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Abstract
Ultra wide bandwidth impulse radio occupies huge

bandwidth from near DC to up to a few GHz. This
suggests that many coexisting communication systems
working simultaneously at different regions of impulse
radio’s bandwidth cause interference. In this paper, the
effects of an arbitrary external interference as SNR and
bit error rate degradation of multiple access UWB radio
versus interference frequency is theoretically evaluated
and pulse shape design for narrow band interference
rejection is presented. Using doublet pulses [1], it is
shown how narrow bandwidth interference is mitigated
significantly. Effects of amplitude mismatches and gap
time offset from the nominal value in a doublet pulse
are investigated.

1: Introduction

Digital impulse radio enjoys an excellent multipath
resolution capability up to a fraction of a nanosecond,
due to its huge bandwidth. On the other hand, oc-
cupying a vast amount of bandwidth causes new chal-
lenges for this kind of radio, since there are many other
communication systems working at different portions of
UWB radio bandwidth simultaneously [2]. This intro-
duces external interference sources which cause perfor-
mance degradation. In this paper, we investigate SNR
and bit error rate degradation in terms of the inter-
ference frequency and show how using different pulse
shapes can mitigate some narrow bandwidth interfer-
ers. Moreover, we derive the relationship between gap
time in doublet pulses and narrow bandwidth interfer-
ence rejection, so that with careful design of such pulses
we are able to mitigate a strong disturbing narrow band
interference simultaneously present in the communica-
tion environment.
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In Section II, the problem is mathematically mod-
elled and SNR and bit error rate in the presence of an
arbitrary random wide-sense stationary external inter-
ference is computed. Pulse shape design in order to
mitigate narrow bandwidth interference is discussed in
Section III. Section IV discusses the effects of ampli-
tude mismatches and gap time offset from the nominal
value on the location and magnitude of the generated
nulls in the energy spectral density of the pulse shape
used, followed by conclusion remarks in Section V.

2: Mathematical Formulation

Sending one pulse in each frame period Tf [3], [4],
the transmitted signal of the kth user with antipodal
data modulation is

Sk
trans(t) =

∑

j

Dk
j wtrans(t− jTf − ck

j Tc) (1)

where wtrans(t) is the transmitted waveform in the
channel and ck

j is the time-hopping code of the kth
user in the jth frame with Tc representing a chip time.
Also, Dk

j accounts for the kth user’s symbol in the jth
frame and Dk

j ∈ {−1, 1}. In order to obtain processing
gain, we send Ns pulses per data symbol; therefore,
Dk

iNs
= Dk

iNs+1 = · · · = Dk
(i+1)Ns−1 = d1

i .
We model the received signal at the output of the

receiver’s antenna subsystem as

r(t) =
Nu∑

k=1

gkSk
rec(t− τk) + I(t) + n(t) (2)

where Sk
rec(t) =

∑
j Dk

j w(t − jTf − ck
j Tc) is the kth

user received signal with w(t) representing the received
waveform at the output of the receiver’s antenna sub-
system. The amplitude of the kth user is denoted as
gk. Fig. 1 shows the block diagram of the receiver.
The received pulse shape scaled by the amplitude of



the user of interest is used as template waveform [5] at
the receiver’s correlator. As can be seen, the receiver
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Figure 1: Receiver Block Diagram

computes the decision statistic xi for the ith data sym-
bol as xi =

∫ t=(i+1)NsTf

t=iNsTf
r(t)

∑(i+1)Ns−1
j=iNs

g1w(t− jTf −
c1
jTc)dt. If xi > 0, then the decision will be in the favor

of hypothesis H1, i.e., the demodulated data is declared
as a 1, otherwise hypothesis H−1 is stated to be true.
Without loss of generality, we assume that the delay of
the user of interest τ1 = 0, so each other user’s delay
with respect to the delay of the user of interest can be
written as τk = αkTf + βk, where βk is in [−Tf

2 ,
Tf

2 ].
After some manipulations, we get

xi = si + ci + ei + ni (3)

where

si = Nsg
2
1d1

i Rw(0) (4)

corresponds to the signal of the user of interest, and
Rw(τ) =

∫∞
−∞ w(t + τ)w(t)dt. The second term on the

right hand side of (3),

ci =
(i+1)Ns−1∑

j=iNs

Nu∑

k=2

g1gkDk
j−αk

Rw((c1
j − ck

j−αk
)Tc − βk)

(5)

accounts for the cross-talk due to the multiple-access
interference. Also,

ei =
(i+1)Ns−1∑

j=iNs

∫ (i+1)NsTf−jTf−c1
jTc

iNsTf−jTf−c1
jTc

g1I(t + jTf + c1
jTc)w(t)dt (6)

represents the effect of the external interference. The
last term on the right hand side of (3),

ni =
(i+1)Ns−1∑

j=iNs

∫ (i+1)NsTf−jTf−c1
jTc

iNsTf−jTf−c1
jTc

g1n(t + jTf + c1
jTc)w(t)dt (7)

is due to the random Gaussian noise with variance
σ2

ni
= Nsg

2
1

N0
2 Rw(0) at the input of the threshold de-

tector.
Since the support of w(t) is [0, Tm], and the interval

integral [iNsTf − jTf − c1
jTc, (i+1)NsTf − jTf − c1

jTc],
contains this support for any integer j in [iNs, (i +
1)Ns − 1], we can extend the integral interval in (6)
to the whole real line, hence, the variance of ei can be
computed as

λi = E{e2
i } = g2

1

(i+1)Ns−1∑

j=iNs

(i+1)Ns−1∑

j′=iNs

∫ ∞

−∞
RI(τ)

Rw(τ − (j − j′)Tf − (c1
j − c1

j′)Tc)dτ (8)

where RI(τ) = E(I(t + τ)I(t)). Under certain circum-
stances when the time-hopping range is restricted to
the interval [0,

Tf

2 − Tm], and RI(τ) = 0 for |τ | >
Tf

2 ,
E{e2

i } can be simplified to

E{e2
i } = g2

1Ns

∫ ∞

−∞
RI(τ)Rw(τ)dτ (9)

The above formula is also valid without any restriction
on the time-hopping range or any assumption on the
autocorrelation function of I(t), as long as Ns = 1.

Using Parseval’s Theorem, (8) can be written as

λi = g2
1

(i+1)Ns−1∑

j=iNs

(i+1)Ns−1∑

j′=iNs

∫ ∞

−∞
SI(f)Sw(f)

ej2πf((j−j′)Tf+(c1
j−c1

j′ )Tc)df (10)

This means that by careful design of the pulse shape
w(t), we can mitigate interference by generating nulls
in the spectral density of the pulse shape around fre-
quencies where the interference is strong.

Being perfectly synchronized to the time of arrival
and time-hopping code of the user of interest at the
receiver’s correlator, the SNR at the output of the user
of interest’s receiver is computed as

SNR(Nu) =
∫ ∞

0

N2
s g4

1R2
w(0)

PMAI + λ + σ2
ni

f(λ)dλ (11)

where f(λ) is the probability density function of the ex-
ternal interference variance given by (8), because this
variance changes depending on the starting position of
c1
j . Here, PMAI = E{c2

i } = Ns

∑Nu

k=2 (g1gk)2σ2 rep-
resents the multiple access interference variance using
the central limit theorem when the time-hopping range
is restricted to [0,

Tf

2 −Tm] and σ2 = 1
Tf

∫∞
−∞R2

w(x)dx.

Consider the case where RI(τ) = I0
2

2 cos(2πf0τ),
which corresponds to the tone interference I(t) =



I0 cos(2πf0t). Fig. 2 shows the effect of interference
on SNR(20) as SNR degradation versus the signal to
interference ratio (SIR) at the receiver’s front end when
the received pulse shape is the second order derivative
of Gaussian shown in Fig. 3. Twenty active users are
communicating at 1 Mbps data rate. The operating
SNR(20) has been assumed 10 dB in the absence of
interference.
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Figure 2: Effect of tone interference on the SNR
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Figure 3: Second order derivative of Gaussian and dou-
blet pulses

Due to the symmetry of the problem the bit error
probability can be computed as Pr.{ε} = Pr.{ε|d1

i =
1} = Pr.{xi < 0|d1

i = 1}. Using (3) and (4) and replac-
ing d1

i = 1, Pr.{ε} = Pr.{ci + ei +ni < −Nsg
2
1Rw(0)}.

Applying the central limit theorem, and assuming per-
fect power control, i.e., g2

k

g2
1

= 1, we get

Pr.{ε} =
∫ ∞

0

Q


 Rw(0)√

(Nu−1)σ2

Ns
+ λ

g4
1N2

s
+ Rw(0)

Nsg2
1

N0
2




f(λ)dλ (12)

Fig. 4 shows the bit error rate performance of multiple-
access digital impulse radio in the presence of an exter-
nal tone interference with SIR around -37 dB versus the
frequency of the interference when 20 users are commu-
nicating at 1 Mbps data rate. The bit error rate in the
absence of interference is equal to 7.8270e-4, which cor-
responds to SNR(20) = 10 dB. The solid curve in Fig. 4
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Figure 4: Bit error rate versus the interference fre-
quency

corresponds to using a single second-order derivative of
Gaussian pulse shape. As can be seen, the bit error rate
performance in the presence of interference degrades
more severely at frequencies where the spectral density
of the second-order derivative of Gaussian pulse shape
shown in Fig. 5 is stronger. The dotted curve in Fig. 4
corresponds to using a doublet pulse shape, which will
be described in Section III.

Since E{Dk
j } = 0, the discrete part of the power

spectral density consisting of spectral lines at inte-
ger multiples of 1

Tf
vanishes [6], and the spectral

density of the modulated time-hopped signal, s(t) =∑Nu

k=1 gk

∑
j Dk

j w(t − jTf − ck
j Tc − τk), can be com-

puted as Ss(f) = |W (f)|2
Tf

∑Nu

k=1 g2
k. Therefore, the

shape of the spectral density of the received signal is
just a scaled version of the energy spectral density of
the received pulse shape w(t).

As can be observed from Fig.’s 2 and 4, the tone
interference degrades the performance differently de-
pending on which portion of UWB radio operating
bandwidth it hits. Fig. 5 demonstrates the normal-
ized energy spectrum of the second-order derivative of
Gaussian received pulse shape shown in Fig. 3. At
around f0 = 3 GHz, where the frequency content of the
received pulse spectrum is very strong, the tone inter-
ference degrades the performance much more severely.
Also at places where the frequency contents have al-



most the same strengths, e.g. at 1 GHz and 5 GHz,
the degradations arising from the tone interferers are
almost the same.

0 1 2 3 4 5 6 7 8 9
−400

−350

−300

−250

−200

−150

−100

−50

0

Frequency (GHz)

N
or

m
al

iz
ed

 E
ne

rg
y 

S
pe

ct
ru

m

Solid: Normalized energy spectrum of the mono−pulse shown in Fig. (3)    
Dot: Normalized energy spectrum of the doublet pulse shwon in Fig. (3)   

Figure 5: Normalized energy spectrum of mono and
doublet waveforms shown in Fig. 3

3: Interference Rejection

A doublet pulse consists of two received waveforms
separated from each other by Tg time shift and with
opposite amplitudes, i.e., wd(t) = 1√

2
(w(t)−w(t−Tg)).

Fig. 3 shows such a pulse. The spectral amplitude of
such a pulse shape can be computed as

|Wd(f)|2 = 2|W (f)|2sin2(πfTg) (13)

where |W (f)|2 is the magnitude squared of a single
received pulse spectrum. Therefore, the spectrum has
nulls at f = k

Tg
for any integer k as illustrated in Fig. 5.

By controlling Tg, we can generate nulls at specific fre-
quencies to mitigate interferers around those frequen-
cies. We can adjust the nulls by changing Tg in order to
reject powerful narrow band interferers existing simul-
taneously at operating bandwidth of UWB radio in a
particular environment. For example, if we set Tg = 1
ns, we can completely remove all the interferers whose
frequencies are multiple integers of 1 GHz. This will
lead to neither any SNR nor bit error rate performance
degradation in Fig.’s 2 and 4 for f0 = 1, 2, 3, · · · , 9
GHz, regardless of how strong a tone interference at
such frequencies is.

Fig. 6 shows the SNR degradation in the presence of
an external interference with flat power spectral den-
sity over B = 50 MHz and B = 100 MHz bandwidth
and 2 GHz center frequency when 20 UWB users are si-
multaneously communicating at 1 Mbps data rate. The
operating SNR(20) has been assumed 10 dB in the ab-
sence of external interference. As can be seen, there is
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Figure 6: SNR degradation due to a narrow band in-
terference with or without using a doublet pulse

a gain of 13 dB and 18.6 dB using a properly designed
doublet pulse compared to just using a single pulse
shape when the interference is 80 dB stronger than the
signal of the user of interest with B = 100 MHz and
B = 50 MHz bandwidth, repectively. It is worth noting
that assuming a flat power spectral density for a narrow
band interference over a fixed bandwidth at a specific
center frequency, actually represents a harsh situation,
because the interference power is equally spread over
its bandwidth, which hurts our system more severely
if the generated notch by a doublet pulse is not wide
enough in the frequency domain. On the contrary, a
narrow band interference over a fixed bandwidth with
power mostly concentrated around its center frequency,
can be easily mitigated by adjusting the notch sharply
in the middle of its bandwidth.

It can be shown that the asymptotic performance
gain in Fig. 6, obtained by using a proper doublet pulse,
wd(t), over a mono-pulse, w(t), when the interference
becomes very strong is

G = 10 log

( ∫ B2

B1
Sw(f)df

∫ B2

B1
Swd

(f)df

)
(14)

where B1+B2
2 is the narrow band interference center fre-

quency with bandwidth B = B2−B1. This asymptotic
gain is 13.1 dB and 19.1 dB for the cases of B = 100
MHz and B = 50 MHz shown in Fig. 6, respectively.

To mitigate two different external interferers at two
different frequencies, we can design Tg = 1

G.C.D.{f1,f2} ,
where G.C.D. represents the greatest common devisor
operation over those external interferers’ center fre-
quencies.



4: Effect of Mismatches

In this section, the effect of mismatches in the
positive and negative amplitudes of a doublet pulse
along with having an offset in the gap time from its
nominal value are investigated. To model these ef-
fects, doublet pulse is expressed in the form: wd(t) =
w(t) − αw(t − βTg) where w(t) is the received pulse
shape and α and β are used to model amplitude mis-
match and gap time offset in the doublet pulse, re-
spectively. Therefore, the spectral amplitude squared
of the doublet pulse is |Wd(f)|2 = |W (f)|2C(f) where
C(f) = [1 − 2α cos(2πβTgf) + α2]. In order to gen-
erate perfect nulls at some frequency f0, we need to
have C(f0) = 0 for an arbitrary pulse shape w(t).
Hence, C(f0) = 0 ⇒ cos(2πβTgf0) = 1+α2

2α . Since α
is a number around 1 to represent the amplitude mis-
match between the positive and negative polarities in
the doublet pulse; therefore, α > 0, and 1+α2

2α ≥ 1.
This means that perfect nulls can be generated only
when there is no amplitude mismatch or when α = 1;
however, by finding the minima of C(f), we can locate
the position of deep nulls in the frequency spectrum:
dC(f)

df = 0 ⇒ f = k
2βTg

, where k is an integer.

When k is an even integer, we get |Wd( k
2βTg

)|2 =

|W ( k
2βTg

)|2(1− α)2, and when k is an odd integer,

C( k
2βTg

) = (1 + α)2, which corresponds to the local
maxima of C(f). Hence, nulls can be generated only
at even multiples of 1

2βTg
, which is equivalent to any

integer multiple of 1
βTg

. Fig. 6 shows that little perfor-
mance degradation is observed when using a non-ideal
doublet pulse.

5: Conclusion

Using a huge bandwidth, digital impulse radio has to
face interference from external sources working at dif-
ferent portions of its bandwidth. Interference coming
from these external sources degrades the UWB radio
perfromance. Depending on the frequency of narrow
band interferers, they degrade the performance differ-
ently. Those with frequencies concentrated at regions
where the UWB radio pulse has stronger frequency con-
tents, degrade the performance more severely. By care-
ful design of UWB pulse shape, we can mitigate the
narrow bandwidth interference. This can be achieved
with careful design of gap time between the two single
pulses in a doublet pulse in order to generate nulls in
the frequency domain where the interference is present;
therefore, with this technique, we do not need to use
any additional expensive filter to reject narrow band-

width interference.
Studies of amplitude mismatches and gap time off-

set show how the location and magnitude of the nulls
are affected by these factors when a doublet pulse is
used in order to avoid narrow bandwidth interference.
The results obtained in this paper are general and not
limited to the pulse shapes shown in Fig. 3, and can
be applied to any arbitrary pulse shape as may be re-
quired to meet spectral masked imposed by regulatory
authorities.
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