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Abstract— The central challenge of ultra-wideband (UWB)
radio is to overcome its intrinsic complexity. This paper argues
for the use of high-speed sampling and a front-end FFT as the
paradigm of choice for robust performance and low energy con-
sumption in certain ultra-wideband designs. Assuming the need
to approach optimal performance, it highlights the complexity
advantage of frequency domain (FD) over time domain process-
ing. Anechoic chamber and realistically propagated indoor UWB
measurements, combined with simulated noise and interference,
are used to illustrate FD techniques for initial synchronization
and estimation of channel response.

I. I NTRODUCTION

Absent interference, when the propagation path is short
and line-of-sight, ultra-wideband (UWB) radio is simple in
concept. For both engineer and layman, that is part of its
appeal. In practice however, dense indoor multipath, massive
in-band interference by conventional services and the low
allowable UWB transmit power all conspire to complicate the
implementation of robust UWB systems.

We shall take for granted that the processing required to
achieve near-optimal performance in a UWB receiver is not
reasonably implementable in analog form. Supported by the
knowledge that the all-digital receiver preserves the informa-
tion required for optimal processing [1], we consider the hy-
pothesis that it is most efficient for a UWB receiver to sample
its passband at high speed, perform an FFT on an appropriate
time window and then operate entirely in the frequency domain
(FD). Although we cannot fully explore here this hypothesis,
which will not be true for all applications, it is the goal of this
paper to present the basic argument as motivation for further
research into UWB receiver architecture and to apply it in the
contexts of UWB signal timing acquisition, channel estimation
and interference rejection.

We will see that this approach is most appealing for the
class of UWB applications involving a relatively narrow post-
correlator bandwidth, i.e. long signal integration times. For
instance, a UWB positioning system can, in principle, easily
track a dynamically moving emitter at receivedC/N0 levels of
60 dB-Hz, a number that a Global Positioning System (GPS)
receiver designer will immediately recognize as very generous.
Indeed, the tracking precision that could be achieved with
UWB signals is orders of magnitude better than GPS, simply
on account of UWB’s much greater bandwidth. However, this

begs the question of how the UWB receiver is to acquire such
a weak signal to begin with. Consider that the autocorrelation
peak of the UWB signal is a fraction of a nanosecond
wide, while the search space, due to FCC spectral uniformity
requirements, will be at least a few microseconds and the
integration time required to achieve theoretical sensitivity
is of the order of ten microseconds as well. Measured in
hypothetical A/D samples taken at Nyquist rate (several GHz),
so that the sample time is comparable to the timing resolution,
the search space then consists of tens or even hundreds
of thousands of independent initial timing hypotheses. To
compound the problem even further, there may be severe
narrowband interference to deal with.

By constructing this (hopefully) plausible application sce-
nario, I wish to make the point that the sensitivity of a low-data
rate UWB application will be squarely limited by the amount
of signal processing horsepower that we are willing to bring
to bear for signal acquisition and, particularly relevant to this
discussion, the efficiency of the algorithms employed.

II. FD CONVOLUTION

As is well known, the time domain (TD) convolution
operation,

r = x⊗ h

is equivalent to the FD operation

R = XH (1)

where the functions of frequencyR, X andH are the Fourier
representations of the time functionsr, x andh, respectively,
whose domains may be taken as either discrete or continuous,
and either finite and periodic or infinite. A digital receiver will
necessarily implement the discrete and finite variant, the DFT

X(k) = Fk{x(n)}

,
N−1∑
n=0

x(n) exp(−j
2π

N
kn).

However, DFT convolution using (1) does not serve uncon-
ditionally to duplicate the function of a FIR filter, because
its output behaves as if time flowed periodically, modulo the
size of the DFT,N . In general, this causes a wrap-around



effect when convolution is naı̈vely attempted. The solution
of this problem, for signals and system responses of finite
length, is zero-filling, as was reported by Helms [2] soon after
the invention of the FFT. Rather than using his development,
a matrix-based representation of this convolution is more
appropriate to what follows.

If the vectorsx and h represent two discrete-time signals
of finite lengthsM and L, respectively, their aperiodic con-
volution

r(n) =
L−1∑
m=0

x(n−m)h(m)

may be represented by the matrix transformation

~r = X~h (2)

whereX is a Toeplitz matrix [3].
If ~x and~h are zero-filled to lengthN ≥ M + L − 1, X

may be made circulant,

X =




x0 0 . . . xM−1 . . . x1

...
...

...
...

...
...

xM−2 . . . x0 0 . . . xM−1

xM−1 . . . x1 x0 0 0
...

...
...

...
...

...
0 . . . xM−1 . . . x0 0
0 . . . 0 xM−1 . . . x0




with no impact other than zero-filling the result~r. Therefore,
we have just implemented an aperiodic convolution of two
finite-length sequences as a circular convolution with time
treated moduloN . The relationship with the FFT becomes
clear when we realize thatX, being circulant, may be diago-
nalized as

X = FDFH (3)

where F is the inverse Fourier transform operator matrix
whose elements are

Fkn = exp(j
2π

N
kn),

FH represents its Hermitian transpose (the Fourier transfor-
mation itself), andD is a diagonal matrix whose diagonal
elements are{X(k)}, the DFT of the sequence{x(n)}. This
leads toFH~r = DFH~h, which is a statement of (1) for DFT’s
of appropriately zero-filled vectors.

FFT convolution may also be used in segmented fashion if
~h does not have length less thanN overall, but this involves
truncation of~r after each segment is processed (again, see [2]
and also [4]) and therefore does not lead to the most useful
result for our purposes. We will be applying FFT convolution
to the acquisition process, which we will treat as a batch
process on an isolated signal.

The FD algorithm for a FIR filter of lengthL, implemented
with a power-of-two FFT of lengthN , is less complex
(measured in multiply-accumulate operations, MAC’s) than

FFT ADVANTAGE FOR LTI FILTERING
compared to time-domain convolution
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Fig. 1. Complexity advantage of FD over TD convolution

the equivalent TD filter by roughlyO(log2(N)/L). More
precisely, the complexity ratio for convolution in general is

2K log2(N) + 1
(1− L−1

N )L
, (4)

where N is the size of the FFT,L is the length ofh(n)
and x(n) is assumed to be of length less than or equal to
N − L + 1 to allow FFT convolution to work as above.K
is a constant factor related to the efficiency of the particular
FFT implementation and may be conservatively assumed to
be about2. Figure 1 plots relative complexity vs.L andN . It
suggests that FFT convolution is probably not worthwhile for
filter lengths less than about 40 samples. However, for lengths
of a few hundred samples or more, the FD processing option
becomes hard to ignore.

This algorithmic complexity advantage of FFT-based con-
volution translates directly into lower energy consumption.
However, a direct hardware implementation of a large FFT
is a complex undertaking, with many trade-offs available
between serial, parallel and pipelined processing approaches
[5]. Software implementation in a digital signal processor of
even large FFT’s is a well-developed art [6]. It is beyond the
scope of this paper to study any further these important and
difficult implementation issues.

III. UWB SIGNAL PROCESSING

Given the need to detect and process a signal from a UWB
transmitter with a template pulse waveform knowna priori,
propagating through a poorly known and perhaps changing
channel, in a background of thermal noise and multiple nearby
narrowband interferers, let us consider the nature of the
processing required. Figure 2 shows the UWB pulse waveform
used for this study. It was acquired in an anechoic chamber.
From this pulse, a simulated randomly time-hopped sequence
of 128 pulses was then constructed, with a good impulsive
autocorrelation function. This composite waveform, shown in
Figure 3, constituted the template waveform for the signal to
be acquired.

In similar fashion, simulated received waveforms, some
corrupted by simulated noise and interference, were generated
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Fig. 2. Anechoic chamber characterization of UWB pulse. Measurement
noise was reduced with 256-fold sweep averaging and low-pass filtering.
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Fig. 3. Synthesized template waveform. It consists of 128 pulses, randomly
time-hopped at an average PRF of 10 MHz.

from a measured pulse, realistically propagated in a laboratory
environment using the same pulse generator and antennas. The
objective was to demonstrate the channel estimation algorithm
to be discussed below.

A. Maximum likelihood timing acquisition

The time-average cross-correlation of two real signalsr and
x being defined in discrete time as

λrx(n) =
∑
m

r(m)x(m− n),

we find thatλrx(n) = r(n)⊗x(−n), so that the corresponding
FD expression is

Λ(k) = Fk{λrx(n)}
= R(k)X∗(k). (5)

Note that, usually, the FFT ofx, the template, can be pre-
computed. Once we recoverλrx(n) with an inverse FFT of
Λ(k), we have effectively obtained from a matched-filter the
likelihood function of the delay of the signalr relative to
x, for N − L multiples of the sample interval, where L is
the length of the template. An illustration of this matched
filtering operation, including the effect of interference re-
jection, is shown in the following section. For this test,L
had a length of64, 000 samples, while the simulated signal
spanned200, 000 samples. On a standard personal computer,
the Matlab software package’s FFT routines executed the full
correlation in about 0.85 seconds, including template FFT
computation. In a dramatic demonstration of the advantage
of the FFT correlation approach, an equivalent time-domain
correlation of the same signals took 19.8 minutes.
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Fig. 4. Visualization of signal, noise and interference in the frequency
domain. In this plot, the SNR is 18 dB and J/S is 40 dB. The noise level
is shown separately to better depict its relationship to the signal.
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Fig. 5. Correlator output, in the presence of interference, with and without
FD interference excision. J/S is 60 dB in both plots. Excision is turned on in
the right-hand plot, allowing recovery of the three correlation peaks.

B. Interference rejection

Since the spectrum occupied by a UWB application may
overlap other narrowband users, severe interference to the
UWB receiver is to be expected. While the UWB transmitter
power will typically be limited to a few tens of microwatts [7],
the interferers may collectively generatewatts, and perhaps at
a closer range. Thus the jam-to-signal power ratio (J/S) may
exceed 60 dB. When we view multiple narrowband interferers
in the frequency domain, a collection of large impulses will
result, whereas the UWB spectrum is distributed, as simulated
in Figure 4. This suggests either notch-filtering or non-linearly
clipping the frequencies exceeding a mask. Both alternatives
are easily applied to a signal in the frequency domain, at an
additional cost ofO(1) operation per sample. Closely similar
ideas were studied by Milstein and Das, who reported useful
results with simple FD-based excision algorithms [8]. For
this demonstration, I made no attempt to derive an optimum
algorithm. My FD excision method was simply to search for
and set to zero all peaks in the FFT exceeding 10 dB above
the noise floor, estimated as the average power per FFT cell.
Even this simple-minded algorithm did remarkably well, as
depicted in the comparison plots of Figure 5.

In the time domain, the cost per sample is proportional to
the size of the filter, as previously discussed. Although I did
not attempt to synthesize the TD filter, it should be obvious
that it must be very selective, to avoid excessive loss of signal
energy, and therefore quite complex, especially if there are
multiple distinct interferers.

C. Channel estimation

The need to do channel estimation is not obvious. For
communication, choosing amongM hypotheses in Gaussian
noise requires knowledge of theM possible received template
waveforms si, which may be done by filtering a training
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Fig. 6. The same template transmission as in Figure 2, but propagated in
an indoor environment. 256-fold sweep averaging was used here as well. The
estimated channel response envelope is shown in red.

sequence of such received templates.

ri(n) = si(n) + w(n) (6)

where

si(n) = xi(n)⊗ h(n) (7)

However, extracting channel response information from the
templates may be appropriate, if we wish to model the channel,
either for its own sake or in order to extract a channel model
to aid or simplify tracking and later decisions.

Given the measured response vectorr(n) and a known
transmitted signalx(n), estimation of the channel impulse
response in noisew(n) results from solving

~r = X~h + ~w

for ~h. For non-singularX and gaussian~w, the least squares
solution is

~̂
h = X−1~r.

However, in practice,X is always singular. Following in the
footsteps of [9] and [10], this is best handled by performing
a singular value decomposition (SVD) ofX. Once again, the
frequency domain approach greatly simplifies this task, since
(3) tells us thatX(k) contains the eigenvalues of the matrix
X at the frequencies indexed byk.

X(k) is small or zero for frequencies outside the UWB pass-
band (and perhaps also for other frequencies, depending on the
details of the pulse sequence). Therefore, in the FD view, a
well-behaved least-squares estimate ofH(k) is accomplished
very simply with point-by-point division and windowing:

Ĥ(k) =
R(k)
X(k)

W(k).

whereW(k) is a window function determined in advance from
knowledge ofX. Figure 6 shows a measured indoor propagated
signal, with the impulse response envelope computed from it
in the above manner. For this example, the window function
W(k) was not optimized. A rectangular window, including
roughly the spectral content of the original pulse waveform,
was used. As a result, I did not add noise or interference for
this illustrative example.

IV. CONCLUSION

The feasibility of maximally sensitive low-data rate UWB
systems is primarily limited by signal processing complexity.
Two key functions of these systems, interference rejection
and correlative signal acquisition, are made computationally
feasible by implementing the necessary long convolutions
and correlation searches in the frequency domain, where the
Nlog(N) complexity of the FFT results in a large reduction
in the number of operations. Similarly, the large singular value
decompositions involved in channel estimates by least-squares
deconvolution are greatly simplified by carrying out these
estimations using the FFT with appropriately time-limited
signals. The potential savings in the time, delay and energy
costs of these computations suggest that it may be particularly
advantageous to taylor low-data rate UWB signals and system
designs for frequency domain implementation of initial signal
acquisition and synchronization.
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