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Abstract. Research in the design of ultra-wideband (UWB) radio systems suggests

di�erent kinds of signal design criteria. After an introduction to UWB radio, a

variety of sequence design problems, motivated by UWB system constraints, will

be presented. Design for time-hopping, for spectral atness, for rapid acquisition,

and for multiple access will be discussed, and some sample designs will be presented.

1 Introduction to UWB Radio

When the 3 dB bandwidth of a radio signal becomes 25% or more of the

signal's center frequency, most agree that this radio should be called ultra-

wideband (UWB). The combination of a relatively large bandwidth at a rel-

atively low center frequency provides two kinds of dividends. First, of all

radios at the same center frequency, an ultra-wideband radio should provide

the �nest time resolution in a well-designed receiver, and hence have potential

advantages in ranging and multipath mitigation. Second, of all radios with

the same bandwidth, ultra-wideband radios operate in the lowest frequency

bands and hence have the best chance to propagate through most materials.

One major problem that UWB radios must solve is the satisfactory co-

existence of UWB radio signals with the myriad of other narrowband and

wideband signals with which they must simultaneously share their frequency

bands [1]. This implies that UWB radios should employ spread-spectrum

methods to protect them against the interference that they will inevitably

encounter from other radio systems. It also implies that UWB radios can

only radiate small amounts of power in each of the narrow frequency bands

of other radio systems to avoid interfering with them. This latter issue is a

matter for the appropriate regulatory entity to oversee.

Regulation of UWB radio currently is being considered in the United

States, and may take the form of an upper bound on the radiated power

spectral density of the UWB system. Then, the eÆciency and performance

of the UWB system will depend to a great extent on the atness and range

of its radiated power spectral density.

The technology used to implement UWB radio depends on the frequency

band in which the radio must operate. Modulations in UWB radios usually
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are constructed from trains of very short pulses whose width often is in the

range of a few nanoseconds to fractions of a nanosecond, giving bandwidths

on the order of gigahertz. Since the ability of an antenna to radiate eÆciently

decreases as frequency approaches zero, the pulse shapes are generally chosen

to have little or no energy content as frequency approaches zero. Hence pulses

tend to have balanced positive and negative excursions, e.g., one period of a

sinusoid, or the derivative of a Gaussian pulse.

Modulation formats vary, but UWB radios generally transmit several

pulses per data bit and use coherent detection of the pulse train. The ra-

dios usually produce carrierless signals and do not use mixers for the purpose

of changing the frequency band of a signal. Some systems resemble base-

band direct-sequence spread-spectrum systems and others resemble baseband

time-hopped spread-spectrum signals [2]. Digital modulation of these kinds

of signals is accomplished by added time shifting or polarity reversal.

We will now describe several signal-design problems motivated by this

description of UWB radio.

2 Time-Hopping Signal Models

Time hopping for spectral spreading may provide implementation advantages

and may be desirable in ranging systems because it may be easier to �nd

the leading edge of an isolated received pulse signal. One possible form of

an unmodulated time-hopping ultra-wideband signal generator is shown in

Figure 1. In this example, before data modulation, the ith time-hopped signal

is of the form

s(i)(t) =
X
j

p(t� jTf � c
(i)
j Tc) =

X
n

a(i)n p(t� nTc) ; (1)

where we assume for simplicity that one frame time Tf is composed of Nf such

slots, i.e., NfTc = Tf. The integer time-hopping code fc
(i)
j g, 0 � c

(i)
j < Nf,

has period N . Then the quantity a
(i)
n is de�ned as

a(i)n =

(
1 if there is an integer j such that n = jNf + c

(i)
j ,

0 otherwise.
(2)

A signal then is described totally by which time slots are occupied and which

slots are not.

Lets assume for simplicity that the time width Tw of a pulse p(t) is less

than Tc. Then the normalized periodic correlation between the signals of

users i and j is

~Rij(n�Tc) ,
Rij(n�Tc)

Rii(0)
=

1

N

NNf�1X
n=0

a(i)n a
(j)
n	n�| {z }

coincidence correlation

: (3)
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Fig. 1. A framed time-hopping sequence generator.

This equation displays the normalized periodic coincidence correlation be-

tween the two transmitted signals when one is shifted by an integer number

n� of slot widths relative to the other. The quantity N is the period of the

time-hopping sequence design measured in frame times, and hence the period

of any of the binary sequences fa
(i)
n g is NNf, i.e., a

(i)
n = a

(i)
n+NNf

for all n and

i. The notation 	 in (3) denotes subtraction modulo NNf, leading to the

periodic nature of the computation. The peak value 1 occurs when i = j and

n� = 0.

For the moment let's assume that, except for the peak value, the design

objective from an auto-correlation viewpoint is to make the periodic coinci-

dence correlation as small as possible. As structured here, the design requires

that one and only one slot in each frame be occupied by a pulse. Hence

a
(i)
n = 0 for all but one value of n in each range jNf � n < (j+1)Nf for each

value of j. Let's display this graphically in an Nf�N matrix by mapping the

sequence fa
(i)
n g into the matrix A(i) as follows.

a
(i)
0 ; a

(i)
1 ; : : : ; a

(i)
NNf�1

()

2
666664

a
(i)
0 a

(i)

Nf
a
(i)

2Nf
: : : a

(i)

(N�1)Nf

a
(i)
1 a

(i)

Nf+1 a
(i)

2Nf+1 : : : a
(i)

(N�1)Nf+1

...
...

...
. . .

...

a
(i)

Nf�1
a
(i)

2Nf�1
a
(i)

3Nf�1
: : : a

(i)

NNf�1

3
777775

| {z }
,A(i)

(4)

That is, one period of the sequence is entered into the matrix A(i), �lling in

order the �rst column, the second column, etc. The constraint of one pulse

per frame time translates to exactly one 1 entry and Nf � 1 entries which

are 0 in each column of the matrix A(i). So for example, the sequence with

period 16 and 4 slots per frame, with slots 0, 7, 9, and 14, occupied by pulses
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is represented by the matrix

Nf = N = 4 and a
(i)
0 = a

(i)
7 = a

(i)
9 = a

(i)
14 = 1 ()

2
664
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

3
775 : (5)

This is reminiscent of frequency-hopping designs in which the column index

represents time and the row index represents frequency, but in this develop-

ment both the row and column indices represent time shifts.

The sequence notation is clumsy for matrices, so let's doubly index the

elements of the matrix by de�ning b
(i)

jk = akNf+j where 0 � j < Nf � 1 and

0 � k < N . Equivalently,

A(i)
,

2
666664

b
(i)
00 b

(i)
01 b

(i)
02 : : : b

(i)
0;N�1

b
(i)
10 b

(i)
11 b

(i)
12 : : : b

(i)
1;N�1

...
...

...
. . .

...

b
(i)
Nf�1;0

b
(i)
Nf�1;1

b
(i)
Nf�1;2

: : : b
(i)
Nf�1;N�1

3
777775 (6)

Now let's de�ne the inner product of two arbitrary real Nf �N matrices A

and B of the same dimensions to be

(A;B) ,
X
m

X
n

amnbmn (7)

where the sums cover the full range of indices of the matrices. If we com-

pute the inner product of two of the binary signal matrices, the result is a

recognizable correlation, namely

�
A(i);A(j)

�
=

Nf�1X
m=0

N�1X
n=0

b(i)mnb
(j)
mn =

NNf�1X
n=0

a(i)n a(j)n = N � ~Rij(0): (8)

That is, this matrix inner product is the normalized correlation between

signals i and j at zero shift (see (3)).

If we could move the elements of one of the matrices around to simulate

the process of time shifting the signal, it would be possible to construct

values of ~Rij(n�Tc) for other values of n� . Speci�cally, suppose that signal j

is shifted by n� slot widths relative to signal i so that a
(i)
n�

is multiplied by

a
(j)
0 in the coincidence correlation of (3). The matrix coordinates of a

(i)
n�

are

given by the pair �; � of integers which are determined by Euclidean division

from n� and Nf to satisfy the equation

n� = �Nf + �; where 0 � � < Nf: (9)

That is, the time shift n� corresponds to a shift of � full frame times plus

a fraction of a frame time covering � slots. To accomplish the computation
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of ~Rij(n�Tc), the elements of A
(j) must be relocated by a \helical" shift to

form the matrix

Tn�
A(j) =

2
666664

a
(j)
	n�

a
(j)

Nf	n�
a
(j)

2Nf	n�
: : : a

(j)

((N�1)Nf)	n�

a
(j)
1	n�

a
(j)

(Nf+1)	n�

a
(j)

(2Nf+1)	n�

: : : a
(j)

((N�1)Nf+1)	n�

...
...

...
. . .

...

a
(j)

(Nf�1)	n�

a
(j)

(2Nf�1)	n�

a
(j)

(3Nf�1)	n�

: : : a
(j)

(NNf�1)	n�

3
777775

=

2
6666666666664

b
(j)

Nf��;N���1
: : : b

(j)

Nf��;N�1
b
(j)

Nf��;0
: : : b

(j)

Nf��;N���2

...
. . .

...
...

. . .
...

b
(j)

Nf�1;N���1
: : : b

(j)

Nf�1;N�1
b
(j)

Nf�1;0
: : : b

(j)

Nf�1;N���2

b
(j)
0;N�� : : : b

(j)
0;0 b

(j)
0;1 : : : b

(j)
0;N���1

...
. . .

...
...

. . .
...

b
(j)

Nf���1;N��
: : : b

(j)

Nf���1;0
b
(j)

Nf���1;1
: : : b

(j)

Nf���1;N���1

3
7777777777775
(10)

Here we have used the operator Tn�
to represent the e�ect of moving the

entries of the matrix as indicated in (10).

Because of the way in which this matrix has been constructed, it follows

immediately that

�
A(i);Tn�

A(j)
�
=

NNf�1X
n=0

a(i)n a
(j)
n	n�

= N � ~Rij(n�Tc): (11)

Notice that all elements in the same row of Tn�
A(j) have the same row index.

On the other hand, b
(j)
mn elements in the same column of Tn�

A(j) have the

same column index only if they are on the same side of the line drawn above

the row with index 0 in the last matrix in (10). In the special case � = 0,

then all the entries in a column of Tn�
A(j) have the same column index.

2.1 Characterization of a Doubly Periodic Array Design

Typical mathematical array designs that can be found in the literature are

constructed to minimize the doubly periodic correlation properties of the

arrays. The doubly periodic correlation computation is slightly di�erent than

the calculations of the previous section. Let A(i) and A(j) be two matrices

as de�ned in (6). The doubly periodic cross-correlation between these two

matrices can be de�ned as

PA(i)A(j) (nr; nc) ,

Nf�1X
m=0

N�1X
n=0

b(i)m;nb
(j)
m	nr;n	nc

(12)
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for 0 � nr < Nf and 0 � nc < N . Here the computation 	 is modulo Nf in

the �rst subscript and modulo N in the second subscript. To compute this

doubly periodic correlation using a matrix inner product, we must transform

A(j) so that its entries are properly positioned to accomplish the computation

in (12). This can be done using the Nf�Nf and N�N permutation matrices.

Let's de�ne an m�m matrix Pm to be

Pm ,

2
666664

0 0 : : : 0 1

1 0 : : : 0 0

0 1 : : : 0 0
...
...
. . .

...
...

0 0 : : : 1 0

3
777775 with P�1m =

2
666664

0 1 0 : : : 0

0 0 1 : : : 0
...
...
...
. . .

...

0 0 0 : : : 1

1 0 0 : : : 0

3
777775 : (13)

Multiplication by Pn
m on the left of a matrix with m rows cyclically per-

mutes the rows of the matrix n positions downward in the matrix. Similarly,

multiplication by P�nm on the right of a matrix with m columns cyclically

permutes the rows of the matrix n positions to the right in the matrix. Using

this notation, it follows immediately that

Pnr

Nf
A(j) P�nc

N = (14)2
6666666666664

b
(j)

Nf�nr;N�nc
: : : b

(j)

Nf�nr;0
b
(j)

Nf�nr;1
: : : b

(j)

Nf�nr;N�nc�1

...
. . .

...
...

. . .
...

b
(j)
Nf�1;N�nc

: : : b
(j)
Nf�1;0

b
(j)
Nf�1;1

: : : b
(j)
Nf�1;N�nc�1

b
(j)

0;N�nc
: : : b

(j)
0;0 b

(j)
0;1 : : : b

(j)

0;N�nc�1

...
. . .

...
...

. . .
...

b
(j)

Nf�nr�1;N�nc
: : :b

(j)

Nf�nr�1;0
b
(j)

Nf�nr�1;1
: : : b

(j)

Nf�nr�1;N�nc�1

3
7777777777775

and it follows that�
A(i);Pnr

Nf
A(j)P�nc

N

�
= PA(i)A(j) (nr; nc) : (15)

2.2 Relation between Time-Hopping and a Doubly Periodic

Array Design

A comparison of (10) and (15) indicates that the bottom Nf � � rows of

Tn�
A(j) are identical to the bottom Nf�� rows P�

Nf
A(j)P��N . We can write

this mathematically as

LNf���Nf

h
Tn�

A(j)
i
= LNf���Nf

P
�
Nf
A(j)P��N (16)

where generally

LN1�N2
= [ON1�N2�N1

IN1
] (17)
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operates on the left of a matrix with N2 rows to reduce the matrix to its

last N1 rows. Of course, generally IN denotes an N �N identity matrix and

ON1�N2
denotes an all-zeros matrix of the indicated dimension. A similar

comparison of the upper � rows of Tn�
A(j) and P

�
Nf
A(j)P

�(�+1)

N in (10)

and (15) respectively yields

U��Nf

h
Tn�

A(j)
i
= U��Nf

P
�
Nf
A(j)P

�(�+1)

N ; (18)

where generally

UN1�N2
= [IN1

ON2�N1
] (19)

selects the upper N1 rows on which it operates. Together (16) and (18)

create a representation for Tn�
A(j) in terms of doubly cyclic shifts of A(j),

namely

Tn�
A(j) =

"
U��Nf

P
�
Nf
A(j)P

�(�+1)

N

LNf���Nf
P
�
Nf
A(j)P��N

#
(20)

Substituting the above representation into (11) and simplifying with (15)

gives

~Rij(n�Tc) =
1

N

 
A(i);

"
U��Nf

P
�
Nf
A(j)P

�(�+1)

N

LNf���Nf
P
�
Nf
A(j)P��N

#!

=
1

N

 �
U��Nf

A(i)

LNf���Nf
A(i)

�
;

"
U��Nf

P
�
Nf
A(j)P

�(�+1)

N

LNf���Nf
P
�
Nf
A(j)P��N

#!

=
1

N

�
U��Nf

A(i);U��Nf
P
�
Nf
A(j)P

�(�+1)

N

�
+
1

N

�
LNf���Nf

A(i);LNf���Nf
P
�
Nf
A(j)P��N

�
�

1

N

�
A(i);P

�
Nf
A(j)P

�(�+1)

N

�
+

1

N

�
A(i);P

�
Nf
A(j)P��N

�
=

1

N
[PA(i)A(j) (�; �+ 1) + PA(i)A(j) (�; �)] : (21)

where � and � are determined by (9). The inequality comes from the fact

that all entries in these matrices are non-negative, and multiplication by the

row selectorsU��Nf
and LNf���Nf

simply reduces the range of the row index

in the inner product computation.

Notice that (21) is a bound on time hopping correlation values in terms

of a sum of two doubly periodic correlation values.

Hence, a set of M matrices A(i), i = 1; : : : ;M , with non-matched doubly

periodic correlation at most

Pmax

�
fA(i)

g
M
i=1

�
, max

i; j; nr; nc:

i 6= j or nr 6= 0 or nc 6= 0

PA(i)A(j) (nr; nc) ; (22)
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can be mapped into a set of M time-hopping sequences (using (4)) with the

normalized correlation bound

max
i; j; n� :

i 6= j or n� 6= 0

~Rij(n�Tc) �
2

N
Pmax

�
fA(i)

g
M
i=1

�
: (23)

When necessary, it is not diÆcult to adapt this correlation bounding approach

to include guard times between pulse frames and other implementation con-

straints, by inserting mandatory rows of zeros in the A(i) matrices.

2.3 The Johnson Bound

The Johnson bound (see [3] page 327, and [4]) is a bound on the number of

constant-weight words that can be achieved in the design of a cyclic code with

a prescribed minimum Hamming distance. Viewing our sequences fa
(i)
n g

M
i=1

and their cyclic shifts as constant weight cyclic code words over the binary

�eld of two elements, we can transform the Johnson bound to one on the

number of time-hopping sequences that can be designed with a prescribed

upper bound on auto- and cross-correlation.

Clearly, the design objective is to minimize the periodic correlations

N ~Ri;j(n�Tw) except when i = j and n� = 0 in which case N ~Ri;j(n�Tw) = N .

Let there be M time-hopping sequences in all. If we impose the condition

N ~Ri;j(n�Tw) � �; when either i 6= j or n� 6= 0, (24)

by speci�cation of the parameter �, then the Johnson bound states that

M �

�
1

N

�
NNf � 1

N � 1
� � �

�
NNf � (�� 1)

N � (�� 1)

�
NNf � �

N � �

��
� � �

��
(25)

where N is the weight of the sequence, NNf is the sequence period, and bac

denotes the largest integer � a. When both N and Nf are large and � is

small, the bound can be approximated by

M �

(NNf)
�

N�+1
=

N�
f

N
: (26)

Note that unless Nf >> N , setting � = 1 would result in a small number of

time-hopping sequences. Thus the Johnson bound indicates that � = 2 is the

smallest value for which a multiple-access signal design may be feasible.

2.4 A Time-Hopping Construction with � = 2

Let GF(p) denote the �nite �eld with arithmetic modulo a prime p. Let F

denote the set of all polynomials of degree at most 2 with coeÆcients in

GF(p). That is, the i-th polynomial in F is of the form

f (i)(x) = f
(i)
2 x2 � f

(i)
1 x� f

(i)
0 ; f

(i)
2 ; f

(i)
1 ; f

(i)
0 2 GF(p) ; (27)
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where � denotes addition modulo p. To each polynomial f (i)(x) in F we

associate a p� p matrix ~A(i) = [~b
(i)
m;n] with elements de�ned by

~b(i)m;n =

(
1 if f (i)(n) = m; 0 � m � p� 1; 0 � n � p� 1

0 otherwise.
(28)

That is, the row location m of the 1 in column n in ~A(i) is given by f (i)(n).

As a result, the matrix ~A(i) will have a single 1 in each column.

Let ~A(i) and ~A(j) denote two matrices corresponding to polynomials

f (i)(x) and f (j)(x) belonging to F . Following the development of (15), the

doubly periodic correlation P ~A(i) ~A(j) (nr; nc) of the matrices ~A(i) and ~A(j) is

given by

P ~A(i) ~A(j) (nr; nc) =
�
~A(i);Pnr

Na

~A(j)P�nc

N

�
=
���x : f (i)(x) = f (j)(x	 nc)� nr; 0 � x � p� 1

	�� (29)

The last equality above comes from counting the number of column indices

x in which ~A(i) and Pnr

Na

~A(j)P�nc

N have identical row locations for their 1's.

Each such correspondence contributes a 1 to the correlation value. Since

f (i)(x) and f (j)(x) are both of degree 2 over a �eld, the row matching equa-

tion on the right in (29) can have at most two solutions except when the

polynomials on the two sides of the equation above are identical. We now

insure that the latter situation can happen only when i = j and nc = nr = 0.

The condition for row matching can be reduced as follows:

f (i)(x) = f (j)(x	 nc)� nr

() f
(i)
2 x2 � f

(i)
1 x� f

(i)
0 = f

(j)
2 (x 	 nc)

2
� f

(j)
1 (x	 nc)� f

(j)
0 � nr

()

8>>><
>>>:

�
f
(i)
2 	 f

(j)
2

�
x2 �

�
f
(i)
1 � 2f

(j)
2 nc 	 f

(j)
1

�
x

�

�
f
(i)
0 	 f

(j)
2 n2c � f

(j)
1 nc 	 f

(j)
0 	 nr

�
= 0 for i 6= j�

2f
(j)
2 nc

�
x�

�
	f

(j)
2 n2c � f

(j)
1 nc 	 nr

�
= 0 for i = j :

(30)

The polynomial for the case i 6= j above will never disappear and will always

have degree 2 if we require that f
(i)
2 6= f

(j)
2 for all i 6= j. In addition, the

polynomial for the case for i = j in (30) will not disappear if f
(j)
2 6= 0 for

all j unless nc = nr = 0 (the no-shift condition for peak auto-correlation N).

Hence we have arrived at the following result.

Let p be any prime number. The set of p� 1 polynomials

f (i)(x) = ix2 for i = 1; 2; : : : ; p� 1; (31)

can be used to construct (using (28) and (31)) a set of p � p binary signal

matrices f ~A(i)
g
M
i=1 with unmatched doubly periodic auto-correlation at most

1 and cross-correlation at most 2.
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As an Example, with p = 11 we can construct the sequence design illus-

trated in Table 1.

i n j 0 1 2 3 4 5 6 7 8 9 10

1 0 1 4 9 5 3 3 5 9 4 1

2 0 2 8 7 10 6 6 10 7 8 2

3 0 3 1 5 4 9 9 4 5 1 3

4 0 4 5 3 9 1 1 9 3 5 4

5 0 5 9 1 3 4 4 3 1 9 5

6 0 6 2 10 8 7 7 8 10 2 6

7 0 7 6 8 2 10 10 2 8 6 7

8 0 8 10 6 7 2 2 7 6 10 8

9 0 9 3 4 1 5 5 1 4 3 9

10 0 10 7 2 6 8 8 6 2 7 10

A(3) =

2
66666666666666664

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

3
77777777777777775

Table 1. Complete family for p = 11 in c
(i)
j form and matrix for i = 3

The Johnson Bound states that for a collection of p � p matrices with

� = 2 corresponding to a time-hopping design with p = Nf = N and p large,

there can be at most p + 3 matrices in the collection. Hence this design is

within 4 matrices of being tight with respect to the Johnson bound.

The proposed set of time-hopping patterns associated with the matrices

f ~A(i)
g
M
i=1 in this design can have a non-matched normalized correlation of

at most 2�=N = 4=N (see (21)). Hence for example, a value of p = 4093 will

provide 4092 distinct time-hopping patterns a
(i)
n of period equal to 4093Nf

with no two patterns having coincidences in more than four pulse positions

over the sequence period, regardless of the relative time shift between pat-

terns. Other time-hopping designs were presented in [5], and more can be

adapted from the frequency-hopping sequence literature [6].

3 Power Spectral Density Computations

The ability to design a UWB signal set with a at power spectral density

(PSD) is one key to successful UWB signal design. In principle, the atter

the power spectral density of the transmission, the larger the amount of

power that can be radiated while still satisfying PSD bounds imposed by

regulatory agencies. Such tests may be done on the UWB carrier without

data modulation.

A wide variety of UWB carriers can be modeled in the simple form

s(i)(t) =
X
n

a(i)n p(t� nTc) ; (32)

where the fa
(i)
n g are real numbers. This model embraces both time-hopping

(a
(i)
n 2 f0; 1g) and direct-sequence (a

(i)
n 2 f1;�1g) spread-spectrum signals.
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Here, we assume that the period of the sequences fa
(i)
n g is N , and use i to

represent the user index. One way of mathematically modeling the generation

of these signals is shown in Figure 2. The impulse response h
(i)
op(t) of the one-

period sequence generator for the ith waveform is

h(i)op(t) =

N�1X
n=0

a(i)n Æ(t� nTc) (33)

where Æ(t) is the Dirac delta function. The impulse response of the pulse

shaping circuit is simply p(t).

code one-period
period sequence
clock generator

P
j
Æ(t� jNTc)

P
n
a
(i)
n Æ(t� nTc) s(i)(t)

pulse

shaper

Fig. 2. Mathematical model of a UWB signal generator without data modulation.

Because the output of the code period clock has period NTc, it is easily

veri�ed that the output has PSD Scpc(f) given by a sum of Dirac delta

functions of equal area at multiples of (NTc)
�1,

Scpc(f) =
1

(NTc)2

X
k

Æ

�
f �

k

NTc

�
: (34)

The system function of the one-step sequence generator is

H(i)
op (f) = F

n
h(i)op(t)

o
=

N�1X
n=0

a(i)n e�j2�fnTc ; (35)

where Ff�g denotes the Fourier transform operation. The system function of

the pulse shaper is simply the Fourier transform P (f) of the pulse shape p(t).

It follows immediately that the PSD of the signal s(i)(t) is

Ss(i)(f) =
���P (f)H(i)

op (f)
���2 Scpc(f)

= jP (f)j2

�����
N�1X
n=0

a(i)n e�j2�fnTc

�����
2

1

(NTc)2

X
k

Æ

�
f �

k

NTc

�

=
jP (f)j2

(NTc)2

X
k

C
(i)

k Æ

�
f �

k

NTc

�
; (36)

where

C
(i)

k =

�����
N�1X
n=0

a(i)n e�j2�kn=N

�����
2

: (37)
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−500 −400 −300 −200 −100 0 100 200 300 400 500
0

100

200

300

400

k

Fig. 3. C15
k of quadratic construction (eq. 31) with p=31 (peak value 961 at k=0).

Hence, the coeÆcients fC
(i)

k g represent the e�ect of code design on the PSD

of the UWB signal s(i)(t) without data modulation. The coeÆcients are pe-

riodic, i.e., C
(i)

k = C
(i)

k+N , and because the fa
(i)
n g are real, also possess a

symmetry, namely C
(i)

k = C
(i)

�k for all k and i. In Figure 3 we show the C15
k

of a signal using the quadratic sequence construction with p = 31.

3.1 Spectral Flatness

The emphasis for many years has been on sequence design for low auto- and

cross-correlation. However, repeated structures in the sidelobes of the auto-

correlation of a sequence, even if small, can cause lines of uneven height in

the spectral density of the sequence.

To make the PSD of (36) as at as possible (see [5]), one could try to design

the coeÆcients of (37) so that C
(i)

k are inversely proportional to jP ( k
NTc

)j2.

This is a diÆcult problem because of (a) the constraints that are caused

by the allowable choices for a
(i)
n and (b) the symmetries and periodicities of

the fC
(i)

k g sequence. The alternative design objective that we shall use here,

which is independent of the choice of pulse shape, is to make the values of

C
(i)

k , k = 0; 1; : : : ; dN=2e � 1, as uniformly small as possible, the remainder

of the values of C
(i)

k for other k then being determined by periodicity and

symmetry.

Expanding (37) gives some insight into designing for spectral atness in

pure time-hopping signals (a
(i)
m 2 f0; 1g). Then

C
(i)

k =

N�1X
m=0

N�1X
n=0

a(i)m a(i)n ej2�k(m�n)=N =

N�1X
r=0

Nre
j2�kr=N (38)

where Nr is the number of times that the product a
(i)
m a

(i)
n = 1 whenm�n = r

mod N as m and n range from 0 to N � 1, i.e.,

Nr =
���m : a(i)m = a

(i)

m+r mod N = 1; 0 � m < N
	�� : (39)
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The number of pulses in one period of the sequence is N0, and C
(i)
0 = N2

0

regardless of the location of the pulses within a period of the sequence. The

spectral coeÆcients can be summed over k to give

N�1X
k=0

C
(i)

k =

N�1X
m=0

N�1X
n=0

a(i)m a(i)n

N�1X
k=0

ej2�k(m�n)=N = NN0 ; (40)

and therefore the average value of the spectral coeÆcients for k 6= 0 is

Cavg ,
1

N � 1

N�1X
k=1

C
(i)

k =
NN0 �N2

0

N � 1
(41)

If the spectral coeÆcients are to be identical for k 6= 0 mod N , then it must

follow that C
(i)

k = Cavg for these k. This is an ideal sequence design goal.

Now suppose that each value of Nr, r 6= 0 mod N , is identical, i.e.,

Nr = Navg , (N � 1)�1
N�1X
r=1

Nr =
N2

0 �N0

N � 1
8 r 6= 0 mod N : (42)

Then it follows immediately from (38) that

C
(i)

k =

(
N2

0 if k = 0 mod N

N0 �Navg = Cavg otherwise.
(43)

The condition (42) is that of a di�erence set design with the values of n for

which a
(i)
n = 1 forming a (N;N0; Navg) cyclic di�erence set [7],[8].

3.2 Multiple Access Designs for Spectral Flatness

Certainly individual sequence designs with the ideal spectral coeÆcients of

(43) are possible. However the collection of di�erence sets for any choice of the

parameter set (N;N0; Navg) appears to be small, and there is no guarantee

that the sequence designs corresponding to these sets have the good cross-

correlation properties that are desirable for asynchronous multiple access

communications.

One design [9] that meets the Welch bound on cross-correlation and hence

has good multiple access capabilities is constructed using a di�erence set and

a Hadamard matrix. Speci�cally, each sequence is constructed using the same

di�erence set to specify the location of the non-zero elements of the sequence.

Hence, when the sequences are not time synchronized, the di�erence set prop-

erty guarantees low cross-correlation because of a low number of coincidences.

To guarantee zero cross-correlation when two such sequences have their non-

zero elements in complete synchronism, each sequence in the set uses as its

non-zero elements a di�erent row of an N0 � N0 Hadamard matrix. With
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Fig. 4. Spectral coeÆcients C
(i)
k of di�erence set (993,32,1) with the all ones vector

with peak value at 1024 (top) and with a typical Hadamard vector (bottom).

the Hadamard matrix constructed to have a row �lled completely with +1s,

there is at least one sequence in the collection with spectral coeÆcients satis-

fying (43). A plot of the spectral coeÆcients for two sequences from a design

based on a (993,32,1) cyclic di�erence set and a 32�32 Hadamard matrix are

shown in Figure 4. Certainly there are sequences in this design that do not

have spectral coeÆcients satisfying the spectral atness condition (43).

4 Closing Thoughts: More Problems

There are challenging problems buried in the details of UWB signal design.

An example of a design problem that is exacerbated in UWB systems is the

acquisition of sequence synchronization. If we assume that the time and/or

complexity required to achieve synchronization is proportional to the num-

ber of correlations that the receiver has to compute in the sync search pro-

cess, then a full search over a timing uncertainty interval of Tunc will have

acquisition-time�complexity proportional to Tunc=Tres, the quantity Tres be-

ing the time resolution capability of the UWB signal. For example, a one

nanosecond time-resolution used in a system with an initial timing uncer-

tainty equivalent to a spreading code period of one millisecond means that

the receiver must compute 106 correlations. This acquisition problem is easily

a few orders of magnitude more diÆcult than that for narrowband systems

with the same initial uncertainty Tunc.

Embedding simple aids to acquisition can be done in many ways, from

putting a known header in front of the sequence, to simultaneously transmit-

ting an easily acquired signal of known relative timing to the UWB signal.
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One of the more interesting approaches, proposed by Sti�er [10] for a single

signal design, used log2(Tunc=Tres) correlations to resolve the timing uncer-

tainty of the signal. The challenging problem to the sequence designer is to

build sets of sequences that not only have good correlation properties and at

spectra, but which also are amenable to rapid acquisition techniques. Gen-

erally rapid acquisition wil cost something in the design process, possibly

some non-atness in the power spectral density, an increase in the operating

signal-to-noise ratio, etc.

Another problem is to design sequences to have lowered power-spectral

densities in certain portions of the frequency domain. While spectral atness

is in principle desirable, anticipated regulations may require lowered UWB

power densities in certain portions of the frequency domain. Can this be

achieved partially or fully in some organized way by sequence design?
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