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Abstract—Efficient serial search strategies are pre-
sented and shown to drastically reduce the mean ac-
quisition time for UWB signals in a dense multipath
environment. Inherent in traditional serial search
problems is the assumption that only a single bin or
a small number of consecutive bins will properly ter-
minate the search. This assumption leads to search
strategies which tend to be linear in nature, e.g., a
linear sweep of the uncertainty region. Because of
the dense multipath channel present in most UWB
systems this assumption is invalid as seen by the
channel’s relatively large delay spread. A general-
ized analysis of various search algorithms is presented
based upon a Markov chain model of a simple single-
dwell serial search. The results from this analysis re-
veal that the linear search has a considerably larger
mean acquisition time than the more efficient search
strategy termed the bit reversal search.

I. Introduction

An ultra-wideband (UWB) signal is one with a frac-
tional bandwidth, Bf = 2(fH − fL)/(fH + fL),
greater than 25 percent [1]. Here fL and fH are
the lower and upper end (3 dB points) of the signal
spectrum. Ultra-wideband signals are currently be-
ing investigated for use in communications systems
where an advantage over more narrowband signals
exists. These advantages include improved pene-
tration through materials as well as improved per-
formance in dense multipath environments [2] where
the UWB signals can be resolved in time making the
use of a RAKE receiver possible. These advantages
make UWB communication systems well suited for
urban and indoor wireless applications.

The specific UWB signal and the dense multi-
path channel model are defined in the next section.
Then the output of a simple, single correlator re-
ceiver model is investigated, followed by a Markov
analysis of the acquisition process. Specific search
algorithms are examined for the ideal case of no
noise and it is shown that the bit reversal search
is the optimum strategy among the group. Finally,
the straight linear search and the bit reversal search
are compared for an actual indoor multipath chan-
nel. The results prove that the bit reversal search
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decreases considerably the expected number of ob-
servations required to complete the search.

II. Signal and Multipath Models

The signal choice for the UWB signal in this pa-
per is a baseband pulse that is shaped as the 2nd

derivative of a Guassian pulse:
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The energy in p(t) is unity so that the received en-
ergy in

√
Ep · p(t) is simply Ep. The scale fac-

tor, σ, determines the effective time width of the
pulse shape and will be considered approximately
(2
√

π)−1 · 1 nsec. This UWB pulse is then repeated
once per frame time which yields the following un-
modulated signal:

x(t) =
√

Ep ·
∑

n

p (t− nTf ) (2)

Here Tf is the frame time at the transmitter. One
possible modulation for a multiple user system is
pulse position modulation in which each user has a
specific time-hopping code [3].

The multipath channel to be considered in this
paper assumes a specular model with an impulse
response

h(t) =
M−1∑
m=0

amδ (t− τm) (3)

For the purposes of this paper, the amplitude co-
efficients, am, and the time delays, τm, are deter-
mined using the CLEAN algorithm, a form of sub-
tractive deconvolution, on a measured UWB sig-
nal in an indoor office environment [4]. Measured
and reconstructed waveforms are shown in Figure 1
for M = 300 where the amplitude coefficients are
normalized so that

∑
m a2

m = 1. Only the rela-
tive path delays, defined as ∆τm = τm − τ0 for
m = 0, 1, · · · ,M−1, will be known and the absolute
value of τ0 with respect to the receiver’s clocks will
be assumed uniform over the frame time. The goal
of the acquisition process discussed here is to pro-
vide proper frame alignment, in essence accounting
for the random delay τ0.



Fig. 1. Pulse response function of an indoor multipath chan-
nel and reconstructed waveform

The received signal at the multipath channel out-
put, with AWGN n(t), is

s(t) =
√

Ep

∞∑
n=0

M−1∑
k=0

akp(t− nTf − τk) + n(t) (4)

The transmitter frame time, Tf , is assumed known
at the receiver. Thus, the local correlator will have
the template waveform

v(t) =
∞∑

m=0

p
(
t−mTf − ε(m mod N)

)
(5)

The search location, εn for n = 0, 1, · · · , N − 1,
changes every frame time and represents the time
bin center currently being searched where the bin
spacing is fixed at Tf/N . Different search algo-
rithms, which are simply different permutations of
the bin search order, are to be examined below
for a single correlator receiver. A simple acquisi-
tion algorithm for multiple correlators as in a selec-
tive RAKE receiver would be to divide the search
among the correlators as follows: if the search loca-
tions are ε0, ε1, ε2, etc. and there are Lp correla-
tors available then the first correlator would search
ε0, εLp

, ε2Lp
, . . ., the second correlator would search

ε1, εLp+1, ε2Lp+1, . . . and so forth. The mean search
time should decrease by a factor of Lp when em-
ploying this approach.

III. Correlator Output

Only a single correlator receiver structure will be
considered here. The correlator output for the jth

frame, zj , has a signal and noise component, sj and
nj respectively. The mean of the AWGN noise pro-
cess n(t) is zero and the autocorrelation is simply
N0δ(t1 − t2). In the following expressions, the sub-
stituted variable θj = jTf + ε(j mod N) is used. The

noise component is now computed as

nj =
∫ θj+∆

θj−∆

n(t)v(t)dt (6)

Here the pulse shape is assumed to span only −∆ to
+∆. Since we are only integrating over one portion
of a frame and because the frames do not overlap we
see that the output noise sequence is independent.
The mean and variance of nj are computed as 0 and
N0, respectively.

The signal component, sj , of the correlator is
fairly straightforward to compute after several sim-
plifying assumptions are made. First, the receiver
frame time will be assumed long enough with re-
spect to the ’delay spread’ of the multipath channel
so that only energy from the (m−1)st frame will po-
tentially spill into the mth frame. It is also assumed
that ε(m mod N) only varies over the mth frame at
the receiver. These assumptions result in the fol-
lowing expression, which is written explicitly as a
function of τ0:
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The function γ(τ) is the pulse autocorrelation func-
tion of p(t) in (1). This can be shown to equal
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IV. Markov Analysis of UWB Acquisition

A general framework, based upon a Markov chain
model, will now be used to derive the results for
the expected search time of a simple single-dwell se-
rial search acquisition scheme. This scheme termi-
nates the first time the correlator magnitude exceeds
some prescribed threshold, say

√
EpΥ where Υ is

some normalized threshold. In this simple acquisi-
tion scheme the false alarm and acquisition states
are the same state. Usually a verification phase is
required to detect false alarms and thus yields in-
dependent false alarm and acquisition states. For
the purposes of this paper, however, no verification
phase is used so that the chain in Figure 2 represents
the acquisition scheme. The transition probabilities
are seen to be

pn = Pr(|zj | ≤
√

EpΥ) for j = 0, 1, 2, · · · (9)

Here n = j mod N is the Markov chain state num-
ber and j is the frame number. Each state in the
chain represents a particular search area. State N
represents that the search has terminated and is ab-
sorbing.



Fig. 2. Markov chain model for the serial search

Since state N is the only recurrent state of the
chain and represents the fact that the search has
terminated, the expected search time can be com-
puted by finding the expected time it takes to enter
this recurrent state, denoted E(Tr). For the chain
of Figure 2 this mean time is (in number of states
visited):

E(Tr) =
1 +

N−2∑
m=0

m∏
n=0

pn

1−
N−1∏
n=0

pn

(10)

For the correlator output as given in section III the
transition probabilities, pn = p(j mod N) = Pr(|zj | ≤√

EpΥ), are seen to be functions of τ0 and can be
found as
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The Gaussian integral function, Q(x), is simply the
integral of a mean zero, unit variance Gaussian den-
sity function from x to infinity. Here sj(τ0) is given
in (7) and an example of sj(τ0) is shown later in
Figure 4.

The mean acquisition time, E(T ), can be com-
puted using (10) by noting that the transition prob-
abilities are inherently functions of the multipath
channel parameters. Thus the quantity in (10) rep-
resents the mean acquisition time conditioned on
the multipath parameters, E(T |a, τ ) where a and

τ are M × 1 vectors containing the multipath pa-
rameters am and τm. If the multipath channel is not
known beforehand, then a statistical model will be
required. The unconditional mean acquisition time
for the problem at hand is

E(T ) =
1
Tf

∫ Tf

0

1 +
N−2∑
m=0

m∏
n=0

pn(τ0)

1−
N−1∏
n=0

pn(τ0)
dτ0 (12)

The search algorithm which determines the value
of the εm parameter in sj is examined in the next
section for the ’ideal’ case of unity detection prob-
ability, zero false alarm probability, and a consecu-
tive number of bins which will terminate the search.
This basically represents a ’no noise’ or infinite SNR
scenario.

V. Serial Search Algorithms (No Noise)

The ’search’ variable will be denoted as Ym for
m = 0, 1, · · · ,∞ and examines bins in some pre-
determined order. Five different search algorithms
will be investigated: A) linear search, B) truly ran-
dom search, C) random permutation search, D)
’look and jump by K bins’ search and E) bit re-
versal search. The values of the ’true’ hypothe-
ses that will terminate the search are represented
by the random variables X1, X2, · · · , XK , which are
K consecutive hypotheses for K ∈ {1, 2, · · · , N}.
Note that Xk will wrap from N − 1 to 0 if need
be. M is the stopping time associated with finding
the ’cluster’ of bins X1, X2, · · · , XK and is given as
M = inf(m : Ym ∈ {X1, X2, · · · , XK}) + 1. X1 is
discrete uniform from 0 to N − 1 and independent
of Ym for all m. Thus we see that Xk = X1 + k − 1
for k = 1, 2, · · · ,K where the addition is modulo N .

A. Linear Search

For this particular search, Ym = m mod N for
m = 0, 1, · · · ,∞. The expected stopping time can
be found as

E(M) =
(N −K)2 + (3N −K)

2N
(13)

A plot of the normalized mean stopping time,
E(M)/N , versus the parameter K/N is shown in
Figure 3 for N = 25. The parameter K/N is the
fraction of the total search area occupied by termi-
nating hypotheses. Of particular interest in the fig-
ure is that the linear search algorithm performs the
poorest. A typical value of N for the UWB frame
time acquisition problem is roughly 10000. The lin-
ear search, as with all of the searches except the
truly random search, gives the expected search time
of (N + 1)/2 for K = 1. Also, all the searches give
a mean search time of 1 when K = N .



Fig. 3. Normalized mean stopping time for N = 25 (Assumes
unity detection probability, zero false alarm probability, and
K consecutive terminating search bins).

B. Truly Random Search

The truly random search is one in which the history
of the previously searched bins is ignored. Thus
the search variable, Ym, is selected at random from
0, 1, · · · , N − 1 for each m. The expected stopping
time can be computed as

E(M) =
∞∑

k=1

k Pr(M = k) =
N

K
(14)

As can be seen in Figure 3 the truly random
search actually performs better than the linear
search when K is only slightly larger than one.

C. Random Permutation Search

For this particular search strategy, the integers
{0, 1, · · · , N − 1} are randomly permuted and the
bins are searched according to this random permuta-
tion. More precisely, if σn is a random permutation
of {0, 1, · · · , N − 1} for n = 0, 1, · · · , N − 1, then the
search random variable is simply Ym = σm mod N for
m = 0, 1, · · ·. The mean stopping time is found to
be:

E(M) =
N + 1
K + 1

(15)

D. ’Look and Jump by K Bins’ Search

The random permutation search algorithm pre-
viously discussed gives the mean stopping time,
averaged over all permutations of the integers,
0, 1, · · · , N−1. Since the linear search is one special
case of such a permutation, and the mean stopping
time of the random permutation search is lower than
that of the linear search as seen in Figure 3 this re-
veals that certain permutations must exist that give
an even lower mean stopping time. The ’Look and
Jump by K Bins’ search described here is one such

permutation, as is the search described in the next
section.

The basic idea for the current search is as the
name suggests, that is, starting in bin 0, the search
continues on to bin K, then to 2K, etc. The mean
stopping time is found as

E(M) =
1
2

(
N

K
+ 1
)

(16)

E. Bit Reversal Search

For UWB frame acquisition, the delay spread of the
channel will not be known exactly or, quite possi-
bly, at all. Also, due to the nature of the multipath
channel, there will most likely not be K consecutive
bins which terminate the search but a cluster of bins,
some with high probability and some with low prob-
ability of terminating the search. For this reason, an
efficient search is desired which does not rely on any
knowledge of K. The algorithm discussed in this
section is such a search. In fact, the performance has
been determined through computer simulation to be
exactly the same as the ’Look and Jump’ search of
the previous section. Thus the mean stopping time
of the bit reversal search is

E(M) =
1
2
·
(

N

K
+ 1
)

(17)

The current search is described by assuming that
N is a power of 2, e.g., N = 2n for n a positive in-
teger. The manner in which the bins are searched is
then determined by ’bit reversing’ the linear search
variable. For example, the integers for an N = 16
search can be represented in binary (base 2) as 0000,
0001, 0010, 0011, 0100, · · ·, 1101, 1110, 1111. One
permutation of these integers which maximizes the
distance between observations is obtained by ’bit
reversing’ the binary representation, e.g., searching
as per 0000, 1000, 0100, 1100, 0010, · · ·, 1011, 0111,
1111.

VI. UWB Acquisition Example

The multipath channel parameters used for the
example in this section are determined from the
CLEAN algorithm on a measured waveform, i.e.,
see Figure 1. Two of the searches from the previ-
ous section are investigated, the linear search and
the bit reversal search. For simplicity in dealing
with this bit reversal search, the total number of
bins is set to N = 213 = 8192. To compensate for
the current single-dwell example’s lack of a verifica-
tion phase, the input Ep/N0 is set to a large value,
namely 50 dB. For the figures shown below, a nor-
malized threshold of Υ = 0.05 is assumed.

For the mean correlator output shown in Figure 4,
the transition probabilities of (11) can be computed.



Fig. 4. Normalized mean correlator output, sj/
√

Ep, for the

reconstructed signal of Figure 1, τ0 = 100 nsec, Tf = 1000
nsec, N = 8192 bins, and εn = n

N
·Tf for n = 0, 1, · · · , N −1.

Fig. 5. Transition Probabilities, pn, for the reconstructed
signal of Figure 1, Ep/N0 = 50 dB, Υ = 0.05, τ0 = 100
nsec, Tf = 1000 nsec, N = 8192 bins, and εn = n

N
· Tf for

n = 0, 1, · · · , N − 1.

For illustrative purposes, τ0 is set to 100 nsec. The
corresponding transition probabilities for the nor-
malized threshold of Υ = 0.05 are shown in Figure
5. Notice the that since the input SNR is large, the
transition probabilities appear to be mostly limited
to either 0 or 1.

From (12) the expected number of observed
search locations for the parameters at hand is found
to be E(T ) = 3246.6 for the linear search, while the
expected number for the bit reversal search is much
smaller at E(T ) = 28.7. Thus the bit reversal search
is roughly 113 times faster that the linear search for
the multipath channel and system parameters cur-
rently considered. From Figure 5, it is noted that
although the terminating hypotheses are not con-
secutive they can be viewed as almost consecutive
over about 100 nsec. This implies that the K/N
parameter of section V is 100/1000 = 0.1. The
normalized mean acquisition times are seen to be
E(T )/N = 3246.6/8192 = 0.396 and E(T )/N =

Fig. 6. Comparison of Normalized Mean Acquisition Time
for the Multipath Channel versus ’Idealized’ Results of Sec-
tion V (N = 8192).

28.7/8192 = 0.0035 for the linear and bit reversal
searches, respectively. A plot of the results of sec-
tion V are shown in Figure 6 for N = 8192. The
curves are for ideal detection and false alarm prob-
abilities, as well as the assumption of consecutive
terminating hypotheses as explained in section V.
These curves are labeled as ’(Ideal)’ searches. Also
shown are the normalized mean acquisition times
for the results computed in this section, labeled as
the ’(with Multipath)’ searches.

VII. Concluding Remarks

This paper has shown that when a large number of
bins can terminate a search, a linear sweep of the
bins is not a very efficient strategy. It has been
shown that a specific permutation of the bin in-
dices known as the bit reversal search can reduce
the mean search time significantly, two orders of
magnitude for the example considered here. Re-
sults from analyzing an ’ideal’ search problem with
perfect detection and false alarm probabilities and
the assumption that a consecutive group of bins
will result in termination were shown. These re-
sults closely approximated a high SNR acquisition
example for an indoor multipath channel.
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