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whereH is the natural entropy function andR = k=n is the rate.

Since we are dealing with the asymptotical case, we normalize by
settingi = n!, and we define the functionf(!; R; q) by

A!n = enf(!;R; q):

From Lemma 2, we get

f(!; R; q) = H(!) + ! ln(q � 1)� (1�R) ln q: (6)

Note that, for a givenAi, there are two solutions fori. SettingAi �

1, the two solutions will be the minimum and the maximum weights.
These are, of course, also the zeros off .

Let � = d1=n and� = m1=n be, respectively, the minimum and
maximum normalized weights. Because� and� are the zeros off , we
get

H(�) + � ln(q � 1) =H(�) + � ln(q � 1)

or

(� � �) ln(q � 1) = � ln � + (1� �) ln(1� �)

� � ln�� (1� �) ln(1� �): (7)

Lemma 3 (Varshamov–Gilbert):For almost all linear codes, the rate
and the normalized minimum distance are related by the following
equation:

H(�) + � ln(q � 1) = (1�R) ln q:

Proof: This follows from equatingf(!; R; q) = 0 as in (6).

We know from Theorem 1 that if� > 3=4, then the code is
(2; 2)-separating. Hence we can, by substituting� = 3=4 in the
Varshamov–Gilbert equation, get rates for which almost any code
is (2; 2)-separating asymptotically. The rates such obtained are
presented under “Technique I” in Table I. By the Plotkin bound, this
gives nothing over small fields.

Technique II in the table is an improvement based on Theorem 1,
which says that every code with4� > 3� is (2; 2)-separating. We
insert� = 4�=3 in (7) and get

�

3
ln(q � 1) = � ln � + (1� �) ln(1� �)�

4�

3
ln

4�

3

� 1�
4�

3
ln 1�

4�

3
: (8)

We have solved this equation numerically for the smallest fields, and
the results are given in Table I. Of course, we will always have

0 � � � � � 1

which will bound� � 3=4 in (8).
This results in no real solution of (8) forq � 11.
Note that, in Table I, the best results are obtained by the “Construc-

tions” for q � 5, then by “Technique II” for7 � q � 9, and finally by
“Technique I” for higher values ofq. In the binary case,R = 0:0642
can be achieved nonconstructively [1].
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iary vector filtering (AVF) algorithm is simplified through a key observa-
tion on the construction of the auxiliary vectors. After simplification, it
is shown that the AVF algorithm is equivalent to the multistage Wiener
filtering (MWF) algorithm of Honig and Goldstein. Furthermore, these
schemes can be shown to be equivalent to the multistage linear receiver
scheme based on the Cayley–Hamilton (CH) theorem when the minimum
mean-square error (MMSE) criterion is applied to the reduced dimensional
space of the received signal.
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Index Terms—Direct-sequence code-division multiple access (DS-
CDMA), minimum mean-square error (MMSE), reduced rank algorithms.

I. INTRODUCTION

Multiuser detectors yield significantly better performance than the
conventional single-user-based matched filter (MF) detection scheme
for direct-sequence code-division multiple-access (DS-CDMA) com-
munications [11]. Among the class of such receivers, the linear min-
imum mean-square error (MMSE) detector has received considerable
attention [1], [2], [5], [12] due to its simplicity of implementation,
strong performance, and, more importantly, amenability to adaptive im-
plementation.

The study of reduced rank interference suppression for DS-CDMA
is motivated by situations where the number of taps to be tracked by
the adaptive MMSE detector is so large that the receiver responds
quite slowly in a time-varying environment. By projecting the received
signal onto a subspace of reduced rank, the number of taps in the
adaptive filter is reduced thereby improving tracking ability. Reduced
rank algorithms based on the exploitation of the Cayley Hamilton the-
orem [3] were provided in [9]. Therein, approximate MMSE detectors
with a multistage linear implementation were presented. In [10], the
auxiliary-vector filtering (AVF) method was proposed. In this reduced
rank method, an auxiliary vector was derived based on maximizing
the correlation between the outputs of the reference vector filter and
the previously derived auxiliary vector filters. A recursive conditional
optimization of the auxiliary vectors and the weights associated with
each vector was also presented. In [6], the multistage Wiener filtering
(MWF) method of [4] was applied to DS-CDMA systems. The authors
[6] showed that the MWF algorithm reduced rank algorithm required
much fewer training samples than the full rank algorithms. Several
adaptive implementations for the MWF algorithm were proposed [6].

In this correspondence, we show by theoretical analysis that the
MWF, the AVF, and the Cayley–Hamilton (CH) method of [9] are
essentially equivalent. We begin with simplifying the derivation of
the auxiliary vectors for the AVF algorithm. The recursive conditional
optimization of the auxiliary vectors involves high-complexity com-
putations. The conditional weight for each newly derived auxiliary
vector only makes the optimization procedure more complicated.
By observing properties among the auxiliary vectors, we propose a
simplification, which yields a more compact solution for the auxiliary
vectors and greatly reduces the computational complexity as well.
More importantly, the simplification of the AVF algorithm establishes
the necessary connection between the AVF algorithm and the MWF
algorithm, and makes it possible to prove the equivalence of the above
two algorithms. In addition, we introduce an additional constraint on
the blocking matrices for the MWF algorithm. Under these conditions,
the choice of the blocking matrices does not affect the performance
of the MWF filter. With the help of the simplification of the AVF
algorithm and the additional constraint, we prove that the MWF
algorithm is equivalent to the AVF algorithm. The proof also naturally
leads to the fact that the projection vectors for the MWF algorithm
and the CH approach of [9] share the same subspace. Note that the
equivalence of the MWF algorithm and the CH approach was also
shown via an alternative method in [6]. Although our focus is on
DS-CDMA systems, our results are general and are not predicated
upon specific characteristics of spread-spectrum signals. As such, the
methods under study can be applied to other areas such as array signal
processing.

This correspondence is organized as follows. The system model is
given in Section II. In Section III, the three reduced rank methods are
described. Before showing the proof of the equivalence of the three

techniques, a simplification of the AVF algorithm is provided in Sec-
tion IV. The proof of the equivalence is given in Section V. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a generic model in complex baseband and discrete time.
The N � 1 observation vectoryyy(m) is corrupted by the complex
zero-mean and wide-sense stationary (WSS) noise. AnN � 1 linear
receiverccc operates on the observation vectoryyy(m) to recoverb1(m),
the scalar reference signal. The linear MMSE receiver is to minimize
the MSE

MSE= E b1(m)� cccHyyy(m)
2

(1)

whereEfg denotes expectation andH is the Hermitian transpose. The
optimum coefficients are

cccmmse = RRR�1ppp (2)

whereRRR = Efyyy(m)yyy(m)Hg is the correlation matrix andppp =
Efb1(m)yyy(m)g denotes thesteering vector.

Since prior work [6], [9], [10] considered DS-CDMA communica-
tions, we will similarly focus on asynchronous DS-CDMA systems
with binary phase-shift keying (BPSK) modulation in flat-fading en-
vironments. However, our analysis is not restricted to DS-CDMA ap-
plications. Instead, it can be applied to other applications, such as array
signal processing, as well. The transmitted baseband signal of thekth
user is given by

xk(t) =

M�1

m=0

Akbk(m)sk(t�mTb � �k) (3)

whereM is the number of transmitted data symbols,Ak the amplitude
of userk, Tb is the symbol period,bk(m) 2 f�1; +1g is the binary
data, and�k is the timing delay, which is assumed to be uniformly
distributed within[0; Tb]. The signature waveformsk(t) is

sk(t) =

N�1

n=0

sk[n]	(t� nTc) (4)

whereN = Tb=Tc is the spreading gain,Tc is the chip period

sssk = [sk[0]; sk[1]; . . . ; sk[N � 1]]T

is the normalized spreading code of userk, which is assumed to be fixed
and have a period ofN (i.e., short spreading codes), whereT denotes
transpose, and the function	(t) is the chip waveform.1 Without loss
of generality, user 1 is taken to be the user of interest. In addition, the
time delay for user 1 is assumed to be perfectly known and it is fixed
during the transmission. As a result, we can let�1 = 0.

Although multishot MMSE receivers with an observation window
longer than one symbol duration can have improved performance [11],
we will only focus on an one-shot observation window. The received
baseband signal is first passed through a chip-MF before chip-rate sam-
pling. As a result, the resultingN � 1 received vector is represented
by [8]

yyy(m) =

K

k=1

Ak[k(m)bk(m)sss+
k

+k(m� 1)bk(m� 1)sss�
k
] + nnn(m) (5)

whereK is the number of users, andnnn(m) is the complex white noise
with covariance matrix�2IIIN , where�2 is the noise variance andIIIN

1Rectangular chip waveforms are often assumed for computer simulations in
the literature. However, the derivation in the sequel does not assume a particular
chip waveform. Bandwidth-efficient chip waveforms can also be treated in our
analysis. The effect of chip waveforms is embedded in the construction of the
effective spreading codes for the active users, as will be shown in (5).
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Fig. 1. Illustration of a four-stage Wiener filter.

is theN � N identity matrix. The fading processk(m) is a com-
plex WSS random process. The partial spreading codessss+k andsss�k
correspond to the effective spreading codes for the current bit and the
previous bit [8], respectively. Bothsss+k and sss�k are functions of the
spreading code, time delay, and chip waveform of userk and they
are assumed to be real. The reader is referred to, e.g., [8] for detailed
descriptions ofsss+k andsss�k .2

III. REDUCED RANK MMSE FILTERING

Either a training sequence based recursive least squares (RLS) algo-
rithm, adaptive least mean squares (LMS), or adaptive minimum output
energy (MOE) algorithm [5], can be used to adaptively estimatecccmmse,
as shown in (2), in a time-varying channel scenario. However, in situ-
ations whereN is large, slow convergence can be expected. This slow
convergence is not desirable for a fast fading environment. Reduced
rank techniques reduce the number of taps to be adaptively tracked
by projecting the received signal vector onto a lower dimensional sub-
space [6], [7], [9], [10]. LetD be the resultant lower dimension, where
D < N , the projection is

~yyy(m) = SSSHDyyy(m) (6)

whereSSSD is theN � D projection matrix, and theD-dimensional
signal is denoted by a “tilde” as in [6]. The vector~yyy(m) is then the
input to aD-dimensional linear estimator. When the MMSE criterion
is applied, the optimum coefficients for theD-dimensional space are
given by

~cccmmse = ~RRR
�1

~ppp (7)

where~RRR = SSSHDRRRSSSD and~ppp = SSSHDppp.
We next review the three reduced rank methods to be considered

herein: the MWF algorithm [6], the AVF algorithm [10], and the CH
theorem based algorithm [9]. The MWF algorithm for DS-CDMA was
presented in [6], as shown in Fig. 1 for a four-stage implementation.
The equivalent projection matrix is given by

SSSmw;D = [gggmw; 1 gggmw; 2 � � � gggmw;D]

= hhh1 BBBH
1 hhh2 � � �

D�1

j=1

BBBH
j hhhD (8)

2For rectangular chip waveforms

sss+k (�k) = (1� �)sssRk (pTc) + �sssRk (pTc + Tc)

wherep is an integer and� 2 [0; 1) such that� = (p + �)T is the timing
delay for userk, and

sssRk (pTc) = [0; 0; . . . ; 0; sk[1]; sk[2]; . . . ; sk[N �R]]T :

The partial spreading codesss can be expressed bysss (NT � � ), where
similar definitions apply as well.

wheregggmw; 1

�
= hhh1 = ppp=kpppk, the normalized steering vector, andk:k

is the`2 vector norm

gggmw; i =

i�1

j=1

BBBH
j hhhi; i � 2

where

i�1

j=1

BBBH
j = BBBH

1 BBB
H
2 � � �BBBH

i�1:

The matrixBBBi is an (N � i) � (N � i + 1) blocking matrix,
i.e., BBBihhhi = 0. The vectorhhhi is the normalized correlation
vector Efai�1(m)yyyi�1(m)g, where yyyi(m) = BBBiyyyi�1(m) with
yyy0(m) = yyy(m), andai(m) = hhhHi yyyi�1(m) with a0(m) = b1(m)
[6]. The coefficientswi; i = 1; . . . ; D are chosen based on the
MMSE criterion.

The AVF algorithm in [10] is based on the optimization of the cross
correlation of the outputs of the reference filter and auxiliary filters.
A recursive conditional optimization of the auxiliary vectors was pre-
sented in [10] and the optimization procedure results in the following
projection matrix:

SSSav;D = [gggav; 1 gggav; 2 � � � gggav;D] (9)

wheregggHav; 1 is equal to the normalized correlation vectorhhh1, andgggav; i,
i = 2; . . . ; D are auxiliary vectors, defined by [10]

gggav; i+1 =

RRRgggEqav;i �
i

j=1

gggav;j gggHav;jRRRggg
Eq
av;i

RRRgggEqav;i �
i

j=1

gggav;j gggHav;jRRRggg
Eq
av;i

(10)

wheregggEqav; i = gggav; 1 �
i

j=2
cjgggav; j , andcj ; j = 2; . . . ; i are the

optimized constants given by [10]

cj+1 =
gggHav;j+1RRRggg

Eq
av;j

gggHav;j+1RRRgggav;j+1
:

Notice that the auxiliary vectorsgggav; i; i = 1; . . . ; D are restricted to
be orthonormal vectors.

Based on the CH theorem, the inverse ofRRR can be expressed by its
(N � 1)-order polynomial expansions [9]. TheDth-order approxima-
tion ofRRR�1 can thus be obtained by the(D� 1)-order polynomials of
RRR. Equivalently, the projection matrix can be written as3

SSSch;D = [gggch; 1 gggch; 2 � � � gggch;D]

= hhh1 RRRhhh1 � � � RRRD�1hhh1 : (11)

3The polynomial representation ofRRR in [9] uses the correlation matrix of
the spreading-code matrix. It is straightforward to extend the polynomial repre-
sentations ofRRR using the correlation matrix of the received signal. The two
representations can be shown equivalent.
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The vectorhhh1 is the one defined above.

IV. SIMPLIFICATION OF THE AVF ALGORITHM

In the AVF method, the second auxiliary vectorgggav; 2 is chosen to
be [10]

gggav; 2 = arg max
ggg

gggHav; 2RRRgggav; 1 (12)

subject togggHav; 2gggav; 1 = 0 andkgggav; 2k = 1, while gggav; i+1; i =
2; . . . ; D � 1 are recursively optimized by

gggav; i+1 = arg max
ggg

gggav; 1 �

i

j=2

cjgggav; j

H

RRRgggav; i+1 (13)

subject togggHav; i+1gggav; j = 0; j = 1; . . . ; i, andkgggav; i+1k = 1, with
solutions given by (10). It can be seen that the derivation and the solu-
tion ofgggav; i+1 are rather involved. There is also the need to determine
the optimized constantscj ; j = 2; . . . ; i. We can show that the AVF
algorithm can be simplified, as evidenced by the following proposition.

Proposition 1: For any given normalized vectorvvv0 andRRR, let vector
vvv1 be determined by

vvv1 = argmax
vvv

vvvH1 RRRvvv0

subject tovvvH1 vvv1 = 1, vvvH1 vvv0 = 0, and realvvvH1 RRRvvv0. It can be shown
that [10]

vvv1 =
RRRvvv0 � vvv0 vvvH0 RRRvvv0

kRRRvvv0 � vvv0(vvvH0 RRRvvv0)k
: (14)

Now let vvv2 be another vector such thatvvvH2 vvv2 = 1, vvvH2 vvv0 = 0, and
vvvH2 vvv1 = 0. Then we have

vvvH2 RRRvvv0 = 0: (15)

Proof: LetRRRvvv0 be decomposed into

RRRvvv0 = �c0vvv0 + �c1vvv
?

0 (16)

where�c0 and�c1 are real constants,vvv?0 is a normalized vector orthog-
onal tovvv0. Clearly,�c0 = vvvH0 RRRvvv0 andvvv?0 = [RRRvvv0 � vvv0(vvv

H
0 RRRvvv0)]=�c1

(where�c1 = 0 corresponds to the trivial case). The scalar�c1 is the nor-
malizing factor which yieldskvvv?0 k = 1. Hence,vvv1 = vvv?0 . Now

vvvH2 RRRvvv0 = �c0vvv
H
2 vvv0 + �c1vvv

H
2 vvv1 = 0: (17)

This completes the proof.

For the AVF algorithm, from (13), wheni = 2

gggav; 3 = arg max
ggg

(gggav; 1 � c2gggav; 2)
HRRRgggav; 3 (18)

subject togggHav; 3gggav; j = 0; j = 1; 2; andkgggav; 3k = 1. From Propo-
sition 1 and (12),gggHav; 1RRRgggav; 3 = 0. We have

gggav; 3 = arg max
ggg

gggHav; 2RRRgggav; 3 : (19)

Wheni = 3, (13) becomes

gggav; 4 = arg max
ggg

(gggav; 1 � c2gggav; 2 � c3gggav; 3)
HRRRgggav; 4 (20)

subject togggHav; 4gggav; j = 0; j = 1; 2; 3; andkgggav; 4k = 1. Clearly,
gggHav; 4RRRgggav; 1 = 0. Now sincegggav; 3 is optimized fromgggav; 2 as in
(19), using Proposition 1 again, we havegggHav; 4RRRgggav; 2 = 0, the above
criterion becomes

gggav; 4 = arg max
ggg

gggHav; 3RRRgggav; 4 : (21)

Following the same approach, we obtain an equivalent, but more ef-
ficient way to derive the auxiliary vectors for the AVF algorithm as
follows:

gggav; i+1 = arg max
ggg

gggHav; iRRRgggav; i+1 (22)

subject togggHav; i+1gggav; i+1 = 1 andgggHav; i+1gggav; j = 0; j = 1; . . . ; i.
Notice that with our implementation, we do not need to calculate the
optimal constantsci; i = 2; . . . ; D as in [10].

In addition, we have

gggHav; iRRRgggav; j = 0; if ji� jj > 1: (23)

Notice that this is consistent with the fact that the matrixSSSHDRRRSSSD for
the MWF algorithm is tridiagonal, as shown in [4]. This suggests the
equivalence of the MWF algorithm and the AVF algorithm, which we
will show in the next section.

It can be shown that the simplified solution forgggav; i+1 is

gggav; i+1 =

RRRgggav;i �
i

j=1

gggav;j gggHav;jRRRgggav;i

RRRgggav;i �
i

j=1

gggav;j gggHav;jRRRgggav;i

=

RRRgggav;i �
i

j=i�1

gggav;j gggHav;jRRRgggav;i

RRRgggav;i �
i

j=i�1

gggav;j gggHav;jRRRgggav;i

(24)

where (23) has been used. That is, in derivinggggav; i+1, we need to focus
on vectorsgggav; i andgggav; i�1 only. The auxiliary vectorsgggav; j ; j =
1; . . . ; i� 2 will not have an effect on optimizinggggav; i+1.

V. EQUIVALENCE OF THE REDUCED RANK MMSE FILTERING

METHODS

Now let us investigate the MWF algorithm for DS-CDMA [4], [6],
as shown in Fig. 1. The blocking matricesBBBi; i = 1; . . . ; D � 1
in the MWF algorithm are used to annihilate the signal components
in the direction ofhhhi; i = 1; . . . ; D � 1. The choice of the blocking
matrices is not unique and the choice may affect the performance of the
MWF algorithm for a specific situation. It is thus interesting to study
the effects of choosingBBBi and, if possible, to obtain optimal blocking
matrices.

In the Appendix we show that the MWF algorithm is not dependent
on the choice of blocking matricesBBBi when, in addition to satisfying
BBBihhhi = 0 as in [6], the rows ofBBBi are orthonormal, i.e.,

BBBiBBB
H
i = IIIN�i: (25)

In other words, for eachi 2 f1; . . . ; D� 1g, the rows ofBBBi are con-
strained to be an orthonormal basis for the nullspace ofhhhi. As we will
see, the orthonormality constraint onBBBi leads to a direct connection be-
tween the AVF and MWF algorithms under which the two algorithms
are equivalent.

Proposition 2: When, for eachi 2 f1; . . . ; D � 1g, the rows of
BBBi form an orthonormal basis for the nullspace ofhhhi, the projection
matrix SSSmw;D for theD stage MWF algorithm is not a function of
fBBBi; i = 1; . . . ; D�1g. Consequently, the performance of the MWF
algorithm is not a function offBBBi; i = 1; . . . ; D � 1g.

Proof: See the Appendix.

Note that although the MWF algorithm is independent of a par-
ticular choice of the orthonormal basis for the nullspace ofhhhi, i =
1; . . . ; D � 1, it inherently depends on those nullspaces as the MWF
algorithm is based on a sequence of projections onto those nullspaces.
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Corollary 2.1: When the blocking matricesBBBi; i = 1; . . . ; D�1,
are constructed with orthonormal rows

SSSmw;D = SSSav;D: (26)

That is, the MWF method is equivalent to the AVF method.

Corollary 2.2: When the blocking matricesBBBi; i = 1; . . . ; D�1,
are constructed with orthonormal rows

span gggmw; 1; gggmw; 2; . . . ; gggmw;D

= span hhh1; RRRhhh1; . . .RRR
D�1hhh1 : (27)

Proof: We show the desired result via induction. Obviously, the
first column ofSSSch;D in (11) is equal to the first column ofSSSmw;D in
(9). For the second column ofSSSmw;D , (34) shows that

span BBBH
1 hhh2 2 spanfhhh1; RRRhhh1g:

Now assume that theith column ofSSSmw;D satisfies

i�1

j=1

BBBH
j hhhi 2 span hhh1; RRRhhh1; . . . ; RRR

i�1hhh1 :

From (36), we have

i

j=1

BBBH
j hhhi+1 2 span hhh1; RRRhhh1; . . . ; RRR

ihhh1 : (28)

Sincegggmw; 1; gggmw; 2; . . . ; gggmw;D are linearly independent, we have

span gggmw; 1; gggmw; 2; . . . ; gggmw;D

= span hhh1; RRRhhh1; . . .RRR
D�1hhh1 : (29)

We note that a similar proof of Corollary 2.2 can also be found in [6].
However, our proof of the equivalence of the MWF algorithm and the
CH based algorithm is a byproduct from the proof for Proposition 2.

Therefore, the MWF method, the AVF method, and the CH method
of [9] are equivalent to each other.

The equivalence of the three algorithms can be interpreted as fol-
lows. Both the AVF and the MWF algorithms are based on choosing
the additional projection vector to maximize the correlation between
the output of this projection vector and the output from previous stages.
The projection vectors for the two algorithms are just the orthonormal-
ized versions of the projection vectors for the CH algorithm of [9], in
which each additional stage introduces the new vector information in-
herent inRRRi+1hhh1. However, although all three algorithms allow adap-
tive implementations, the MWF algorithm has more flexibility than
both the AVF and the CH algorithm of [9] due to its implementation
structure. Several adaptive implementations for the MWF algorithms
have been proposed in [6]. In addition, during simulation studies, we
have observed that the MSE solution for the CH algorithm of [9] often
has numerical stability problems when the number of stages is large,
say,D > 5.

VI. CONCLUSION

We compared several reduced rank detection schemes for DS-
CDMA communication systems. The AVF algorithm [10] has been
simplified through a key observation on the construction of auxiliary
vectors. After simplification, it is shown that the AVF algorithm is
equivalent to the MWF algorithm of [6]. Furthermore, these schemes
have been shown to be equivalent to the multistage linear receiver
scheme based on the CH theorem when the MMSE criterion is applied
to the reduced dimensional space of the received signal.

APPENDIX

PROOF OFPROPOSITION2

Let BBB denote the setfBBBi, i = 1; . . . ; D � 1g. Now let us prove
SSSmw;D is not dependent onBBB by using the method of induction. Notice
that wheni > j

gggHmw; igggmw; j =hhhHi

1

l=i�1

BBBl

j�1

l=1

BBBH
l hhhj

=hhhHi

j+1

l=i�1

BBBl BBBjhhhj = 0 (30)

whereBBBjBBB
H
j = IIIN�j andBBBjhhhj = 0 have been used. Similarly,

gggHmw; igggmw; j = 0 for i < j. Wheni = j

gggHmw; igggmw; i =hhhHi

1

l=i�1

BBBl

i�1

l=1

BBBH
l hhhi

=hhhHi hhhi = 1: (31)

Therefore, we have

gggHmw; igggmw; j =
1; if i = j

0; if i 6= j.
(32)

That is, the columns ofSSSmw;D matrix are orthonormal vectors.
FromhhhHi hhhi = 1, if we letTTTH

i = [hhhi; BBB
H
i ], we have

TTTH
i TTT i = TTT iTTT

H
i = IIIN�i+1

and

BBBH
i BBBi = IIIN�i+1 � hhhihhh

H
i : (33)

Clearly,hhh1 = Efb1(m)yyy(m)g=�1 = rb (m)yyy(m)=�1 and the nor-
malization factor�1 = krb (m)yyy(m)k are not functions ofBBB. Now
gggHmw; 2 is given by

hhhH2 BBB1 =
BBB1RRRyyy (m)hhh1

�2

H

BBB1

=hhhH1 RRR IIIN � hhh1hhh
H
1 =�2 (34)

whereRRRyyy (m) = RRRyyy(m) = RRR

�2 = rH
a (m)yyy (m)ra (m)yyy (m)

= hhhH1 RRR IIIN � hhh1hhh
H
1 RRRhhh1 (35)

whereBBBH
1 BBB1 = IIIN � hhh1hhh

H
1 has been used. Clearly,hhhH2 BBB1 and�2

are not dependent onBBB. Now assume thatgggHmw; i is not dependent on
BBB, gggHmw; i+1 becomes

�i+1ggg
H
mw; i+1

= �i+1hhh
H
i+1

1

j=i

BBBj

= hhhHi RRRyyy (m)BBB
H
i BBBi

1

j=i�1

BBBj

= hhhHi RRRyyy (m) IIIN�i+1 � hhhihhh
H
i

1

j=i�1

BBBj

= hhhHi RRRyyy (m)

1

j=i�1

BBBj � hhhHi RRRyyy (m)hhhi gggHmw; i
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= hhhHi BBBi�1RRRyyy (m)BBB
H
i�1BBBi�1

1

j=i�2

BBBj

� gggHmw; iRRRgggmw; i gggHmw; i = � � �

= hhhHi

1

j=i�1

BBBj RRRyyy (m) �

i

j=1

gggHmw; iRRRgggmw; j gggHmw; j

= gggHmw; iRRR�

i

j=1

gggHmw; iRRRgggmw; j gggHmw; j

= gggHmw; iRRR�

i

j=i�1

gggHmw; iRRRgggmw; j gggHmw; j (36)

where we have usedhhhHi+1 = hhhHi RRRyyy (m)BBB
H
i =�i+1, (33)

RRRyyy (m) = BBBlRRRyyy (m)BBB
H
l ; l = 1; . . . ; i� 1

and

hhhHi RRRyyy (m)hhhi =hhhHi

1

j=i�1

BBBj RRRyyy (m)

i�1

j=1

BBBH
j hhhi

=gggHmw; iRRRgggmw; i

and the fact that

gggHmw; iRRRggg
H
mw; j = 0; if ji� jj > 1:

Notice thathhhHi+1
1
j=i BBBj

i

j=1BBB
H
j hhhi+1 = 1, we have

�i+1 = gggHmw; iRRR�

i

j=i�1

(gggHmw; iRRRgggmw; j)ggg
H
mw; j

= gggHmw; iRRR
2gggmw; i�

i

j=i�1

gggHmw; iRRRgggmw; j

2
: (37)

Since the firsti columns ofSSSmw;D are not dependent onBBB, we have
thathhhi+1

1
j=iBBBj and�i+1 given in the above two equations are

not functions ofBBB. Therefore,SSSmw;D and�i; i = 1; . . . ; D are not
dependent onBBB.

This completes our proof.

REFERENCES

[1] M. Abdulrahman, A. U. H. Sheikh, and D. D. Falconer, “Adaptive de-
tection of DS/CDMA signals in fading channels,”IEEE J. Select. Areas
Commun., vol. 12, pp. 698–706, May 1994.

[2] W. Chen and U. Mitra, “An improved blind adaptive MMSE receiver for
fast fading DS-CDMA channels,”IEEE J. Select. Areas Commun., vol.
19, pp. 1531–1543, Aug. 2001.

[3] M. Fiedler,Special Matrices and Their Applications in Numerical Math-
ematics. Boston, MA: Nijhoff, 1979.

[4] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representa-
tion of the Wiener filter based on orthogonal projections,”IEEE Trans.
Inform. Theory, vol. 44, pp. 2943–2959, Nov. 1998.

[5] M. Honig, U. Madhow, and S. Verdú, “Blind adaptive multiuser detec-
tion,” IEEE Trans. Inform. Theory, vol. 41, pp. 944–960, July 1995.

[6] M. L. Honig and J. S. Goldstein, “Adaptive reduced-rank interference
suppression based on the multi-stage Wiener filter,”IEEE Trans.
Commun., vol. 50, pp. 986–994, June 2002.

[7] D. F. Marshall, W. K. Jenkins, and J. J. Murphy, “The use of orthogonal
transforms for improving performance of adaptive filters,”IEEE Trans.
Circuits Syst., vol. 36, pp. 474–484, Apr. 1989.

[8] S. L. Miller, M. L. Honig, and L. B. Milstein, “Performance analysis
of MMSE receivers for DS-CDMA in frequency-selective fading chan-
nels,” IEEE Trans. Commun., vol. 48, pp. 1919–1929, Nov. 2000.

[9] S. Moshavi, E. G. Kanterakis, and D. L. Schilling, “Multistage linear
receivers for DS-CDMA systems,”Int. J. Wireless Inform. Networks,
vol. 3, no. 1, pp. 1–17, 1996.

[10] D. A. Pados and S. N. Batalama, “Joint space–time auxiliary-vector
filtering for DS/CDMA systems with antenna arrays,”IEEE Trans.
Commun., vol. 47, pp. 1406–1415, Sept. 1999.

[11] S. Verdú,Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[12] Z. Xie, R. T. Short, and C. K. Rushforth, “A family of suboptimum de-
tectors for coherent multi-user communications,”IEEE J. Select. Areas
Commun., vol. 8, pp. 683–690, May 1990.

Optimal Versus Randomized Search of Fixed Length
Binary Words

Helmut Prodinger and Wojciech Szpankowski, Senior Member, IEEE

Abstract—We consider the search problem in which one finds a binary
word among words chosen randomly from the set of all words of
fixed length . It is well known that the optimal search is equivalent
to the Huffman coding that requires on average log bits to be
checked plus a small additional cost called the averageredundancy.
The latter is an oscillating function of and is bounded between zero
and 1 (1 + ln ln 2) ln 2 0 0860713320. As a matter of
fact, it is known that finding the optimal strategy for this problem is
NP-hard. We propose here several simple randomized search strategies
leading, respectively, to the following average redundancies: 1.332746177,
0.6113986565, 0.4310617764, and 0.332746177, plus some small oscillations
that we precisely characterize. These results should be compared to the
optimal, but NP-hard, search algorithm. Our findings extend and make
more precise recent results of Fedotov and Ryabko.

Index Terms—Generating functions, Huffman code, PATRICIA trie,
search problem, Shannon source coding theorem, tries.

I. INTRODUCTION

A combinatorialsearch problemcan be defined as follows: Given
a setW = fw1; w2; . . . ; wmg of m words over a (binary) alphabet
�, design a sequence of tests that successfully find the wordw

� 2 W
being sought (cf. [1]). The prime goal of theoptimal search is to
find the sought wordw� with the smallest maximum or average
search time. It is well known (cf. [1]) that the problem of determining
a sequential strategy with the minimum average search time is
equivalent to the information-theoretic problem of minimizing the
average codeword length of a certain prefix code, that is, constructing
the optimal Huffman code. We shall use this equivalence between
the search problem and prefix codes throughout this correspondence.
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