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Abstract — Several reduced-rank detection schemes for direct-
sequence code-division multiple access (DS-CDMA) communication
systems are compared. After the simplification of the auxiliary vec-
tor filtering (AVF) algorithm [9], it is shown that the AVF algorithm
is equivalent to the multistage Wiener filtering (MWF) algorithm of
[3]. Furthermore, these schemes can be shown to be equivalent to
the multistage linear receiver scheme based on the Cayley Hamilton
theorem. The analysis of the reduced rank techniques is extended to
multipath fading channels. In particular, a modified reduced rank de-
tection scheme is proposed which outperforms an isolated path com-
bining strategy. In addition, the output signal-to-interference ratio for
the noncoherent equal gain combining linear receiver is analyzed to
facilitate the study of the tracking behavior of the reduced rank re-
ceivers.

I. INTRODUCTION

The linear minimum mean squared error (MMSE) detector for
direct-sequence code-division multiple access (DS-CDMA)
communications has received considerable attention [5, 7, 11]
due to its simplicity of implementation, strong performance,
and amenability to adaptive implementation. The adaptive im-
plementation of this receiver can be achieved with prior infor-
mation comparable to that of the conventional Matched Filter-
ing (MF) receiver i.e., information of the user of interest only
and not that of the interfering users.

The study of reduced rank interference suppression for DS-
CDMA is motivated by situations where the number of taps
to be adaptively tracked by the adaptive MMSE detector is so
large that the adaptive receiver responds quite slowly to the
time-varying environment. By projecting the received signal
onto a subspace of reduced rank, the number of taps in the
adaptive filter is reduced thereby improving tracking ability.
Reduced rank algorithms based on the exploitation of the Cay-
ley Hamilton theorem are provided in [8]. Therein, approxi-
mate MMSE detectors with a multistage linear implementa-
tion are presented. In [9], the auxiliary-vector filtering (AVF)
method is proposed. In this reduced rank method, an auxiliary
vector was derived based on maximizing the cross-correlation
between the outputs of the reference vector filter and previ-
ously derived auxiliary vector filters. In [3], the multistage
Wiener filtering (MWF) method of [2] was applied to DS-
CDMA systems. The authors [3] showed that the MWF al-
gorithm reduced rank algorithm required much fewer training
samples than the full rank algorithms.

In this paper, we show by theoretical analysis that the MWF,
the AVF and the Cayley Hamilton (CH) method of [8] are es-
sentially equivalent. We begin by simplifying the derivation

of the auxiliary vectors for the AVF algorithm. Our approach
yields a more compact solution for the auxiliary vectors and it
greatly reduces the computational complexity as well. By in-
troducing the additional constraint that the blocking matrices
in the MWF algorithm are orthonormal in the row space, we
prove that the MWF algorithm is equivalent to the AVF algo-
rithm. The proof also naturally leads to the fact that the projec-
tion vectors for the MWF algorithm and the Cayley Hamilton
approach of [8] share the same subspace. This fact was also
shown via an alternative method in [3].

We then extend the reduced rank algorithms to frequency-
selective fading channels. The resultant reduced rank detec-
tor has performance comparable to the full rank counterpart,
but has greatly reduced computational complexity and more
importantly, better channel tracking capability for short data
records.

The signal to interference-plus-noise ratio (SIR) is an im-
portant performance measure for MMSE-based detectors [3,
6]. To facilitate the study of the SIR convergence behavior of
the MMSE receivers and the reduced rank algorithms, we ana-
lyze the SIR for noncoherent detection in frequency-selective
fading channels when fixed short spreading codes are adopted.
Simulations show that the theoretical analysis agrees fairly
well with the simulation results, especially in the resultant pat-
terns of convergence for different receivers.

II. SYSTEM MODEL

We will consider an asynchronous DS-CDMA system with
differential phase shift keying (DPSK) modulation. This ap-
proach eliminates the need for estimation of the carrier phases
and facilitates the detector design. Without loss of generality,
user 1 is taken to be the user of interest. In addition, the time
delay for user 1 is assumed to be perfectly known and it is
fixed during the transmission. As a result, we can let the time
delay for user 1 be 0.

The tapped delay line (TDL) channel model with uniform
tap spacing Tc is adopted [10], where Tc is the chip period. For
simplicity, throughout the rest of the paper, it is assumed that
the maximum value of the summations of the timing delay and
maximum path delay for user k, k = 1; : : : ;K, is less than Tb,
where K is the number of users and Tb is the symbol period.
Let N = Tb=Tc be the spreading gain. The received base-
band signal is first passed through a chip-matched filter before
chip-rate sampling. The resulting N � 1 received vector is
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represented by 1

y(m) =

KX

k=1

LX

l=1

Akl[kl(m)dk(m)s+kl + kl(m� 1)(1)

dk(m� 1)s�kl] + n(m);

where L is the number of multipaths, Akl the amplitude of
user k for path l, dk(m) 2 f�1;+1g is the m-th differentially
encoded data symbol given by dk(m) = bk(m)dk(m � 1),
where bk(m) 2 f�1;+1g is the original data, and n(m) is
the complex additive white Gaussian noise (AWGN) with co-
variance matrix �

2
IN , where �2 is the noise variance and IN

is the N � N identity matrix. The normalized fading pro-
cess kl(m) is a complex Gaussian random process which
satisfies Ef�k1l1(m)k2l2(m)g = �(k1 � k2)�(l1 � l2) and
Ef

�

k1l1
(m)k2l2(m� 1)g = ��(k1 � k2)�(l1 � l2), where �

denotes complex conjugate.
The partial spreading codes s+kl and s�kl correspond to the ef-

fective spreading codes for the current bit and the previous bit
[7], respectively. Both s+kl and s�kl are functions of the spread-
ing code, time delay, and chip waveform of user k and they
are assumed to be real. The reader is referred to [3, 4, 7] for
detailed descriptions of s+kl and s�kl.

III. REDUCED RANK MMSE FILTERING

Reduced rank techniques reduce the number of taps to be
adaptively tracked by projecting the received signal vector
onto a lower dimensional subspace. Let D be the resultant
lower dimension, where D < N , the reduced dimension sig-
nal is given by,

~y(m) = S
H
Dy(m); (2)

where SD is the N �D projection matrix 2, and the D dimen-
sional signal is denoted by a “tilde” as in [3].

We briefly review the three reduced rank methods to be con-
sidered herein: the MWF algorithm [3], the AVF algorithm [9]
and the Cayley-Hamilton theorem based algorithm [8]. The
MWF algorithm for DS-CDMA was presented in [3]. The
equivalent projection matrix is given by

S
MW
D = [ gMW;1 gMW;2 : : : gMW;D ] (3)

= [ h1 B
H
1
h2 : : :

QD�1

i=1 B
H
i hD ];

where gMW;1 = h1 = p=kpk, p is the steering vector [3, 4],
and k:k is the vector norm, the matrixBi is an (N� i)� (N�

i + 1) blocking matrix, i.e.,, Bihi = 0, and the vector hi is
the normalized correlation vector between the input vector and
desired output for the i-th stage.

The projection matrix for the AVF algorithm is given by [9]

S
AV
D = [ gAV;1 gAV;2 : : : gAV;D ]; (4)

1The more accurate, more realistic three bit scenario can also be treated,
but for notational clarity, it is not examined herein.

2We note that in all cases, SD may not be a true projection, e.g. idempto-
tent, etc.. However as the operation above yields a reduced dimension signal,
we use this terminology.

where g
H
AV;1 is equal to the normalized correlation vector

Efd1(m)y(m)g = h1, and gAV;i; i = 2; : : : ; D are auxiliary
vectors, with gAV;i+1 defined by [9]

Rg
Eq
AV;i

� gAV;1

�
gH
AV;1

Rg
Eq
AV;i

�
�

Pi
j=2 gAV;j

�
gH
AV;j

Rg
Eq
AV;i

�

kRg
Eq
AV;i

� gAV;1

�
gH
AV;1

Rg
Eq
AV;i

�
�

Pi
j=2 gAV;j

�
gH
AV;j

Rg
Eq
AV;i

�
k

;

(5)

where gEqAV;i = gAV;1 �
Pi

j=2 cjgAV;j , and cj ; j = 2; : : : ; i
are the optimized constants [9]. Notice that the auxiliary vec-
tors gAV;i; i = 1; : : : ; D are restricted to be orthonormal vec-
tors.

Using the Cayley-Hamilton theorem, Moshavi et al. [8]
proposed the following projection matrix

S
CH
D = [ gCH;1 gCH;2 : : : gCH;D ] (6)

= [ h1 Rh1 : : : R
D�1

h1 ]:

IV. SIMPLIFICATION OF THE AVF ALGORITHM

In the AVF method, the second auxiliary vector gAV;2 is
determined by [9]

gAV;2 = arg max
gAV;2

jg
H
AV;2RgAV;1j; (7)

subject to gHAV;2gAV;1 = 0, kgAV;2k = 1,

while gAV;i+1; i = 2; : : : ; D � 1 are optimized by

gAV;i+1 = arg max
gAV;i+1

j(gAV;1 �

iX

j=2

cjgAV;j)
H
RgAV;i+1j;

(8)

subject to gHAV;i+1gAV;j = 0; j = 1; : : : ; i and kgAV;i+1k =
1. We next show how the AVF algorithm can be substantially
simplified. This is accomplished by the following proposition.
Proposition 1: For any given normalized vector v0 and R, let
vector v1 be determined by

v1 = argmax
v1

jv
H
1
Rv0j;

subject to vH
1
v1 = 1, vH

1
v0 = 0, vH

1
Rv0 real,

Now let v2 be another vector such that vH
2
v2 = 1, vH

2
v0 = 0,

and vH
2
v1 = 0. Then we have

v
H
2
Rv0 = 0: (9)

The proof can be found in [1].
Using Proposition 1, we can obtain an equivalent, but more

efficient way to derive the auxiliary vectors for the AVF algo-
rithm

gAV;i+1 = arg max
gAV;i+1

jg
H
AV;iRgAV;i+1j; (10)

subject to gHAV;i+1gAV;i+1 = 1 and gHAV;i+1gAV;j = 0; j =
1; : : : ; i. Notice that with our implementation, we do not need
to determine the constants ci; i = 2; : : : ; D as in [9].
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In addition, we have

g
H
AV;iRgAV;j = 0; if ji� jj > 1: (11)

It can be shown that the simplified solution for gAV;i+1 is [1]

RgAV;i � gAV;i(g
H
AV;i

RgAV;i)� gAV;i�1(g
H
AV;i�1

RgAV;i)

kRgAV;i � gAV;i(g
H
AV;i

RgAV;i)� gAV;i�1(g
H
AV;i�1

RgAV;i)k
; (12)

where Equation (11) has been used. That is, in deriving
gAV;i+1, we need to focus on vectors gAV;i and gAV;i�1 only.
The auxiliary vectors gAV;j ; j = 1; : : : ; i� 2 will not have an
effect on optimizing gAV;i+1. Therefore, the derivation of the
auxiliary vectors for the AVF algorithm is greatly simplified.

V. EQUIVALENCE OF THE REDUCED RANK MMSE
FILTERING METHODS

In addition to the constraint that Bihi = 0 as in [3], we
further let

BiB
H
i = IN�i; i = 1; : : : ; D � 1; (13)

i.e., Bi is restricted to be orthonormal in the row space 3.
Given this additional constraint, it can be proven that the per-
formance of the MWF algorithm is not a function of the choice
of the setBi; i = 1; : : : ; D�1, which satisfy the desired con-
straints. More interestingly, this additional constraint makes
the necessary connection between the AVF algorithm and the
MWF algorithm and leads us to the proof of the equivalence
of the two algorithms.

Proposition 2: The projection matrix SMW
D for the D stage

MWF algorithm is independent ofBi; i = 1; : : : ; D�1. Con-
sequently, the performance of the MWF algorithm is indepen-
dent of Bi; i = 1; : : : ; D � 1.

Corollary 2.1:

S
MW
D = S

AV
D : (14)

That is, the MWF method is exactly equivalent to the AVF
method. We also have

Corollary 2.2:

spanfgMW;1;gMW;2; : : : ;gMW;Dg = spanfh1;Rh1; : : :R
D�1h1g:

(15)

The derivations of Proposition 2 and its Corollaries can be
found in [1].

We note that the same result is found in [3]. However, our
proof of Proposition 2 leads to a straightforward alternative
proof of this statement.

Therefore, the MWF method, the AVF method and the Cay-
ley Hamilton method of [8] are equivalent to each other.

VI. REDUCED RANK ALGORITHMS FOR
MULTIPATH FADING CHANNELS

In multipath fading channels, two different cases are often
considered in designing MMSE type receivers, corresponding
to two different scenarios where the channel coefficient for

3Interestingly, in computer simulations, we observed that the choice
of blocking matrices (without the row space constraint) did not affect
performance.

(m)

z1 z1(m) *(m-1)Re{ }

zLzL(m) *(m-1)Re{ }

S ,1D

S ,LD

y

for Path L

MMSE

MMSE

EGC
Decision

Statistic

for Path 1

Figure 1: System diagram for the direct extension of the re-
duced rank techniques for multipath fading channels.

each path of the user of interest is (1) known a priori, and
(2) unknown a priori [4].

A. KNOWN CHANNEL

The steering vector [4] can now be explicitly constructed as

p1(m) =

LX

l=1

A1l1l(m)s+
1l = �s+

1;1:Ldiag(�1(m)); (16)

where �s+
1;1:L = s

+

1;1:LA1, s+
1;1:L = [s+

11
; s

+

12
; : : : ; s

+

1L],
�1(m) = [11(m); : : : ; 1L(m)]T , A1 =

diag([A11; : : : ; A1L]), and diag(:) means to diagonal-
ize. The projection matrix can thus be constructed from
p1(m) and the reduced rank detector follows naturally.

B. UNKNOWN CHANNEL

In this case, the channel coefficients 1l(m); l = 1; : : : ; L
are unknown a priori. However, it is assumed that the number
of multiple paths, L, and the path delays, �1l; l = 1; : : : ; L,
are known. Given that noncoherent MMSE receivers offer im-
proved performance for fast fading multipath environments,
we consider such receivers herein. The noncoherent equal gain
combiner of minimum variance detector (EGMV) was pro-
posed in [7]. TheN�L dimensional coefficientsCEGMV (m)
are given by [7]

CEGMV (m) = R̂�1(m)s+
1;1:L

�
(s+
1;1:L)

HR̂�1(m)s+
1;1:L

�
�1

(17)

(s+
1;1:L)

Hs+
1;1:L:

Notice that CEGMV (m) is an N � L matrix, with each col-
umn corresponding to the linear mapping for each resolvable
path. The outputs of the L paths are then differentially detected
before equally combined.

Now let us extend the reduced rank techniques for multi-
path fading channels. One immediate solution is to design
the reduced rank algorithm for each path since the spreading
code for the path is known. The reduced-dimensional received
signal after the projection matrices for each path is then indi-
vidually optimized based on the MMSE criterion before non-
coherently equally combined, as shown in Figure 1, where
SD;l; l = 1; 2; : : : ; L is the projection matrix of the reduced
rank scheme for the l-th path. By collecting the L reduced
rank detectors for L paths to a D � L matrix, we have

CMRR(m) = [(SHD;1RSD;1)
�1e1; (S

H
D;2RSD;2)

�1e1; (18)

: : : ; (SHD;LRSD;L)
�1e1];

where e1 = [1; 0; : : : ; 0]T of dimension D � 1. However, it
turns out that the performance of this detector is significantly
worse than the EGMV solution.

The proposed reduced rank technique is shown in Figure 2.
Instead of working on the D-dimensional received signal after
the projection operation for each path, we are now working on
the DL � 1 dimensional signal, which is the group of all the
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(m)

z1 z1(m) *(m-1)Re{ }

zLzL(m) *(m-1)Re{ }

SD,1

D,L

y

S

MMSE EGC
Decision

Statistic

for Path 1

for Path L

Figure 2: System diagram for the proposed reduced rank tech-
niques for multipath fading channels.

L branches' outputs. Again the MMSE criterion is applied to
to obtain the optimum coefficients of dimension DL � L for
noncoherent demodulation, which can be derived as [1]

Cnew(m) = f(m)
�
(SH
D;1:Ls

+

1;1:L
)H f 0(m)

�
�1

(19)
�
SH
D;1:Ls

+

1;1:L

�
H

SH
D;1:Ls

+

1;1:L
:

where SD;1:L is the N � DL matrix given by SD;1:L =

[ SD;1 SD;2 � � � SD;L ], and

f(m) = (SH
D;1:LRSD;1:L)

�1SH
D;1:Ls

+

1;1:L
: (20)

VII. SIR ANALYSIS FOR NON-COHERENT MMSE
RECEIVERS

For the EGMV detector and the corresponding reduced rank
techniques (as shown Figure 1 and Figure 2), there are L

multiple filters for the L multipaths. For both receivers, the
decision statistic for noncoherent combining can be given by,

z(m) =

LX

l=1

Refcl(m)Hy(m)y(m � 1)Hcl(m� 1)g: (21)

The linear mapping, C(m) = [c1(m); c2(m); : : : ; cL(m)]

above refers to either (19) or (20) above.
Proposition 3: The mean and variance of the decision statis-
tic for the EGMV/RR detectors with noncoherent equal gain
combining can be approximated by [1]

Efz(m)jb1(m)g � b1(m)�
LX
l=1

cl(m)H�s+
1;1:L

(�s+
1;1:L

)Hcl(m � 1);

(22)

and

Varfz(m)jb1(m)g �
LX

l1=1

LX
l2=1

n
jcl1(m)HRcl2(m)j2� (23)

jcl1(m)HRucl2 (m)j2
o
;

where

R =
KX
k=1

n
(�s+
k;1:L

)H�s+
k;1:L

+ (�s�
k;1:L

)H�s�
k;1:L

o
+ �

2IN ; (24)

and

Ru , Efy1(m)y1(m)g = (�s+
1;1:L

)H�s+
1;1:L

: (25)

where y1(m) denotes the signal part corresponding
to user 1 in y(m), �s+k;1:L = s+k;1:LAk, Ak =

diag([Ak1; Ak2; : : : ; AkL]) and cl(m) � cl(m� 1) has been
used. Notice that R in Equation (24) corresponds to the case
when the channel variations are so fast that the receiver can
only track the mean power of the active users [4].
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Figure 3: Normalized SIR tracking comparison for the sim-
ulations and theoretical analysis, N=31,K=10, SNR1 =

15dB,L=2,std=6dB, fdTb = 10�2.

Thus, the SIR for the EGMV/RR detectors is given by
E2fz(m)jb1g=Varfz(m)jb1g. independent

Figure 3 shows the SIR tracking versus the number of ob-
servations for the theoretical analysis and computer simula-
tions, where N = 31,K = 10,L = 2 and the Doppler fre-
quency is set to 100Hz. Three detectors are shown for com-
parison: the EGMV detector and the RR detectors with D = 3

and D = 6. It can be seen that the approximate analysis
agrees fairly well with the simulated results, especially when
the number of observations increases. Furthermore, the SIR
analysis can be employed to predict the relative behaviour of
several MMSE-based algorithms.

VIII. SIMULATION RESULTS

In the following simulations, if not specified, D = 8, the
spreading codes are Gold codes [10] of length N = 31, the
number of multipaths L is 2 with Rayleigh fading for each
path, the forgetting factor � = 0:995, the product of the
Doppler frequency and the symbol period fdTb = 10�2, and
the powers of the active users are randomly chosen from the
log-normal distribution with a deviation of 6 dB.

In multipath fading channels, when the channel parameters
of the user of interest are known, it is straightforward to con-
struct the single blind adaptive MMSE filter (denoted as `S.
Blind MMSE known' ) and subsequently, the single reduced
rank algorithm filter (denoted as `S. RR known' ). In the case
of unknown channels, the EGMV detector and the two reduced
rank techniques discussed in Section VI will be examined. For
convenience, the direct extension scheme is denoted as `M. RR
unknown' , while the modified reduced rank detection scheme
is denoted as `New RR unknown' . It can be seen from Fig-
ure 4 that the reduced rank detection for the known channel
case produces comparably performance to the full-rank blind
adaptive MMSE detector. For the unknown channel case, the
reduced rank detection which operates independently on each
path (M. RR unknown) has much worse performance than the
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Figure 4: Performance comparison of the MMSE and
the reduced rank detectors in multipath fading channels,
N=31,K=15,L=2,D=8,�=0.995, and fdTb = 10

�2.

modified reduced rank scheme (New RR unknown). The pro-
posed reduced rank detection also achieves nearly the same
performance as the full-rank EGMV detector.

Figure 5 shows the normalized SIR as a function of the
number of observations (normalized by N ), using the approx-
imate analysis presented in Section VII. The systems parame-
ters are detailed in the figure. It can be seen that for m < N ,
D = 1 performs better than others. The RR detector with
D = 2 will then be the superior detector until m approaches
3N where D = 4 takes over. For a short data record, the full
rank EGMV detector is inferior to the reduced rank detectors.
However, it can be expected that when the number of obser-
vations is large enough, the full rank EGMV will eventually
outperform the reduced rank detectors.

IX. CONCLUSIONS

This paper simplifies the AVF algorithm [9] and proves the
equivalence of three reduced rank algorithms. It then extends
the reduced rank algorithms to multipath fading channels. The
output SIR for the noncoherent equal gain combining linear
receiver is also derived.
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