coeÆcients
are quantized. In our formulation we allow the encoder to
select one quantizer for each group of blocks (GOB), chosen
out of a prede�ned discrete set of quantizers.

R-D based approaches have been used to solve numer-
ous problems in image and video compression, from simple
bit allocation in image coding [13] to various aspects of
video coding including motion estimation [14], rate control

[15], [16], [17], [18] and shape coding [19]. A description
of some of the basic techniques for R-D optimization and
a survey of recent work can be found in [20]. A more de-
tailed description of these techniques can be found in [19].
Recent work has focused on the R-D optimization of video
transmission over variable rate channels [21], [22], [17], [18],
i.e., those where the number of bits transmitted changes for
each time interval. However, the work in [21], [22], [17], [18]
concentrated on situations (speci�cally transmission over
an Asynchronous Transfer Mode, ATM, network) where
the transmitter was allowed to select the channel rate and
thus channel rates were known deterministically. Instead
here we consider a scenario where the e�ective channel rate
varies randomly. The main novelty of this work, as com-
pared to earlier work on R-D driven rate control is that
we introduce a probabilistic component in the rate control:
the constraints on the rate that can be allocated to each
video block depend on the future channel rates, for which
we only have a statistical characterization. The work pre-
sented here extends the one we initially reported in [23],
[24].

Also note that recent work [25], [26] has addressed similar
scenarios where rate control at the video encoder is used
to provide enhanced transmission robustness. However, to
the best of our knowledge, no other work has considered
this problem in an R-D optimization framework as that
presented here.

Our proposed formulation is very general and it allows
us to show how one can modulate the rate of the source to
minimize the expected distortion at the receiver, given es-
timates of the channel state. The experimental results pre-
sented in this paper focus on a point-to-point wireless link
for video transmission, where a feedback channel is avail-
able to the encoder, but the same algorithms may be appli-
cable to other environments where transmission is subject
to errors, e.g., video transmission over the Internet.

The paper is organized as follows: in Section II we
de�ne the delay constraints arising in a real-time video
transmission system. From the delay constraints, a set of
rate constraints on encoded video data are derived, such
that meeting the rate constraints guarantees that the de-
lay constraints are not violated. In Sections III and IV, we
brie
y describe the structure of our wireless video transmis-
sion system, and propose rate control algorithms for video
transmission under such burst-error channels. We assume
a wireless environment with a feedback channel and as-
sume that an a priori probabilistic model of the channel
behavior is available. The burst-error wireless channel is
modeled as a Markov chain, and an ARQ scheme is used
for error control. At the source encoder, we formulate an
optimal rate control problem in an R-D framework, where
the channel state observation and an a priori model of the
channel are given. We formalize two possible approaches.
The �rst one seeks to minimize the distortion for the ex-

pected rate constraints given the channel model and current
observation. The second approach seeks to allocate bits so
as to minimize the expected distortion for the given model.
In Section V we use both dynamic programming and La-
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grangian optimization approaches to solve these problems.
Our simulation results, presented in Section VI, demon-
strate that both the video distortion at the decoder and
packet loss rate can be signi�cantly reduced when incor-
porating the channel information provided by the feedback
channel and the a priori model is incorporated into the rate
control algorithm. We also evaluate how inaccurate chan-
nel models and delay in the channel state feedback a�ect
our proposed rate control approaches.

II. Equivalence between Delay and Rate

Constraints

In this paper, we de�ne a real-time video transmission
system as a system in which each video frame is captured,
encoded, transmitted, decoded and displayed in real-time
within some acceptable delay interval. Such delay interval
is referred to as the \end-to-end" delay of video transmis-
sion. We consider here the case where the video frame
rate (number of frames per second) is constant, and the
same, at both encoder and decoder (i.e., frames cannot be
\dropped"). Under these conditions, the end-to-end delay
per frame, �T , will have to be constant. Thus, each frame
captured at the transmitter at time t will have to be de-
coded and available for display before time t+�T . Video
data that arrives at the decoder too late to be decoded by
its scheduled display time is useless and is considered lost.
Clearly, frame skipping at the decoder results in quality

loss, especially when motion compensated video coding is
used, while skipping frames at the encoder can be done
without as heavy a quality penalty. However in this lat-
ter case there will also be end-to-end delay constraints for
those frames that are transmitted. Di�erent video applica-
tions have di�erent requirements in terms of delay. In in-
teractive video communications (e.g., video conferencing)
low delay is required, while in one-way video transmission,
(e.g., broadcast or video on demand) the end-to-end de-
lay is only noticeable to the user as an initial latency, i.e.,
the time interval between the start of the video transmis-
sion session and the time the �rst video frame is displayed.
While our formulation is generic it is clear that it will be
more suited for scenarios with longer end-to-end delay.
Typical compressed video bitstreams are Variable Bit

Rate (VBR), i.e., each frame is compressed using a di�er-
ent number of bits. When transmitting over a Constant Bit
Rate (CBR) channel, bu�ers at the encoder and decoder
are required to smooth out the variations in the encoding
rates. Bu�ering data requires extra memory at both en-
coder and decoder and introduces additional delay to data
transmission. As the encoder is allowed to produce a more
variable rate (more bits for diÆcult frames, fewer bits for
easy frames, for example) the overall quality will be better.
Thus larger bu�ers, or equivalently, increased end-to-end
delay, will tend to result in higher video quality [27], [15].
Traditionally, rate control has been studied from the point
of view of memory, i.e., rate control was required to avoid
over
owing the available bu�ers at encoder and decoder.
However, in what follows we will tackle the problem as in
[27], [21], i.e., we will assume that suÆcient physical mem-

ory is available and formulate the problem from the point
of view of end-to-end delay.

Video
encoder

Encoder 
buffer

Video
decoder

Video input

Decoder
buffer

Channel
Video output

∆Teb

Transmitting unit Receving unit

Delay: ∆Tdb∆Tc∆Te ∆Td

Fig. 1. Delay components of a communication system.

A. Delay Components

Following the MPEG, H.263 standard structures we will
assume that the basic encoding/decoding units are so-
called macroblocks which comprise several 8 � 8 pixel
blocks1. These macroblocks can then be grouped as fol-
lows: A processing group of blocks (P-GOB) contains a set
of macroblocks that are processed together by encoder or
decoder. That is, in order for correct encoding (resp. de-
coding) to take place all the macroblocks in a P-GOB have
to be available simultaneously at the encoder (resp. de-
coder) input. The size of the P-GOB depends on the exact
architecture of the video encoder and decoder. A quantiza-

tion group of blocks (Q-GOB) contains a set of macroblocks
which get assigned the same quantization scale. In other
words, the Q-GOB size de�nes the minimum granularity of
the quantization assignment. The Q-GOB size is a source
coding parameter and typically allowing quantizers to be
chosen for smaller units (Q-GOB size small) results in bet-
ter quality video. We will assume that the P-GOB and Q-
GOB sizes are constant. Typical sizes for both can range
from 1 macroblock to a complete frame.
We will now discuss the delay constraints a�ecting each

P-GOB. We will also assume without loss of generality that
the P-GOB and Q-GOB sizes are the same2. In the remain-
der of the paper we will thus refer to P-GOBs and Q-GOBs
indistinctly as GOBs or blocks.
In typical video communications systems, the end-to-end

delay each GOB experiences (from the time it is obtained
from the input video bu�er to the time it is placed in the
display video bu�er) consists of several delay components.
For example the total constant delay �T experienced by
each frame (see also Fig. 1) can be broken up into:

�T = �Te (Encoder delay)

+ �Teb (Encoder bu�er delay)

+ �Tc (Channel delay)

+ �Tdb (Decoder bu�er delay)

+ �Td (Decoder delay): (1)

1Several alternative macroblock sizes are possible, for example, an
MPEG-2 macroblock could include 16x16 luminance pixels and 2 sets
of 8x8 chrominance pixels [11]
2The delay constraints depend only on the size of the P-GOBs.

Once this has been �xed one can �nd solutions for the resulting con-
strained optimization problems: the size of the Q-GOBs only con-
straints the set of available quantization settings.
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In a more general case, assume that there are G GOBs in
each frame, then it is still true that the overall delay for
the frame can at most be �T . However the delay may be
di�erent for speci�c GOBs. For example, for the i-th GOB
in one particular frame the following must hold3,

�T �(i��T 0
e
)�((G� i+1)��T 0

d
) = �T 0

eb
+�T 0

c
+�T 0

db
;

(2)
where each �T 0 has the same meaning as the �T 's in (1)
but represents GOB-level, rather than frame-level, delays.
Eq. (2) simply states that the i-th GOB within the frame is
placed in the encoder bu�er after it and the previous i� 1
GOBs have been processed (i��T 0

e
) and has to be available

at the decoder in time to allow its own decoding and that
of that of the following G� i GOBs ((G� i+1)��T 0

d
) be-

fore the corresponding frame has to be displayed. If we use
the frame as the basic unit, i.e., a GOB contains one frame
(G=1), then (2) reduces to (1). Thus, in general, the delay
for each GOB, �T (GOB), does not have to be constant.
To simplify things let �T 0

e=d
= (i��T 0e)�((G�i+1)��T

0
d
)

be constant, i.e., we let the encoding and decoding times
per GOB be identical. Then each GOB will have the same
delay constraint and will have to be available at the de-
coder within �T � �T 0

e=d
time units of the time it was

placed in the encoder bu�er. While assuming a di�erent
delay constraint for each GOB within a frame can be eas-
ily accommodated within our framework, it does not add
any substantial intuition to the development and results.
Thus we simplify the ensuing discussion (and notation) by
assuming a �xed delay requirement per GOB.
The channel delay �T 0

c
in (2) may be variable in gen-

eral. For example, in transmission over shared networks,
signi�cant delay variations may occur due to queuing in
the network routers. However, in this work we consider a
point-to-point wireless channel connecting the base station
to each of the mobile units, and thus the variation of the
channel delay is comparably small. Thus we assume �T 0

c

to be constant so that, from (1), the sum of delays intro-
duced by encoder and decoder bu�ers on a particular GOB
�T 0

eb
+�T 0

db
will be constant,

�T 0
eb
+�T 0

db
= �T ��T 0

e=d
��T 0

c
(3)

Let us denote Tf the duration, in seconds, of a frame
interval and let Tg be the duration of a GOB, so that Tf =
G� Tg, where G is the number of GOBs per frame. Then,
�N , the total number of GOBs stored in either the encoder
and the decoder bu�er will be constant and given by,

�N =
�T 0

eb
+�T 0

db

Tg
; (4)

where �T 0
eb
+�T 0

db
are given by (3).

B. Rate Constraints

We will now show how these delay constraints can be
translated into rate constraints that the encoder has to

3Note that here we are referring to the i-th GOB within a frame,
while in the later discussion we will consider the overall index, i.e.,
the i-th GOB in the video sequence.

meet to guarantee that there are no losses due to excessive
delay. The encoded video data is packetized into constant-
size packets before transmission. We make the assumption
that each packet interval has a duration Tp seconds. In
order to facilitate our discussion, we use Tp as the basic
time unit, i.e., we discretize the time by Tp. Therefore a

GOB spans over F packet intervals where F =
Tg

Tp
. For

convenience we assume that F is integer. The n-th GOB
is encoded at time n � F , or, equivalently, at time t (t-th
packet interval) block n = b t

F
c is the last GOB that is

encoded and released into the encoder bu�er. Due to the
delay constraint of �N GOBs, the n-th block has to be
received by the decoder no later than (n+�N)� F .

Assume that at time t, block m is the GOB currently
being transmitted by the channel. De�ne R(i) as the num-
ber of bits used for encoding GOB i, and R0(m) as the
number of bits of GOB m that are still in the encoder
bu�er and waiting for transmission at time t. There-
fore at time t, the content of the encoder bu�er con-
sists of R0(m); R(m+1); : : : ; R(n) bits of data from GOBs
m;m+ 1; : : : ; n, respectively (refer to Fig. 2).

In addition, we are modeling an ARQ based system and
thus we will assume that BL (backlog) bits in the bu�er are
used to store packets that have been transmitted but not
yet acknowledged. Assuming that the delay in receiving ac-
knowledgments is constant and equal to b packet intervals,
we will need BL = b� �C bits to store the b packets that are
waiting to be acknowledged ( �C is the payload per packet,
in bits). Since in the worst case all b packets will have to
be retransmitted, we will take into account this separate
ARQ bu�er of size BL in deriving our rate constraints 4.

The delay in receiving acknowledgments will be b =
l
Tb

Tp

m
packets, where Tb is the feedback delay in seconds.

Denote C(k) as the number of bits transmitted by the
channel at time k. The condition for the i-th GOB, i 2
fm+1; : : : ; ng, to arrive at the decoder in time for decoding
is that all the data corresponding to i, as well as to all the
previous blocks in the encoder bu�er, has to be transmitted
by the due time (i+�N)� F , thus:

BL+R0(m) +

iX
j=m+1

R(j) �

(i+�N)�FX
k=t+1

C(k) (5)

We assume that if part of block m has been transmit-
ted, then the encoding rate for block m can no longer be
changed. Therefore we are interested in the rate constraints
for the remaining blocks (block m + 1 to block n) in the
encoder bu�er. Analogous constraints apply to each of the
blocks currently in the bu�er. Thus, we can write for all
i = m+1; : : : ; n the set of constraints (6) (see also Fig. 2).

Selecting the encoding ratesR(m+1); : : : ; R(n) such that
all the rate constraints in (6) are met guarantees that the
end-to-end delay constraints will also be complied with.

4Note that this results in a somewhat conservative estimate since
in most cases not all the b packets will have to be retransmitted.
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...
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Fig. 2. Constraint on encoding rate for each bu�ered video block at time t.

R(m+ 1) �

2
4(m+1+�N)�FX

k=t+1

C(k)

3
5 �R0(m)�BL

R(m+ 2) +R(m+ 1) �

2
4(m+2+�N)�FX

k=t+1

C(k)

3
5 �R0(m)�BL (6)

...

R(n) + : : :+R(m+ 2) +R(m+ 1) �

2
4(n+�N)�FX

k=t+1

C(k)

3
5 �R0(m)�BL

Q-GOB: Quantization group of blocks,
P-GOB: Processing group of blocks,
�T (sec): End-to-end delay for each frame,
�T 0

e=d
(sec): Encoder/decoder delay for each GOB,

Tf (sec): Frame interval,
Tg (sec): GOB interval,
Tp (sec): Packet interval,
�N (GOB): Number of GOBs in the encoder and de-

coder bu�ers,
G (GOB): Number of GOBs/frame,
F (packets): Number of packets/GOB.

TABLE I

Summary of notations

III. Formulation of the Rate Control Problem

From (6) we can observe that the general delay constraint
(each GOB has to arrive at the decoder within �N�Tg sec-
onds) can be translated into rate constraints which depend
on the future channel transmission rates C(k), k > t. If the
C(k) were known, there would be many choices of encoding
rates R(m+1); : : : ; R(n) which would meet the constraints
of (6). Thus we adopt a rate-distortion approach where
our goal is to obtain the encoder rate allocation which pro-

duces the minimum distortion at the decoder for the given

rate constraints.

In (6) GOBsm+1 to n are bu�ered in the encoder bu�er
at time t. We will assume that the quantizer assignment
of a given block can be modi�ed while the block is in the
bu�er, but before it starts to be transmitted (for exam-
ple at time t we cannot modify the allocation for GOB m,
but the rates for blocks m + 1 to n can be adjusted.) In
a DCT-based video compression scheme, a possible imple-
mentation of the system (see Fig. 3) would consist of having
several parallel bu�ers, each storing every GOB quantized
with one particular quantizer. Then the data for the block
currently being transmitted (m in our example) will be
drawn from the appropriate bu�er. An alternative, and
more elegant, approach would be to have each block en-
coded as an embedded bitstream (i.e., the bits correspond-
ing to a low rate version of the GOB are embedded in all
the higher rate versions).

As indicated earlier, we choose to use identical P-GOBs
and Q-GOBs sizes. Thus we assume that each GOB is
encoded with a quantizer from a �nite quantizer set Q.
Denote x(i) 2 Q as the choice of quantizer for block i,
and Rx(i)(i) and Dx(i)(i) as the associated encoding rate
and distortion. Consider the example depicted in Fig. 2 in
which the quantizers for blocksm+1 to block n are dynami-
cally selected under the rate constraints of (6). The choices
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Fig. 3. System block diagram.

of quantizers x(m+1; n) = fx(m+1); x(m+2); : : : ; x(n)g
which can result in the minimal video distortion for the
video segment in the encoder bu�er are those solving the
following problem:
Formulation 1: Optimal quantizer selection for known

channel rates

Find the optimal quantizer choices x�(m + 1; n) at time t

such that,

x
�(m+ 1; n) = arg min

x(m+1;n)

nX
j=m+1

Dx(j)(j); (7)

where n =

�
t

F

�
;

subject to the constraint set:

iX
j=m+1

Rx(j)(j) �

0
@(i+�N)�FX

k=t+1

C(k)

1
A�R0(m)�BL; (8)

8i = m+ 1; : : : ; n:
Note that in the above formulation, the optimization is

based on the R-D data of video frames currently stored in
the encoder bu�er, since under our assumption of real-time
encoding we do not have access to the R-D data of future
frames. Thus, successively �nding the optimal solution to
Formulation 1 for each n is equivalent to using a \sliding
window" mechanism to compute the quantizer assignment
for the complete sequence. Thus the quantizer for block
m+1 is selected based on blocks m+1 through n and the
corresponding channel rates. This is a greedy approach
which cannot guarantee overall optimality, but it is the
best approach given that only those blocks are known at
the encoder.
We are considering a lossy transmission channel, where

packets are retransmitted if they are received with too
many errors to be decoded correctly. Thus, in our system
C(k) can be either the nominal packet payload �C (if the
packet is received correctly) or zero (if an error occurred).
Therefore we cannot guarantee that the rate constraints of

(6) will not be violated, and thus that no losses will occur,
because this would require knowledge of the future chan-
nel transmission rates C(k) for packets k (k > t). In this
paper we show how to make use of a probabilistic model of
the channel and observations of the current channel state
in the context of this rate control problem.

We propose two alternative formulations, which both as-
sume that, given the observation and the a priori model,
estimates of future channel behavior can be obtained. Our
�rst approach consists of modifying Formulation 1 so as to
use expected rate constraints, given the current state of the
bu�er. In the second approach, we instead minimize the
expected distortion, where the distortion of a given block de-
pends not only on the choice of quantizer but on the proba-
bility that the block is lost. In what follows we will denote
S(t�b) the latest observation of the channel state at time t,
where b is the delay (in number of packets) with which we
obtain feedback information. For example, if b = 0 the de-
coder would know immediately whether transmission in the
prior time slot was successful. Typically we will have b > 0
since the encoder has to wait for acknowledgments from
the decoder to be received in order to determine whether
transmission was successful.

In the �rst approach, assuming that the encoder can es-
timate the expected value of the future channel rates (as
will be discussed in Section IV-C), we can replace the rate
constraints in (8) by their expected values:

iX
j=m+1

R(j)

� E

2
4(i+�N)�FX

k=t+1

C(k)
�� S(t� b)

3
5�R0(m)�BL; (9)

8i = m+ 1; : : : ; n;

so that our problem can be formulated as:

Formulation 2: Rate control under estimated rate con-

straints
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Find the optimal quantizer choices x�(m + 1; n) at time t

such that,

x
�(m+ 1; n) = arg min

x(m+1;n)

nX
j=m+1

Dx(j)(j); (10)

where n =

�
t

F

�
;

subject to the expected rate constraints (9).

In the above formulation data loss caused by exceeding
the delay constraints may still happen even if the encoding
rates R(m+1); : : : ; R(n) meet all the expected constraints
of (9), because the actual channel rates may be lower than
our predicted values. Because data loss may result in sig-
ni�cant distortion in the decoded video, it may be better to
replace the average expected rate in (9) by, say, the future
rates which are guaranteed with probability 90%. This will
obviously result in a more conservative rate allocation at
the encoder and hence higher distortion at the decoder.
This would be a form of e�ectively trading o� the source
rate distortion (sending fewer bits) for the distortion due
to losses (if fewer bits are sent they are more likely to be
received correctly). This trade-o� can be made explicit if
we assume that the distortion incurred by data loss can be
estimated.
Thus, our second rate control approach will seek to min-

imize the \expected" distortion, which combines the dis-
tortion caused by encoding and that caused by data loss.
More speci�cally, denote D0(i) as the incurred distortion
on video block i, when the block is lost. Let ploss(i) be
the probability that video block i does not arrive at the
decoder in time. This will happen if the rate constraints
corresponding to block i are violated and thus we can write

ploss(i) = Pr

� iX
j=m+1

R(j) >

0
@(i+�N)�FX

k=t+1

C(k)

1
A�R0(m)�BL

���� S(t� b)

�
: (11)

Then the expected distortion of block i can be de�ned as:

E [D(i)jS(t� b)] = (1� ploss(i))�D(i) + ploss(i)�D0(i);
(12)

and the problem can be reformulated as:
Formulation 3: Rate Control for Minimum Expected

Distortion

Find the optimal quantizer choices x�(m + 1; n) at time t

such that,

x
�(m+ 1; n) = arg min

x(m+1;n)

nX
j=m+1

E
�
Dx(j)(j)jS(t� b)

�
(13)

IV. Probabilistic Modeling of Channel Behavior

The formulations we propose are very general and do not
rely on any speci�c characteristics of the statistical channel
behavior. However, the available solutions may di�er sub-
stantially depending on the speci�c channel characteristics.

Indeed, for channels with random (rather than bursty) er-
rors, the proposed real time feedback approach may not
provide any gains in performance, as compared to a open
loop FEC approach. We now present speci�c parameters
and models for the burst error channels that will be used
in our experiments. While the optimization techniques to
be presented later have general applicability, we focus our
discussion on the case of burst-error channels. As pointed
out in the introduction, our goal is not to advocate the
use of speci�c models, but instead to show how channel
models can be incorporated into a rate control mechanism:
for the same application, similar results could be achieved
with alternative models.

A. Physical Layer and Error Control

The speci�c channel under consideration is a wireless
CDMA spread spectrum system [28] for a mobile transmis-
sion environment [6], where channel errors tend to occur in
burst during channel fading periods. The wireless channel
consists of two radio links, namely uplink (mobile-to-base)
and downlink (base-to-mobile). The encoded video bit-
stream is packetized into constant-size packets for trans-
mission. Note that one could use an interleaved FEC
scheme, such as that de�ned in ITU-T recommendation
I.363 [29]. However the robustness in such an FEC scheme
would come at the price of additional delay, since the degree
of interleaving may have to be signi�cant. Instead, here we
choose to use shorter interleaving periods (see transceiver
description in [30], [1]) combined with an ARQ approach.
We then use models for the resulting error probability for
the data packets (i.e., after processing).
In our Selective Repeat (SR) ARQ scheme, the recep-

tion of a packet is acknowledged by the receiver by sending
either an acknowledgment (ACK) or a negative acknowl-
edgment (NAK) to the transmitter. Only the erroneous
packets are retransmitted. A time-out mechanism is used
so that, if the feedback information is corrupted, data is re-
transmitted anyway. Packets that have been sent are stored
in the ARQ bu�er until they are acknowledged. Packets
awaiting transmission are stored in the encoder bu�er (see
Fig.1) and the decoder bu�er can be used to rearrange the
received packets, which may be out-of-order due to retrans-
mission. Refer to Fig. 4 for a diagram of the various bu�ers
in the system. Because video transmission is subject to a
delay constraint as discussed in Section II, the retransmis-
sion of any packet is attempted only while its due time has
not been exceeded. Data losses occur during the channel
fading intervals whenever the data cannot be retransmitted
before its due time.

B. Channel models

Previous studies [31], [32] show that a �rst-order Markov
chain, such as a two-state Markov model [33], [34] or a
�nite-state model [35], [30], [1] provide a good approxi-
mation in modeling the error process at the packet level in
fading channels. Here we use a two-state Markov model and
an N-state Markov model to emulate the process of packet
errors. Note that the transition probabilities of the two
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Fig. 4. Diagram of bu�ers in the system

models are chosen such as to have the same overall prob-
ability of error, although the average burst lengths will be
di�erent.

B.1 Two-state Markov model:

In this model, the channel switches between a \good
state" and a \bad state", s0 and s1, respectively: pack-
ets are transmitted correctly when the channel is in state
s0, and errors occur when the channel is in state s1

5. pij
for i; j 2 f0; 1g are the transition probabilities (see Fig. 5).
The transition probability matrix for this channel model

Bad channel state 
( Error occurs) 

Good channel state
( No error)

pp
00

11

s
0

s
1

p
10

p
01

Fig. 5. Two state Markov channel model.

then can be set up as:

P =

�
p00 p01
p10 p11

�
(14)

B.2 N -state Markov model:

We use a simpli�ed version of the more general �nite-
state Markov model described in [35]. In this N -state
model, introduced in [30], [1] (see Fig. 6), the channel
states are de�ned as sn, n = 0; : : : ; N � 1 in which s0
represents the \good state" and all other states repre-
sent the \bad states". When the channel is in state sn,
n 2 f0; : : : ; N � 2g, the transition of the channel state is
either to the next higher state or back to state s0 based
on the status of the currently received data packet. If the
channel is in state sN�1, it will always return to state s0.
With this model, it is only possible to generate burst errors
of at most length N � 1 (see Fig. 6 and Table II).

De�ne pn = Prob(sn+1jsn) as the transitional probabil-
ity from state sn to sn+1. The transition probability matrix

5More general classes of two-state Markov models can also be used,
where for example each state in the model has associated a di�erent
probability of error.

for this N -state Markov chain model can be set up as:

P =

2
66666664

1� p0 p0 0 0 � � � 0
1� p1 0 p1 0 � � � 0
1� p2 0 0 p2 � � � 0

...
...

...
...

. . . 0
1� pN�2 0 0 0 � � � pN�2

1 0 0 0 � � � 0

3
77777775

(15)

The state transition probability for the uplink and down-
link channels at BER = 10�3 are shown in the following
table, where N was found to be 15 and 6 (equivalent to
maximum burst error lengths of 70 msec and 25 msec) for
the downlink and the uplink channel, respectively. These
values are found by matching the parameters of the Markov
chains to simulations of the transceivers [30], [1].

p p p p

11-p1-p
1-p

1-p 0 1

2

j
0

1

2

j

Fading 
( Packet transmitted erroneously) 

No Fading
( Packet transmitted correctly)

s
0

s
1

s
2

s
j

s
N-1

Fig. 6. N-state Markov model

Downlink Uplink

p0 0:001469 0:064292
p1 0:516068 0:100324
p2 0:778388 0:164083
p3 0:854118 0:149606
p4 0:936639 0:526316
p5 0:873529 0:000000
p6 0:905724
p7 0:881041
p8 0:831224
p9 0:893401
p10 0:863636
p11 0:717105
p12 0:853211
p13 0:763441
p14 0:000000

TABLE II

Transitional probability of the downlink and the uplink

channels for a 15-state Markov model

C. Channel Rate Estimation

Assuming that at time t the channel state at time t� b,
S(t � b), is known, the average channel rates in Formula-
tion 2 can be derived from the channel models. In this sec-
tion we focus on the estimation for the N -state model, but
similar approaches can be applied to the two-state model
as well (refer to [36] for a more detailed derivation for the
two-state model case).
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In this N -state Markov channel model with transition
probabilities (15), de�ne the state probability �n(k

�� S(t�
b)) as the probability that the channel is in state sn at time
k given the channel state observation S(t� b). A vector of
state probabilities can be written as:

�(k
�� S(t� b)) =

[�0(kjS(t� b)); �1(kjS(t� b)); :::; �N�1(kjS(t� b))] :

The initial state probability �(t� b
�� S(t� b)) at time t� b

can be set up as:

8 n 2 f0; : : : ; N � 1g;

�n(t� b
�� S(t� b)) =

�
1; when S(t� b) = sn;
0; otherwise.

(16)

In the Markov model, the state probabilities �(k
��

S(t � b)) at time k can be derived from the state prob-
abilities �(k � 1

�� S(t � b)) at the previous time slot and
the transition probability matrix P as:

�(k
�� S(t� b)) = �(k � 1

�� S(t� b)) �P (17)

By recursively using (17), channel state probabilities at
time k, where k > t� b, can then be calculated from �(t

��
S(t� b)) and P as:

�(k
�� S(t� b)) = �(t� b

�� S(t� b)) �P k�t+b (18)

In our channel model, packets are transmitted correctly
( �C bits are transmitted) when the channel is in state s0,
while errors occur (0 bits are transmitted) when the chan-
nel is in any other state si, i 2 f1; : : : ; N � 1g. Therefore
�0(k) is the probability of correct transmission at time k.
The expected channel rate E[C(k)jS(t � b)] given the ob-
servation of channel state S(t� b) can be calculated as:

E[C(k)jS(t� b)] = �C � �0(k
�� S(t� b)) (19)

and thus the sum of expected channel rates in (9) can be
written as:

E

2
4(i+�N)�FX

k=t+1

C(k)
��� S(t� b)

3
5 =

(i+�N)�FX
k=t+1

E[C(k)jS(t � b)] = �C �

(i+�N)�FX
k=t+1

�0(kjS(t� b))

D. Expected Distortion

From (11), the probability of losing the i-th GOB,
ploss(i), depends on the accumulated rate in the encoder

bu�er B =
P

i

j=m+1 R(j) and on the future channel rates.
Therefore, given the channel state observation S(t � b) at
time t � b, we de�ne a probability distribution function
�i;t(B

�� S(t � b)), with the accumulated encoding rate B
as variable, as:

�i;t(B
�� S(t� b)) =

Pr

2
4B >

0
@(i+�N)�FX

k=t+1

C(k)

1
A�R0(m)�BL

��� S(t� b)

3
5 :(20)

Given that the quantizer choices are x(m + 1); : : : ; x(i),
the encoder can estimate the distortion of i-th GOB given
B = Rx(m+1)(m+ 1) + : : : Rx(i)(i) as:

E [D(i)] =
�
1� �i;t(B

�� S(t� b))
�
�Dx(i)(i)

+�i;t(B
�� S(t� b))�D0(i); (21)

where Dx(i)(i) is the distortion for the GOB when quan-
tizer x(i) is used, and D0(i) is the distortion incurred when
the whole GOB is lost (we assume D0(i) is the distortion
incurred when replacing each block in the GOB by a block
with constant intensity equal to the average intensity of the
original block.)
The probability distribution function �i;t(B

�� S(t � b))
at time t can also be derived from the channel model given
the channel observation S(t � b). For any given value B,
de�ne � as the number of packets needed for transmitting
those B bits of encoded data as:

� =

�
B

�C

�
(22)

where �C is the packet size. Then �i;t(B
�� S(t � b))

is equivalent to the probability that less than � pack-
ets are successfully transmitted during the time interval
[t+ 1; : : : ; (i+�N)� F ].
To calculate �i;t(B

�� S(t � b)) for an N -state channel
model, de�ne qn;r(t; k), where n 2 f0; : : : ; N � 1g and
r � k � t, as the probability that, initialized from time
t, the channel visits state s0 (successful packet transmis-
sion) r times and arrives at state sn at time k. Given the
observed channel state S(t � b) at time t � b, the initial
state probabilities when k = t (i.e., qn;r(t; t)) can be set up
as:

8n 2 f0; : : : ; N � 1g;

qn;r(t; t) =

�
�n(t

�� S(t� b)); when r = 0;
0; otherwise.

(23)

The value of qn;r(t; k) can be obtained recursively from the
Markov chain model as:

qn;r(t; k) =8><
>:

N�1X
n=0

(1� pn) � qn;r�1(t; k � 1); when n = 0;

pn�1 � qn�1;r(t; k � 1); when n = 1; : : :N � 1.

Therefore the value of the probability distribution func-
tion �i;t(B

�� S(t� b)) for a given value B is

�i;t(B
�� S(t� b)) =

��1X
r=0

N�1X
n=0

qn;r (t; (i+�N)� F ) ; (24)

where � =
�
B
�C

�
Note that since the number of channel states is discrete

and the transition probabilities are known a priori, it is
possible to use tables to generate the relevant constraints
and probabilities from the channel observations.
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E. E�ectiveness of Rate Control Based on Channel Model

and Feedback

In the two proposed rate control approaches, i.e., rate
control under estimated rate constraints (Formulation 2)
and rate control for maximum expected distortion (Formu-
lation 3), the estimation of the expected rate constraints
(19) and expected distortion (21) relays on the a priori

probabilistic model of the channel. However, if there is a
mismatch between the channel model used in the rate con-
trol and the actual channel behavior, the performance of
the rate control will obviously su�er accordingly.
Another factor that may a�ect the performance of rate

control is the feedback delay b. We can expect performance
to be good if feedback is available at the encoder immedi-
ately. Conversely, as b grows the information available at
the encoder becomes increasingly inaccurate (we are using
an \old" observation of the channel state), and therefore
the eÆcacy of the rate control will be reduced.
In Section VI we will provide some experiments to assess

the e�ect of channel modeling mismatches and feedback in
the performance of our algorithms.

V. Rate Control Algorithms

A. Encoding Rate Selection under Estimated Rate Con-

straints

The problem of Formulation 2 can be solved at every
time instant using the estimated rate constraints from the
selected channel model. Here we propose solutions based
on dynamic programming and Lagrangian optimization.

A.1 Encoding Rate Selection by Dynamic Programming

We consider a scheme which encodes all video frames
of a video sequence in intra-frame mode. In this case the
resulting encoding rate and distortion for each block de-
pends only on the quantizer selection for the block and not
on quantizer selections for other blocks. Because the quan-
tizers are selected from a �nite set Q, the optimal choices
of quantizers that can achieve minimum distortion can be
searched using the dynamic programming technique. A
formulation for video rate control based on dynamic pro-
gramming was introduced in [15], while dependent quan-
tization was considered in [16]. Even though most video
coding schemes are dependent we focus here in the inde-
pendent case. In lossy environments, intra-frame schemes
may actually be preferable (since there will be no error
propagation in case of errors). In addition, it is possible
to develop approximate solutions for the dependent cases
with simple modi�cations of the proposed algorithms (by
making them iterative) as was done in [21].
Consider Fig. 7. Our goal in order to solve Formula-

tion 2 is to �nd the best quantizer choice for blocks m+ 1
through n (all those currently in the bu�er) so that none
of the constraints of (9) are violated. The y-axis in Fig. 7
represents the accumulated rate (or state) and the x-axis
represents the GOB considered (or stage). The initial state
(stage i = m) represents the initial contents of the bu�er,
R0(m)+BL. Each branch in the trellis represents a choice

of quantizer, thus a branch linking stages m and m + 1
represents a choice of quantizer for block m + 1, and the
y-coordinate of the branch's end represents the accumu-
lated rate. Each branch at a given stage has an associated
distortion which is the distortion of the block at that stage
when using the quantizer corresponding to the branch. A
path consists of a sequence of branches and has associated a
total path cost which is equal to the sum of the distortions
of the branches in the path.
More formally, given that the quantizer choices x(m +

1; i) = fx(m + 1); : : : ; x(i)g are used for encoding blocks
m + 1 to block i, we de�ne Bx(m+1;i) as the accumulated
encoding rates for these blocks as:

Bx(m+1;i) =

iX
j=m+1

Rx(i)(i) (25)

At each stage of the trellis, each state represents a possible
level of accumulated rate given that a particular selection
of quantizers x(m+1; i) = fx(m+1); : : : ; x(i)g is used. We
de�ne Si(B) as the state in stage i when an accumulated
encoding rate B is used. State Si(B) is associated with

the accumulated distortion
Pi

j=m+1Dx(j)(j) as the cost
for that state. Because of the rate constraints (9), only the
states with state variable B that meet the rate constraints
(9) are valid. That is, state Si(B) is valid if:

B � E

"
i+�NX
k=t+1

C(k)

#
�R0(m)�BL (26)

Suppose a set of quantizer choices x(m + 1; i) =
fx(m + 1); : : : ; x(i)g results in an accumulated encoding
rate Bx(m+1;i). Given that a choice of quantizer x(i+1) is
used to encode block i+1 and results in the encoding rate
Rx(i+1)(i + 1) and distortion Dx(i+1)(i + 1), the resulting
accumulated rate Bx(m+1;i+1) is then:

Bx(m+1;i+1) = Bx(m+1;i) +Rx(i+1)(i+ 1) (27)

and arrives at the state Si+1(Bx(m+1;i+1)). Such choice
of quantizer is represented by a branch that connects
the node of state Si(Bx(m+1;i)) at stage i to the node

of state Si+1(Bx(m+1;i+1)) with cost
P

i+1
j=m+1Dx(j)(j) at

stage i + 1. Therefore in the trellis representation, a path
that consists of branches that are connected from stage
m + 1 to stage i + 1 represents a set of quantizer choices
x(m+ 1; i+ 1) = fx(m+ 1); : : : ; x(i+ 1)g.
With (26) we test whether the quantizer choice x(i+ 1)

may cause the violation of the rate constraint or not, and
any branches that violate the rate constraint are pruned
out. If two or more sets of quantizer choices result in the
same accumulated encoding rate B and arrive at the same
state Si+1(B) at stage i+1, only the path that results in the
minimum accumulated distortion at the given node is kept
and all the other sub-optimal paths are pruned out. This is
based on Bellman's optimality principle [37] and it is easy
to see that (because rate and distortion are decoupled for
each block) it also applies in this case. Therefore the cost
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i=m i=m+1 i=m+2

+

+
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rate constraints.

+
Sub-optimal
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Fig. 7. Trellis tree in dynamic programming for searching the optimal
encoding rate allocation.

associated with state Si+1(Bx(m+1;i+1)) is the minimum
among those resulting in the same accumulated rate.
By pruning sub-optimal solutions at every intermediate

stage, the combination of quantizer choices that can achieve
minimum distortion can thus be found without trying all
the possible combinations. However the complexity can
still be fairly high depending on the number of stages and
the number of states per stage. This prompts us to consider
a faster optimization approach.

A.2 Encoding Rate Selection by Lagrangian Optimization

Using Lagrangian optimization for rate control under
multiple rate constraints was previously studied in [38],
[22]. In the Lagrangian optimization approach, the con-
strained optimization problem in Formulation 2 is equiva-
lent to the unconstrained problem derived by introducing
a non-negative Lagrange multiplier �i associated with each
rate constraint in (9). The optimization formulation then
becomes:
Formulation 4: Find the quantizer choice x�(m + 1; n)

at time t such that

x
�(m+ 1; n) = arg min

x(m+1;n)

nX
j=m+1

Dx(j)(j)

+

nX
i=m+1

�i �

0
@ iX

j=m+1

Rx(j)(j)

1
A(28)

where we introduce n�m Lagrange multipliers to replace
the n�m constraints (9). Then the problem that remains is
to �nd the appropriate multipliers �m+1; : : : ; �n such that
no constraint is violated. De�ne �0

j
as:

�0
j
=

nX
i=j

�i; 8j 2 fm+ 1; : : : ; ng: (29)

then (28) can be rearranged as:

x
�(m+ 1; n) =

arg min
x(m+1;n)

nX
j=m+1

�
Dx(j)(j) + �0j �Rx(j)(j)

�
(30)

Since �m+1; : : : ; �n are all non-negative values, from (29)
we have

�0
m+1 � �0

m+2 � : : : � �0
n
: (31)

Because the mapping f�m+1; : : : ; �ng !
�
�0m+1 : : : ; �

0
n

	
is

one-to-one, it is equivalent to �nding the appropriate non-
negative values of

�
�0
m+1; : : : ; �

0
n

	
such that no constraint

is violated. De�ne Ji(�
0
i
; x(i)), the cost for block i, as:

Ji(�
0
i
; x(i)) = Dx(i)(i) + �0

i
� Rx(i)(i); (32)

8i 2 fm+ 1; : : : ; ng:

If we use intra-frame mode, the quantizer for each video
block can be independently chosen by minimizing the cost
for each block Ji(�

0
i
; x(i)) as:

x�(i) = arg min
x(i)2Q

Ji(�
0
i
; x(i)); 8i 2 fm+ 1; : : : ; ng: (33)

Then the problem remains of how to determine a set
of Lagrange multipliers f�0m+1; : : : ; �

0
ng such that the rate

constraints are met. In [38] a similar problem is solved by
iteratively increasing the lower bounds on the multipliers,
de�ned as f�0

m+1; : : : ;�
0
n
g, such that the violation of rate

constraints can be prevented, and adjusting the values of
f�0m+1; : : : ; �

0
ng until an optimal bit allocation, where none

of the constraints is violated, is found.
Initially the quantizer choices x̂(m + 1; n) are selected

by Lagrangian optimization subject to only a constraint on
the total rate for all blocks in the bu�er:

Pn

j=m+1 R(j) �

E
hP(n+�N)�F

k=t+1 C(k)jS(t� b)
i
� R0(m) � BL. Only one

multiplier �n is associated with the constraint as:

x̂(m+ 1; n) = arg min
x(m+1;n)

� nX
j=m+1

Dx(j)(j)

+�n �

0
@ nX

j=m+1

Rx(j)(j)

1
A� (34)

From (29), this is equivalent to setting �0m+1 = �0m+2 =
: : : = �0

n
= �n, and the optimization can be solved by

minimizing the cost for each block individually as in (33)
using a single Lagrange multiplier �0

n
in every cost function

as:

x̂(i) = arg min
x(i)2Q

Ji(�
0
n
; x(i)); 8 i 2 fm+ 1; : : : ; ng: (35)

The optimal quantizer choices and the appropriate value
of �0n can be found simultaneously by the bisection search
technique. If the quantizer choices x̂(m+1;m) that are se-
lected do not cause violation of the other rate constraints,
then the quantizer choices x̂(m+ 1; n) are the solution to
the optimization problem of Formulation 4. Otherwise,
if the resulting encoding rates violate any other rate con-
straints, then the quantizer choices x̂(m+1; n) are not the
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desired solution and other rate constraints also have to be
taken into account in the optimization process by including
more Lagrange multipliers.
Assuming that block v, where v < N , is the \last" block

which violates the rate constraints given that the quantizer
choices x̂(m+ 1; n) are used, i.e.,

vX
j=m+1

Rx(j)(j) > E

2
4(v+�N)�FX

k=t+1

C(k)

3
5 �R0(m)�BL; (36)

and there is no other rate constraint violation for the video
segment from block v+1 to block n, then the encoding rates
for the video segments from block m + 1 to block v have
to be reduced. Another Lagrange multiplier �v has to be
included in the optimization process to take into account
the constraint as:

x̂(m+ 1; n) = arg min
x(m+1;n)

� nX
j=m+1

Dx(j)(j)+

�v �

0
@ vX

j=m+1

Rx(j)(j)

1
A+ �n �

0
@ nX

j=m+1

Rx(j)(j)

1
A�(37)

Again from (29) it is equivalent to setting �0
i
as:

�0
i
=

�
�0v = �v + �n; when m+ 1 � i � v;
�0n = �n; when v + 1 � i � n.

and the optimization problem (37) can be rewritten as:

x̂(i) =

8<
:
arg min

x(i)2Q
Ji(�

0
v
; x(i)); when m+ 1 � i � v;

arg min
x(i)2Q

Ji(�
0
n; x(i)); when v + 1 � i � n;

(38)

where �0v = �v + �n; �0n = �n:

The overall encoding rates for the video segments from
block m+ 1 to block v can be reduced because the multi-
pliers �0

i
, i 2 fm+ 1; : : : ; vg, in the cost functions of block

m+1 to block v are increased by a non-negative value �v .
De�ne �0v as the value of �

0
v when the rate constraint (36)

can just be avoided. Then �0v is the lower bound of �0v and
all the applicable values of �0

v
should be greater than �0

v
.

The lower bound �0
v
can also be derived using a bisection

search technique on the video segments from block m + 1
to block v as:

�0
v
= arg min

x(m+1;v)

8<
:

vX
j=m+1

Dx(j)(j) + �0
v
Rx(j)(j)

9=
; (39)

given the rate constraint:

vX
j=m+1

Rx(j)(j) � E

2
4(v+�N)�FX

k=t+1

C(k)

3
5 �R0(m)�BL: (40)

The choice of quantizer is found again where the multipliers
�0m+1; : : : ; �

0
v are lower-bounded as:

x̂(i) = arg min
x(i)2Q

�0
i
��0

i

Ji(�
0
i
; x(i)); 8i 2 fm+ 1; : : : ; ng (41)

The search for the optimal quantizers x(m+1; n) and the
appropriate multipliers f�0

m+1; : : : ; �
0
n
g is repeated until a

choice of quantizers that does not violate any rate con-
straints is found. The algorithm can be summarized as
follows:

Step 0 Initially the quantizer choices x̂(m + 1; n) are
obtained by using a single Lagrange multiplier �0

n
for

all blocks in (33), subject to only one constraint:Pn

j=m+1R(j) � E
hP(n+�N)�F

k=t+1 C(k)
i
�R0(m)�BL.

Step 1 If x̂(m+1; n) is such that all rate constraints in
(9) are met, then x̂(m + 1; n) is the optimal solution
x
�(m + 1; n) for Formulation 4. Otherwise, assume

that frame v is the \last" frame which violates the
rate constraint, i.e., v < n and no other frame between
frame v + 1 and frame n violates the rate constraint.
Find the minimum value of Lagrange multiplier �0

v
for

the video segment from frame m+1 to frame v which
just prevents violation of the rate constraint as in (39).

Step 2 Find the quantizer choices x̂(m + 1; n) =
fx̂m+1; : : : ; x̂ng as in Step 0 except that the La-
grangian multiplier for the video segment from frame
m + 1 to frame v is lower-bounded by �0v as �0v  �
max(�0v; �

0
v).

Step 3 Go to Step 1. Repeat until all the rate con-
straints in (9) are met.

Refer [38] for a detailed description of the algorithm and
the proof of optimality.

B. Encoding Rate Selection for Minimum Expected Distor-

tion

The dynamic programming approach discussed in Sec-
tion V-A.1 can be used to �nd the optimal quantizer
choices formulated in Formulation 3. To use a dynamic
programming framework to minimize the expected distor-
tion, the cost associated with state Si(B) is the sum of the

expected distortions
Pi

j=m+1 E
�
Dx(j)(j)

�� S(t� b)
�
along

the path. From (20) we can observe that the loss proba-
bility �i;t(B

�� S(t � b)) only depends on the accumulated
encoding rate B. Since each state Si(B) is uniquely de�ned
by its accumulated encoding rate B, we can associate a
unique loss probability �i;t(B

�� S(t� b)) to each state, and
this independently of future quantization choices. There-
fore all the paths that arrive at the same state Si(B) will
have the same loss probability no matter what were their
previous states. Thus the optimality principle also applies
in this case and paths that are sub-optimal (higher ex-
pected distortion) up to a given state are also guaranteed
to be suboptimal overall. We can solve the problem using
dynamic programming as described before, with the only
modi�cation being that the branch cost is now the expected
distortion, rather than the deterministic distortion due to
coding as in Section V-A.1.

However, the Lagrangian optimization approach can
not be used because the choice of quantizers for other
video blocks can a�ect the value of expected of distor-
tion E

�
Dx(j)(j)

�
. To be more speci�c, if the problem

is formulated as that of �nding the quantizer choice x(i)
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to minimize the cost function Ji(�
0
i
; x(i)) = E[Dx(i)(i)] +

�0
i
Rx(i)(i), the choice of previous encoding rate R(m +

1); : : : ; R(i � 1) may a�ect the value of E[Dx(i)(i)] (since
it determines B) and thus the optimization can not be
achieved independently for each block as in (28).

VI. Experimental Results and Conclusions

A. Performance of the Proposed Algorithms

In order to assess the e�ectiveness of the proposed rate-
control algorithms, we implement them with simulated
channel behavior based on the models we described for
downlink and uplink channels in Section IV-B. In each ex-
periment we use channel models to generate error patterns,
and the results we provide are averaged over several real-
izations of the channel error patterns. In each case the en-
coder has knowledge of the statistical model of the channel
behavior and makes use of it in the rate control algorithm.
However in some of our experiments we will consider that
there exists a mismatch between the actual behavior and
that assumed by the rate control algorithm. Table III sum-
marizes the characteristics of the various models used in
our simulations. Note that average losses for the downlink
channels are smaller but the corresponding burst durations
are also longer. The uplink channel behavior we simulate
with the 2-state Markov model is very close to being a
channel with uniformly distributed losses, since the aver-
age burst length is close to 1.

The video test sequence \Susie" (�rst 100 frames) is used
in our experiments. The input sequence is in QCIF format
(176 � 144 pixels for each frame), and is encoded using
an H.261 encoder [39], [40] with the quantization step size
chosen from four values: 12, 14, 20 and 30. The H.261 en-
coder is used in the intra mode, which allows us to allocate
quantizers independently to each frame. In the QCIF for-
mat, each frame is subdivided into macroblocks (MB) with
size 16 � 16 pixels. Therefore each frame consists of 99 (11
� 9) macroblocks. In our simulation, we select the frame
rate such that the duration of 3 MB's equals to one packet
transmitting interval. Every three MB's are grouped to-
gether as a Q-GOB with a single quantizer being assigned
to each video block. A packet is transmitted by the chan-
nel every 5 msec with 41 bytes payload, thus video data
is transmitted at the rate about 6 frames/sec on average.
In our simulations, except in those that consider explicitly
the e�ect of feedback delay (Figs. 12 and 13), we assume
that b = 2, that is, the state of the channel is known with
a delay of two packet intervals.

Our results are summarized in Figs. 8, 9 for the N -state
Markov model and Figs. 10, 11 for the two state Markov
model. We provide results of both PSNR6 and packet loss
rates. The packet losses we plot are the losses due to video
information not arriving in time at the decoder. That is,
every time a packet cannot be decoded due to excessive bit
errors we have the chance to retransmit it (or retransmit

6The Peak Signal to Noise Ratio for a sequence is de�ned as
PNSR = 10 � log10(2552=MSE), where MSE is the average Mean
Squared Error for the whole sequence

the same video information coded at a lower rate); if the re-
transmission is successful, then we do not count the packet
loss. Thus we only count the packet losses observed by
the decoder, i.e., the video information missing at the time
it has to be decoded even after retransmission has been
attempted. Note that because we are subject to a delay
constraint we cannot guarantee that losses will not occur:
for example if a packet has to be retransmitted and it ar-
rives to the decoder too late to meet its delay constraint
it will be considered as a lost packet (even though physi-
cally the packet did arrive to the decoder; it just arrived
too late) and thus our results will show non-zero packet
loss rates. Also note that our algorithm does not reduce
the \raw" channel losses, but it helps reduce the resulting
\video" losses by reducing the number of bits used for each
video block and thus increasing the probability of timely
retransmission. We plot our average distortion and loss
results for di�erent end-to-end delay values.

We provide results for the following rate control algo-
rithms:

� The Dynamic Programming based algorithm for the
expected average rate constraint case of Formulation 2.

� The Lagrangian optimization solution to the same
problem introduced in Section V-A.2.

� The Dynamic Programming based algorithm for the
expected distortion case of Formulation 3.

� The Dynamic Programming with average constraints
is also used in the case when no knowledge of the chan-
nel is available; in this case the video encoder assumes
the average rate is available, i.e., �C � Pe, where Pe is
the probability of packet loss.

� Finally, we also consider the unrealistic scenario where
the encoder has advance knowledge of the future chan-
nel rates. This gives us an indication of the loss in
performance due to imperfect channel model.

Based on our experimental results it is easy to see that
the performance, as is to be expected, improves as we in-
crease the information available about the channel state.
Thus, performance when no feedback is given is worse than
in the case where real time feedback and a channel model
are available, which in turn has worse performance than
the case where future rates are known.

It can also be seen that the approach based on ex-
pected distortion generally outperforms the expected rate
approaches. In general the distortion due to packet losses
will be much higher than that due to using a coarse quan-
tizer so, even in the system based on expected distortion,
the rate control algorithms will tend to minimize the packet
losses. We can observe that in all cases (except in the case
where no feedback is available, obviously) the distortion
and packet loss is reduced when the end-to-end delay in
the system increases. Note in particular that the losses in
some cases can be made very close to zero.

Finally, it is worth pointing out the di�erence between
uplink and downlink channels. The former are nearly ran-
dom and error bursts tend to be very short (of the order of
magnitude of the feedback delay) thus the di�erence in per-
formance between having and not having exact knowledge
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Downlink Channel Uplink Channel
Two-state N -state Two-state N -state

Pr(Good state) 0.9940 0.9940 0.9328 0.9328
Pr(Good ! Bad) 0.001035 0.001469 0.03382 0.06429
Pr(Bad ! Good) 0.1720 0.2442 0.46945 0.8924

Avg. burst length (packets) 5.8136 4.0950 2.1302 1.1205

TABLE III

Summary of the characteristics of the channels used in our experiments
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Fig. 8. N-state Markov channel model: Resulting PSNR of the decoded video under end-to-end delay constraint from 50 msec to 400
msec. Dynamic Programming (DP) and Lagrangian Optimization (LO) are used for selecting encoding rates.
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Fig. 9. N-state Markov channel model: Resulting packet loss rate under end-to-end delay constraint from 50 msec to 400 msec. Dynamic
programming approach with minimal expected distortion criteria is used as rate-control algorithm.

of the channel rates is relatively modest. This indicates
that the dynamics of the channel are too fast with respect
to the response time of the rate control, thus most rate con-
trol approaches perform similarly (the algorithm without
feedback still performs worse because it has no knowledge
of the channel state, i.e., data is not recoded when there
are channel losses). Note that by comparison exact knowl-
edge of the channel behavior does result in improvements

in the downlink channel. This can be justi�ed by the longer
average burst sizes and higher variances in burst sizes.

B. Complexity Comparison

It is also worth noting that Lagrangian optimization ap-
proach is much faster than the dynamic programming ap-
proach. Table IV summarizes the complexity comparison
from our simulations. While the reported computation
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Fig. 10. Two-state Markov channel model: Resulting PSNR of the decoded video under end-to-end delay constraint from 50 msec to
400 msec. Dynamic Programming (DP) and Lagrangian Optimization (LO) are used for selecting encoding rates.
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Fig. 11. Two-state Markov channel model: Resulting packet loss rate under end-to-end delay constraint from 50 msec to 400 msec.
Dynamic programming approach with minimal expected distortion criteria is used as rate-control algorithm.

Delay (msec) 50 100 150 200 250 300 350 400

LO 1.1 1.4 1.8 2.5 3.0 3.8 4.4 5.1
DP 11.7 60.9 150.0 277.1 431.9 621.9 901.0 1241.4

TABLE IV

Complexity comparison in terms of CPU time (sec) for simulating the Lagrangian optimization (LO) and dynamic

programming (DP) rate control approaches.

times depend obviously on the speci�c implementation we
use, they do give an order of magnitude of the relative com-
plexities. The basic observation to explain the di�erence in
complexities is that in the Lagrangian approach the com-
plexity depends linearly on the number of blocks consid-
ered, i.e., the end-to-end delay, while in the dynamic pro-
gramming approach the complexity depends on the number
of states in the trellis, which has a growth that is approx-
imately quadratic on the number of blocks. Thus we can
observe that comparing the high and low delay cases in

Table IV an increase of a factor of 8 in delay results in
increases in computation times of factors of 5 and 100 for
the Lagrangian and DP approaches, respectively.

Note that all our discussion has concentrated on the
video encoder, and thus we have considered only the com-
plexity of the RD optimization at the encoder. We have not
taken into account other computation requirements at the
encoder (they would be the same for the two algorithms
considered). Also, the decoder complexity would be the
same regardless of the algorithm used, and in fact it would
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also be the same as in the case where a non-optimized,
simple rate control approach is used.

C. Performance Degradation due to Inaccurate Channel

Model and Long Feedback Delay

In Section IV-E we discussed that an inaccurate channel
model and the existence of signi�cant feedback delay may
cause degradation of the proposed rate control approach
that uses the probabilistic channel model and the channel
feedback information. The following experiments allow us
to assess the resulting performance degradation.

C.1 Mismatched channel model

We still assume that the underlying channel behavior
for a downlink channel can still be accurately modeled as
two-state model with transition probability P as de�ned
in Table III, i.e.,

P =

�
0:998965 0:001035
0:1720 0:8280

�
(42)

However, the encoder uses inaccurate two-state models
that are di�erent from the the correct model in transition
probability as

P high =

�
0:998965 0:001035
0:043002 0:956998

�
(43)

(Higher error rate than P .)

P low =

�
0:999742 0:000258
0:1720 0:8280

�
(44)

(Lower error rate than P .)

The rate control scheme is base on dynamic programming
to minimize the expected distortion. The performance of
the mismatched channel model cases are compared to that
with correct channel model as depicted in Fig. 14. We can
see that the rate control with model P high su�ers from
performance degradation by \over-reacting" to the feed-
back of bad channel condition and introducing additional
distortion by using fewer encoding bits, while the rate con-
trol with model P low su�ers performance degradation by
under-estimating the error rates; in this case the additional
distortion is caused by packet losses, as the rate control
model was too optimistic. In the above simulations we as-
sume that there is no feedback delay (b=0) so that we can
completely separate the two factors (i.e., delay and channel
mismatch) a�ecting the performance of the algorithm

C.2 Feedback Delay

Fig. 12 and 13 show the resulting PSNR and packet loss
rate with various feedback delay when the two rate control
approaches, dynamic programming approach to minimize
the expected distortion (Fig. 12) and Lagrangian optimiza-
tion approach with expected rate constraints (Fig. 13), are
used. It can be observed that, as expected, the perfor-
mance of the rate control degrades, in terms of PSNR and
packet loss rate, as the feedback delay increases.

D. Conclusions

In summary, in this paper, we have proposed rate con-
trol algorithms for robust video transmission over wireless
channel with bursty channel errors. The rate control is in-
tegrated with the ARQ error control to comply with the
delay constraints of the real-time video transmission. The
channel feedback and channel model are used by the en-
coder to adjust video encoding rate subject to the change
of channel condition. Our results indicate that using feed-
back results in lower packet losses and higher reconstructed
PSNR.
Acknowledgments: The authors would like to thank the
anonymous reviewers for their comments which helped im-
prove the manuscript.
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Fig. 12. Performance Degradation Due to Feedback Delay: Resulting PSNR and packet loss rate of the decoded video with various
feedback delays. Rate control is based on dynamic programming approach to minimize expected distortion.
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Fig. 13. Performance Degradation Due to Feedback Delay: Resulting PSNR and packet loss rate of the decoded video with various
feedback delays. Rate control is based on Lagrangian optimization approach with expected rate constraints.
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Fig. 14. Mismatched Channel Models: Resulting PSNR and packet loss rate of the decoded video when inaccurate channel models are
used. Rate control is based on dynamic programming approach to minimize expected distortion.
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