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Problems in Modeling UWB Channels
Robert A. Scholtz and Joon-Yong Lee

Abstract—Ultrawideband (UWB) channel models pose a
new set of problems to the designer. The very wide radio-
frequency bandwidth employed by a UWB radio means that
more structure of the channel is exposed by the fine time-
resolution of the UWB radio receiver. Issues pertinent to
design and simulation of UWB communication and ranging
systems will be illustrated through a set of UWB measure-
ments.

I. Introduction

THE inherent time resolution (or range resolution) of
a signal s(t) can be determined by evaluating the re-

sponse of a matched filter detector to small time displace-
ments τ of s(t). The ambiguity function provides a plot
of the detector output as a function of τ that has a peak
at τ = 0, the response when there is no timing error. The
width of this peak, which is a measure of time resolution,
is inversely proportional to the bandwidth, and hence is
very small for ultrawideband signals. Woodward’s radar
ambiguity function [5] for narrowband signals has two pa-
rameters: time mismatch τ and frequency mismatch to ac-
count for unknown doppler shifts and oscillator offsets. For
a carrierless UWB signal, a similar ambiguity function is
defined using time mismatch τ and time-scaling factor α
(related to clock offset), this scaling being the source of
doppler shift in narrowband signals. It is important that
the stability of clocks in UWB systems be good enough
to insure that clock jitter is significantly smaller than the
resolution of the receiver’s detector.

Ranging to the full theoretical capabilities of UWB sig-
nals is not a simple task. As bandwidth increases, a sin-
gle multipath component at low bandwidth may be time-
resolved into multiple components, usually each with a
smaller level of energy content. Ranging requires that the
direct path portion of the signal be located and its ar-
rival time inserted into ranging algorithms. Finding the di-
rect path component among possibly hundreds of resolvable
multipath components is signal-processing intensive, espe-
cially since the direct path, while earliest in arrival time,
may be considerably smaller in amplitude than later arriv-
ing components [2], [4]. A time-of-arrival (ToA) measure-
ment algorithm for UWB ranging, which assumes the pres-
ence of over-sampled measurement data, was introduced in
[4]. In this paper, we suggest a modification of the ToA
algorithm to reduce the number of correlation computa-
tions (samples) in the direct-path search process, thereby
reducing the time to produce a range estimate.
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II. UWB Ambiguity Function

A. Definition

Let’s assume that a UWB time-limited signal is transmit-
ted through a free-space channel. Ignoring receiver noise,
the received signal sr(t) is of the form

sr(t) = Ars
(
α(t− τr)

)
, (1)

where Ar is the amplitude of received signal, τr is an time-
shift, and α is a time-scale factor. The receiver, not having
prior knowledge of Ar, τr, and α, constructs a matched-
filter/correlator matched to sm(t), which is

sm(t) = Ams(t− τm), (2)

and the matched filter output z(t) is given by

z(t) = ArAm

∫ ∞

−∞
s(t− τm)s

(
α(t− τr)

)
dt

=
ArAm√
α

∫ ∞

−∞

√
αs(t)s

(
α(t− τ)

)
dt (3)

where

τ = τr − τm. (4)

The UWB ambiguity function, namely χuwb(τ, α), can be
defined as

χuwb(τ, α) =
∫ ∞

−∞

√
αs(t)s(α(t− τ))dt, (5)

where
√
α is for normalization so that the signal energy is

kept constant. The UWB ambiguity function satisfies

χuwb(τ, α) ≤ χu(0, 1) = Es, (6)

where Es denotes the energy of s(t),

Es =
∫ ∞

−∞
|s(t)|2dt =

∫ ∞

−∞
|S(f)|2df, (7)

where S(f) is the Fourier transform of s(t). If α is equal
to 1, χuwb(τ, α) can be interpreted as the auto-correlation
function of s(t).

The function χuwb(τ, α) can be approximated near (0, 1)
using the initial terms of a Taylor series expansion.

χuwb(τ, α) ≈ χuwb(0, 1)
[
1 +Aττ +Aα(α− 1) +

1
2
Bττ

2

+
1
2
Bα(α− 1)2 +

1
2
Bτατ(α− 1)

]
, (8)
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where Aτ , Aα, Bτ , Bα, and Bτα are defined as


Aτ =
1

χuwb(0, 1)
∂

∂τ
χu(τ, α)

∣∣∣∣∣
τ=0,α=1

,

Aα =
1

χu(0, 1)
∂

∂α
χuwb(τ, α)

∣∣∣∣∣
τ=0,α=1

,

Bτ =
1

χu(0, 1)
∂2

∂τ2
χuwb(τ, α)

∣∣∣∣∣
τ=0,α=1

,

Bα =
1

χu(0, 1)
∂2

∂α2
χuwb(τ, α)

∣∣∣∣∣
τ=0,α=1

,

Bτα =
1

χu(0, 1)
∂2

∂τ∂α
χuwb(τ, α)

∣∣∣∣∣
τ=0,α=1

.

(9)

and evaluated by

Aτ = Aα = 0, (10)

Bτ = − 1
χuwb(0, 1)

∫ ∞

−∞
(2πf)2|S(f)|2df, (11)

Bα =
1

χuwb(0, 1)

[
− 3Es

4
+

∫ ∞

−∞
t2s(t)s′′(t)dt

]
, (12)

Bτα = − 1
χuwb(0, 1)

∫ ∞

−∞
ts(t)s′′(t)dt. (13)

Using the fact that Es/χuwb(0, 1) integrates to 1, we can
relate the Gabor (or rms) bandwidth Brms (in Hertz) of
the signal s(t) to Bτ by

B
1
2
τ

2π
= Brms =

[ ∫ ∞

−∞
f2

|S(f)|2
χu(0, 1)

df

] 1
2

. (14)

This large value of Bτ for UWB signals makes the shape
of the peak of χ(τ, α) very narrow as a function of time,
thereby justifying the fine time resolution capability of a
matched UWB receiver.

B. Computer Plots

UWB ambiguity functions with different formats were
evaluated using computer simulations. In these simula-
tions, the received UWB pulse s(t) was assumed to be the
second derivative of a gaussian shape, which is given by [3]

s(t) =
[
1 − 4π(t/τm)2

]
exp

[
− 2π(t/τm)2

]
, (15)

where τm = 0.781 × 10−9.
Figure 1 shows the ambiguity function of a single UWB

pulse. The range of the scale factor α goes well beyond
mismatches that which can be caused by radial velocities by
transmitter and receiver, and hence the velocity resolution
is not very good, while the time resolution is very fine. This
ambiguity function of a single UWB pulse can be classified
as the knife-edge type.

Suppose the UWB ranging system transmits and receives
a train of pulses. Because of the absence of a common
clock, there may exist mismatch in the clock periods of the
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Fig. 1. UWB ambiguity function of a single pulse.
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Fig. 2. UWB ambiguity function of a periodic train of 64 pulses.
The pulse repetition rate is 10 Mpps.
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Fig. 3. UWB ambiguity function of 64 time hopped pulses with
Nh = 32, Tf = 100 ns, and Tc = 2 ns.



3

transmitter and receiver. The order of the clock period
mismatch can be possibly as large as 0.1% for a very poor
clock. Let’s assume no pulse-shape distortion, but instead
consider the clock period mismatch as the second factor
of the UWB ambiguity function. In this case the UWB
ambiguity function of a train of Np periodic pulses can be
computed as

χu(τ, α) =
∫ ∞

−∞

Np−1∑
i=0

Np−1∑
j=0

s

(
t− iTf +

(Np − 1)Tf
2

)

·s
(
t− τ − jαTf +

(Np − 1)Tf
2

)
dt, (16)

where Tf is the clock period and α is the scaling factor
caused by clock period differences, which is equal to

α =
Tf

Tf + Td
, (17)

where Td denotes the clock period mismatch. Detailed eval-
uation of the ambiguity function of the periodic gaussian
pulse train is given in [6] and figure 2 is a simulated am-
biguity function. The number of pulses was assumed to
be 64 and pulse repetition rate is 10 Mpps. We can still
measure the range with a fine resolution but with a pulse-
repetition-time ambiguity in time mismatch. Figure 3 is
the ambiguity function of a train of time hopped pulses,
which is represented by

χu(τ, α)

=
∫ ∞

−∞

Np−1∑
i=0

Np−1∑
j=0

s

(
t− iTf − ci(u)Tc +

(Np − 1)Tf
2

)

·s
(
t− jαTf − cj(u)Tc +

(Np − 1)Tf
2

)
dt, (18)

where Tf and Tc denote frame time and chip time, respec-
tively. The time hopping sequence {cj(u)} satisfies

0 ≤ ci(u) ≤ Nh − 1. (19)

It was assumed that Np = 64, Nh = 32, Tf = 100 ns, and
Tc = 2 ns. The time-hopping pattern of the sequence em-
ployed here was assumed to be uniform over 32 time bins.
Notice that ambiguities along time axis were suppressed
down by time-hopping.

III. A System-Friendly Algorithm for UWB
Ranging

A. Modification of the ToA Algorithm

The ToA measurement algorithm using generalized max-
imum likelihood estimation (GML) was introduced in [4].
In this algorithm, the ToA of the direct path signal is esti-
mated using two critical parameters, relative strength and
relative time displacement between the strongest path and
the potential direct path signal, with over-sampled mea-
surement data. However, in real systems, the measurement

θδ
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Lock path

First level crossing detected

t

θρ

Fig. 4. Search for the earliest arrival of the signal using uniform
sampling. Search is performed in a positive direction along the time
axis.

time is limited and the sampling frequency may not be high
enough to perform the GML estimation.

The ToA algorithm can be modified in a system-friendly
manner as follows. First, the search region for the direct
path signal with a given length of θδ is set in the forward
direction from the location of the locked path instead of the
strongest path to reduce the measurement time spent on
the peak search. It is difficult to characterize the time dis-
placement between the locked path and the strongest path
without a thorough knowledge of the acquisition scheme.
However, considering that the acquisition strategy is based
on threshold detection, by which the tracking correlator is
locked on the first level crossing point at the threshold, we
can assume that the correlator is locked on a path which
arrives earlier than the peak path. As a consequence, the
probability of a false detection in the noise only portion of
the signal would increase, while the risk of missing the di-
rect path signal beyond the range of search would decrease.
Secondly, the threshold of the amplitude (θρ) is determined
only by the noise floor without considering the relative path
strength due to the absence of the knowledge of the peak
strength. Thirdly, the first level crossing point is regarded
as the ToA of direct path signal since computation of GML
estimation cannot be done with under-sampled data.

Figure 4 illustrates the search process. Search by sam-
pling is done in the positive direction along the time axis
and terminated once the first level crossing is detected.

B. Sampling Issues

To achieve an accurate detection in a limited measure-
ment time, which is determined by sampling rate, length
of search region, and the number of pulse periods per mea-
surement, effective sampling design is critical. To deter-
mine the sampling strategy, it is necessary to know the min-
imum sampling frequency required. For example, the larger
the distance between two adjacent samples, the higher is
the risk of missing the level crossing point between them.

While it is very difficult to evaluate the probability of
missing a level crossing between samples, we can think of
some ways to measure this risk. One of them is to quantify
the interpolation error caused by under-sampling, assum-
ing the signal is deterministic. Since the signal from which
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Fig. 5. Reconstruction of signal using MMSE estimation based on
two samples. Solid curve indicates the reconstructed signal and the
dotted line shows the error deviation.

the samples are taken is not band-limited, it is impossible
to sample at the Nyquist rate and as a consequence, perfect
signal reconstruction from samples is impossible [7]. The
amount of energy in high frequency signal components lost
due to aliasing will provide one way of measuring the sam-
pling quality. Another approach is to evaluate the error
variance in minimum mean square error (MMSE) estima-
tion, assuming the correlator output signal is a wide sense
stationary process. Figure 5 shows an example of MMSE
estimation using two samples. In this figure, ŵ(t′) denotes
the MMSE estimate of w(t′) evaluated with observation
vector of samples, namely m, which is

m =
[
w(t1)
w(t2)

]
. (20)

The solid line represents the reconstructed signal using
MMSE estimation and the dotted lines represent one stan-
dard deviation of the estimation error. The closer the dot-
ted line is to the threshold level at which the crossing is
searched, the larger is the probability of missing the occur-
rence of a threshold crossing. MMSE estimate of w(t′) and
the error variance σ2MS(t′) are given by

ŵ(t′) = RŵmR
−1
m m, (21)

σ2MS(t′) = Tr
(
Rŵ −RŵmR

−1
m Rmŵ

)
, (22)

where Rŵ and Rm are correlation matrix ŵ(t′) and m, re-
spectively, Rŵm is the cross-correlation matrix of ŵ(t′) and
m, and Tr(·) is the trace function. Correlation matrices
appearing in (21) are evaluated by computing

Rŵ = Rw(0), (23)

Rm =
[

Rw(0) Rw(t1 − t2)
Rw(t2 − t1) Rw(0)

]
, (24)

Rŵm = [Rw(t′ − t1) Rw(t′ − t2)], (25)

where Rw(τ) denotes the auto-correlation function of w(t).
As shown in (21) through (25), to calculate ŵ(t′) and
σ2MS(t′), auto-correlation function of the correlator output
signal must be evaluated.

Figure 6 is the block diagram of a matched filter sys-
tem which is equivalent to a potential UWB radio link. A

)(tp )(tw)(b th )(tu

Fig. 6. Transmission and reception of signal in UWB radio link.

transmitted UWB pulse p(t) goes though the channel in-
cluding antennas whose impulse response is hb(t), and the
resulting output is correlated/match-filtered with the tem-
plate signal u(t). Assuming the correlator output w(t) is a
wide sense stationary random process, the energy spectral
density Sw(f) of w(t) can be approximated by

Sw(f) = |U(f)|2|Hb(f)|2Sp(f), (26)

where Sp(f) is the energy spectral density of p(t). The
channel functionHb(f) can be modeled using the measured
antenna system function Ha(f) shown in figure 8, which is

Hb(f) = ca ·Ha(f), (27)

where the unknown constant ca is the attenuation factor.
The antenna system measurement to evaluate Ha(f) is
given in [1]. Let’s define S′

w(f) and R′
w(τ) as

S′
w(f) = |U(f)|2|Ha(f)|2Sp(f), (28)
R′

w(τ) = F−1{S′
w(f)}. (29)

Then, Sw(f) and Rw(τ) satisfy

Sw(f) = c2a · S′
w(f), (30)

Rw(τ) = c2a ·R′
w(τ). (31)

In figure 7 through figure 10, plots of Sp(f), |U(f)|2, S′
w(f),

and R′
w(τ) are shown. Again, the template u(t) is the

second derivative of a gaussian pulse as shown in (15). The
unknown constant ca can be evaluated using (31), which is

ca =

√
Rw(0)
R′

w(0)
=

√
Ew

R′
w(0)

, (32)

where Ew is the total energy of w(t). So calculation of
ca requires knowledge of the total energy of w(t), which is
difficult to estimate without knowledge of the channel.

Figure 11 and figure 12 are examples of the standard de-
viation of error, σMS(t), assuming ca is equal to 1. Figure
11 compares σMS(t) with different sampling rates, assum-
ing the number of samples used for the estimation is 2.
Notice that the peak of each curve is located at the mid-
point between the two samples. Figure 12 shows another
comparison of σMS(t) with a different number of observa-
tions used for the estimation, while the sampling rate is
fixed at 2 GHz, assuming the closest samples are used for
estimation. The error deviation decreases as the number
of observations used increases.

IV. Conclusions

Measurement time of the signal is one of the major lim-
iting factors in UWB ranging performance. Furthermore,
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Fig. 7. Spectral density of the template pulse p(t).
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Fig. 8. Measured antenna system function |Ha(f)|2.
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Fig. 9. Plot of S′
w(f) which is evaluated by (28).
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Fig. 10. Plots of the auto-correlation function R′
w(τ).
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Fig. 11. Evaluation of error variance in MMSE estimation based on
2 samples. Error variance decreases with sampling rate.
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correlation time of the signal is limited due to the poten-
tial clock instability. The sparse-sampling estimation error
estimates introduced in this paper can be used to design a
fast direct path search in a limited measurement time. To
evaluate the error variance of MMSE estimation, a reason-
able estimation of the total signal power is necessary.
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