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Abstract — In this paper, we propose a novel method to construct low
rate recursive convolutional codes. The ‘overall’ convolutional code has a
block code and a simple recursive convolutional code as building blocks.
The novelty of this type of convolutional code is that it uses coset leaders in
order to distinguish the signals that originate from different states. Several
of these codes are then used to construct low rate turbo-like codes. Apart
from being bandwidth efficient, simulation results show that these codes
outperform the best known low rate turbo-like codes, the turbo-Hadamard
codes (THC), in additive white Gaussian noise (AWGN) channel for inter-
leaver sizes of practical interest.

I. INTRODUCTION

A considerable amount of research has been done in the area
of low rate error correcting codes [6,7,9,10,15]. Such codes
are of special interest among researchers working in wide band
communications such as ultra-wide band systems, that are ex-
tremely power limited. One of the main reasons is that the ap-
plication of very low rate error control codes in such systems
results in added coding gain with no additional penalty [14].
The additional coding gain can translate into added capacity in
multi-user spread spectrum schemes.

After the discovery of turbo-codes [1], there has been enor-
mous research effort in designing concatenated coding schemes.
This research can be divided into two major categories. The first
category is the design of concatenated codes for practical ap-
plications where fast convergence for smaller input block sizes
are required [8]. Strong constituent codes are used in this de-
sign strategy. Design of good concatenated codes for maximum
asymptotic coding gain forms the second category [4]. The
latter design methodology usually involves weaker constituent
codes, slower convergence rate and larger input block sizes.

In the recent past, very low rate turbo-like codes such
as super-orthogonal turbo codes (SOTC) [2], turbo-Hadamard
codes (THC) [3] etc., were introduced. SOTC belongs to the
former category whereas THC belongs to the latter one. In other
words, SOTC uses two strong constituent codes and has a fast
convergence while THC uses several ‘weaker’ constituent codes
and converges slowly. However, THC was shown to outperform
SOTC by about 0.4 dB asymptotically, making it the best known
low rate concatenated code so far.

In this work, a novel technique to construct low rate turbo-
like codes that is aimed at achieving maximum asymptotic gain
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for a given input block size is introduced. The turbo-like code
consists of several weak constituent codes and has slow conver-
gence rate. The new coding scheme thus falls under the second
category and it is fair to compare its performance with that of
THC. Simulation results show that, in AWGN channel, the pro-
posed coding scheme outperforms THC by about 0.2 dB for
interleaver sizes of practical interest.

The rest of the paper is organized as follows. A brief review
on low rate concatenated coding schemes is given in Section II.
Section III illustrates the proposed code construction methodol-
ogy. Numerical results and discussion are given in Sections IV
and V, respectively.

II. BRIEF REVIEW ON LOW RATE CONCATENATED CODING

SCHEMES

Low rate parallel concatenated coding schemes known so
far can be divided into two major classes: parallel concatena-
tion of strong constituent codes (usually two codes) and paral-
lel concatenation of relatively weaker codes (usually more than
two codes). The SOTC and THC belong to the first and sec-
ond categories, respectively. Both these codes use a binary bi-
orthogonal block code characterized by (2k, k+1, 2k−1) where
(k +1) is the input information size, 2k is the output code word
length and 2k−1 is the minimum distance of the block code.
Code words of the block code are used as output signals along
the trellis transitions.

SOTC is a parallel concatenation of two super-orthogonal re-
cursive convolutional codes. Super-orthogonal convolutional
codes are characterized by the trellis structure such that signals
on the trellis transitions from and to any given state are pairwise
antipodal. This type of encoder takes in one information bit at a
time to give an output of 2k coded bits. Due to the special struc-
ture of the constituent codes1, rest of the (k + 1) bits needed
to access the 2k+1 bi-orthogonal signal set have to come from
the state information, requiring the constituent encoder to have
at least 2k+1 states. Thus, the number of states increases expo-
nentially with decrease in code rate which is one of the main
draw backs of SOTC.

The schematic of the constituent encoder of the THC is
shown in Figure 1. Multiple information bits, say k bits are fed
into each encoder of THC. Therefore, in order for a one-to-one

1Reference [5] and the references therein gives a brief review on super-
orthogonal convolutional codes
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mapping on to the bi-orthogonal signal set, it is enough to have
a 2-state finite state machine. The convolutional encoder used
is typically a 2 or 4-state recursive encoder. Due to this fact,
the resultant trellis structure has multiple transitions between
any two states. More than two such encoders are connected in
parallel to form the THC.

(2k, k+1, 2k-1)

Bi-orthogonal code

Parity

generator

k information bits

+ D

2k coded bits

Recursive Single Parity Check Code

Fig. 1. Schematic of the constituent code of the turbo-Hadamard code

In this work, we construct a new class of low rate codes based
on the structure shown in Figure 1. The key contribution of our
work is as follows: Note that the input size of the binary block
code is (k +1) bits. However, the constituent codes of the THC
use only k information bits while the (k + 1)-th input to the
block code comes from a recursive encoder which encodes the
parity bit of the other k inputs to the block code. Here, we
show that all the (k + 1) inputs to the block code can be taken
from the input information directly and still an overall recursive
convolutional code can be built. This operation increases the
code rate for a fixed output length, i.e., instead of rate k/2k as
in THC, the new code rate would be (k + 1)/2k. We also show
that such codes, when used in parallel concatenation, gives the
best known performance (measured both in bit error rate and
frame error rate) in AWGN channel.

III. CODE CONSTRUCTION

A. Constituent Codes

First, we will elaborate on the construction of the coset-based
recursive convolutional codes (CB-RCC). The schematic of the
structure is given in Figure 2. The input information is divided
into blocks of (k + 1) data bits. Each block is encoded using a
(2k, k +1, 2k−1) bi-orthogonal block code. At the same time, a
parity bit is generated for each block. The parity bit is encoded
by a simple 2-state, rate-1, recursive convolutional code2. The
recursive encoding of the single parity check bit ensures that the
transitions between even states correspond to inputs with even
weight and those between odd states correspond to inputs with
odd weight. The current state of the finite state machine is used
to select a coset leader of length 2k (a 1-1 mapping between
coset leaders and the state). An element-by-element multipli-
cation is performed on the output of the block code with the
elements of the coset leader before being transmitted.

The reason for using coset leaders is straightforward. The
total number of branches leaving any state in the overall code
is 2k+1. However, there are only 2k+1 distinct signals in the

2This can be extended to convolutional codes of arbitrary rate/states.

(2k, k+1, 2k−1) bi-orthogonal signal set. So, in order to distin-
guish the signals that leave any state from that of any other state,
it is imperative to use some sort of coset leader, the selection of
which can be made dependent on the state information. Such
construction results in an overall recursive convolutional code
with 2k parallel branches between any two states. The parallel
branches in the overall code are the result of the block code. A
section of the parent trellis and the trellis of the overall code are
given in Figure 3. The label on the branches of the parent trel-
lis represents the input information bit and the corresponding
coded output bit.

(2k, k+1, 2k-1)

Bi-orthogonal code

Parity

generator

x

(k+1) information bits
2k coded bits

+ D
Coset

selection

Recursive Single Parity Check Code

Fig. 2. Schematic of the coset based overall recursive convolutional code
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Fig. 3. A section of the trellis of the parent recursive convolutional code and
the overall recursive convolutional code

B. Coset Leaders

One of the important issues in designing any coset based code
is the selection of coset leaders. In this section, we present an ar-
gument on how to choose coset leaders when bi-orthogonal con-
volutional codes are used. The argument is based on maximum
likelihood sequence detection (MLSD) applied to the trellis that
corresponds to the overall convolutional code. Though simi-
lar arguments can be found scattered in the literature in various
forms [10], [18], [19], we have included our own interpretation
in presenting the argument for this work to be self contained.

Let the number of states in the convolutional code be N . The
received signal corresponding to a single transition of the trellis
in AWGN channel can be written as

r = c � λm + n, (1)

where c is a code word from the bi-orthogonal signal set, λm

is the coset-leader which is a function of the current state sm

and n is the noise vector whose elements are iid, zero mean
Gaussian random variables with variance σ2. The code words
are assumed to be modulated using binary phase shift keying
(BPSK). Therefore, both c(j) and λm(j) ∈ {+1,−1}, j =
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0, 1, . . . , 2k−1 and m = 0, 1, . . . , N − 1. The notation � is
used to represent element-by-element multiplication. The re-
ceived vector r is also a Gaussian random vector of length 2k,
conditioned on the code word c and the coset leader λm. Figure
4 shows a section of the trellis on which the MLSD is applied.

sk
i

sk
j

sk+1
l

�i

�j

Fig. 4. A section of the trellis on which the add-compare-select procedure is
applied

Let Mk−1
0 [si

k] and Mk−1
0 [sj

k] be the state metrics associated
with si

k and sj
k, respectively, at time instant k. Dropping the

superscript on the state variable, the add-compare-select oper-
ation that is performed in order to compute the state metric,
Mk

0 [sk+1], at time k + 1 can be written as

Mk
0 [sk+1] = min

tk:sk+1

[
Mk−1

0 [sk] + Mk[tk]
]
, (2)

where Mk[tk] represents the transition or the branch metric. For
simplicity let Mk−1

0 [sk] be equal for all states at time k. Then

Mk
0 [sk+1] = min

tk:sk+1
Mk[tk]. (3)

Since all the codewords are equal energy signals, the negative
log domain equivalent of the branch metric is simply the nega-
tive of the correlation between the received signal with all possi-
ble codewords. However, due to the presence of the coset lead-
ers, the received signal has to be pre-multiplied with the coset
leader corresponding to the specific state before being corre-
lated. The whole operation can be represented compactly by

M = −HT (λn � r),
= −HT (λn � λm � c) − HT (λn � n), (4)

where H is the Hadamard matrix of size 2k × 2k. Both the
operations mentioned above are linear. Therefore, the resulting
vector is still a Gaussian random vector whose mean is given by

E{M} =
{

[0, 0, ...,∓2k, 0, ...0] if n = m

−HT (λn � λm � c) if n �= m.
(5)

On an average, the branch metric of an incorrect path that corre-
sponds to the same coset to which the transmitted codeword be-
longs is zero. However, the average branch metric of incorrect
paths that corresponds to a different coset is −HT (λn�λm�c).
Let y be defined such that

y = −HT (λn � λm � c), (6)

where y(i), i = 0, 1, . . . , 2k−1 corresponds to the negative of
the correlation between the i-th Walsh-Hadamard (WH) code
word and the quantity λn � λm � c. Since bi-orthogonal sig-
nal set is used, it is straightforward to show that (3) reduces
to minimizing the maximum of |y(i)| that can be written as a
summation given by,

|y(i)| = |
2k−1∑

j=0

hi(j)c(j)λn(j)λm(j)|, (7)

where i = 0, 1, ..., 2k−1. However, bit-by-bit modulo-2 addi-
tion of any two WH code words results in another WH code
word3 [18]. Therefore, hi(j)c(j) can be written as hl(j) which
is the j-th component of another WH code word, i.e.,

|y(i)| = |
2k−1∑

j=0

hl(j)λn(j)λm(j)|, (8)

where i, l = 0, 1, ..., 2k−1. Hence, the cost function reduces to

C = arg min
λ

n
�λ

m

{max
i

|y(i)|},

= arg min
λ

n
�λ

m

{max
i

|ht
i(λn � λm)|}. (9)

In other words, the magnitude of the maximum correlation be-
tween the product of any two distinct coset leaders and any code
word should be minimized. However, since the rows of H are
pairwise orthogonal, from Parseval’s equality, we have,

||HT (λn � λm)|| = ||λn � λm|| (10)

= 2k.

The second equality follows from the fact that the elements of
both λn and λm are ± 1. Therefore, (9) is minimized only when
the elements of HT (λn � λm) are ±1. This property defines a
bent sequence [16, pp. 426-428]. In order to maximize the aver-
age metric of the incorrect code words, the coset leaders need to
be chosen such that the product of any two distinct coset leaders
is a bent sequence. It is possible to select the coset leaders to be
bent sequences such that their product is also a bent sequence
[11].

C. Bent sequences and their construction

Bent sequences are sequences that have constant magnitude
spectrum in the Hadamard domain [17]. In this work, we con-
centrate only on binary bent sequences of length 4k, k an in-
teger. A set of bent sequence vectors of length 4 and the
corresponding normalized Hadamard transform coefficients are
given in Table 1. We refer to this set as the fundamental set since
they can be used to construct bent sequences of other sizes.

3Bit-by-bit modulo-2 addition in binary mode is equivalent to bit-by-bit mul-
tiplication in bipolar mode
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x1 x2 x3 x4 x̂1 x̂2 x̂3 x̂4

1 1 1 -1 1 1 1 1
1 1 -1 1 1 -1 1 -1
1 -1 1 1 1 1 -1 -1
-1 1 1 1 -1 1 1 -1

Table 1. Length-4 bent sequence vectors and their corresponding normalized

Hadamard transform coefficients

There are several methods to construct bent sequence vectors,
the details of which can be found in [12] and the references
therein. Here, we illustrate the method we have used to con-
struct bent sequence vectors. The method is called bent se-
quence generation by Kronecker product. Let A and B be two
matrices of sizes u × v and r × t, respectively. Let them be
denoted by

A =





a11 a12 . . . a1v

a21 a22 . . . a2v

...
...

. . .
...

au1 au2 . . . auv



 (11)

and

B =





b11 b12 . . . b1t

b21 b22 . . . b2t

...
...

. . .
...

br1 br2 . . . brt



 . (12)

The Kronecker product of these matrices is given by

A ⊗ B =





a11B a12B . . . a1vB
a21B a22B . . . a2vB

...
...

. . .
...

au1B au2B . . . auvB



 , (13)

which is an (ur) × (vt) matrix. In order to construct a bent se-
quence of length 4i+1, i an integer, the Kronecker product can
be applied to any combination of bent sequences in the funda-
mental set given in Table 1. For example, let the required length
of the bent sequence vector z be 64. Then, z can be generated
as

z = xi ⊗ xj ⊗ xk, i, j, k ∈ {1, 2, 3, 4}. (14)

D. Turbo-like code

The codes constructed by the method described in Section
III-A are used as constituent codes in parallel concatenation to
form a turbo-like encoder. The encoder structure is given in Fig-
ure 5. The number of constituent codes is restricted to three due
to practical constraints such as decoding delay and complexity.
The final codeword consists of the data (systematic bits) and the
parity bits from the constituent encoders.
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er
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P2

P3

D

D

CB-RCC

Fig. 5. Turbo-like encoder with coset-based recursive convolutional codes as
constituent codes

E. Decoder

A block diagram of the decoder structure that corresponds to
the proposed encoder is shown in Figure 6. The soft-in soft-out
(SISO) module includes the soft inverse of both the Hadamard
code and the ‘fundamental’ recursive convolutional code. After
being compensated for puncturing, the received signal is de-
multiplexed and fed into the respective SISO modules. In every
section of the trellis, the received signal is pre-multiplied by the
coset leader that corresponds to the given state before the branch
metric is calculated for those branches that leave that particular
state. The rest of the decoding process is as given in [3,13].

SISO-1

SISO-2
I1

-1

I1

S
o

ft
In

v
er

se
o
f

P
u

n
ct

u
re

/M
u

lt
ip

le
x

er

S
o

ft
In

v
er

se
o
f

B
ro

a
d

ca
st

er
Decoded

data

Received

signal

SISO-3
I2

-1

I2

Fig. 6. Decoder structure of the proposed coset based turbo encoder

IV. NUMERICAL RESULTS

Simulation results for the proposed code in additive white
Gaussian noise channel are shown in Figures 7 and 8. The
over-all code rate is fixed to be 7/180. A-posteriori probability
based decoding algorithm is used and the results are presented
after performing 50 iterations. In order to keep the encoding
and decoding complexity minimal, only 2-state constituent en-
coders are used. So, only two distinct coset leaders need to be
constructed. The generating polynomial of the parent code is
1/(1 + D). The performance of the proposed coding scheme is
compared against that of rate 6/180 THC since it is the closest
possible code rate attainable in THC. Two different interleaver
sizes that are of practical interest are considered. The sizes are
chosen such that the same interleavers can be used for both the
coding schemes in order to make a fair comparison. Figure 7
shows the bit and frame error rate of the proposed scheme for an
interleaver size of 210 bits. Note that the coset based turbo code
outperforms the THC both in bit error rate (BER) and frame
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Fig. 7. Performance of coset-based turbo codes and turbo-Hadamard codes for
210 bit interleaver size

error rate (FER). The actual additional coding gain is approxi-
mately 0.2 dB in BER and 0.1 dB in FER, respectively. Sim-
ulation results for 1050 bit interleaver are shown in Figure 8.
In this case, an additional coding gain of about 0.2 dB in both
BER and FER is achievable by the coset based encoder. For
comparison, the performance of rate 7/370 THC is also plotted.
Note that the performance of rate 7/180 coset based code is as
good as the rate 7/370 THC. This suggests that with the coset
based turbo codes, the throughput can be increased by a factor
of two with respect to that of the THC without altering the per-
formance. In addition, random coding bounds for different code
rates and interleaver sizes are also included in the corresponding
figures.
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Fig. 8. Performance of coset-based turbo codes and turbo-Hadamard codes for
1050 bit interleaver size

V. CONCLUSIONS AND CAVEATS

We have proposed a novel method to construct low rate re-
cursive convolutional codes based on coset encoding with bent

sequences as coset leaders. These codes in turn are used in de-
signing low rate turbo-like codes. The turbo-codes constructed
using this methodology outperform the best known low rate
turbo-like codes by about 0.2 dB in AWGN channel. An im-
portant point to note is that the selection of coset leaders for the
constituent codes is based on MLSD applied on the trellis that
corresponds to the constituent codes and not on that of the con-
catenated code. Future work along this direction would be to
derive coset leaders for the constituent codes based on the ap-
plication of ML decoding on the hyper-trellis that corresponds
to the concatenated code. Also, the coding scheme described in
this work is an attempt to design the ‘best possible’ code that
achieves maximum coding gain and not a ‘practical’ code that
has fast convergence. For applications that require practical low
rate concatenated codes that have faster convergence, codes in
[2] and [5] seem to be suitable candidates.
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