
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Abstract - This paper explores a correlation timing detector for 
tracking of Ultra-Wide-Band (UWB) monocycle signals. We seek 
to examine the optimal relationship between the received and 
reference UWB monocycle waveforms considering timing jitter 
and the ability to acquire lock. We modeled the received UWB 
monocycle waveform as the nth order derivative of the Gaussian 
function. We are able to obtain a good fit using the UWB model 
with n=4 to both UWB impulses measured in an anechoic 
chamber and UWB impulses obtained in an indoor office 
environment. The UWB monocycle model, though an idealized 
representation, allows us to derive a closed form expression for 
the slope of the characteristic function of the TLL when both the 
received and reference monocycle are of arbitrary and different 
orders n and m. Using this compact formula, we can analyze the 
timing jitter of the error-tracking TLL in an additive white 
Gaussian noise (AWGN) channel. Computer simulation is also 
used to examine the dynamics of the tracking process when the 
loop is second order. Notably the phase plane plot is examined 
that gives us an indication of the ability of the TLL to acquire 
lock. The analysis allows us to make informed choices of the 
order of the monocycle waveform considering trades-off between 
timing error variance due to AWGN in the channel and the 
ability of the TLL to acquire lock. We conclude this paper by 
discussing a possible automatic gain control (AGC) scheme, 
whose main purpose is to remove the dependence of the TLL on 
variations in input signal amplitude. 

 
I.  INTRODUCTION 

 
There has been widespread interest in the communication 

community to utilize UWB impulses for wireless 
communication, imaging and ranging. Such UWB impulses do 
not rely on a sinusoidal carrier for transmission.  

Extensive research was done since the 1960s on Phased-
Locked Loops (PLL) and baseband code tracking loops. The 
PLL is used in wireless communications systems in which 
information to be transmitted is superimposed on a sinusoidal 
carrier. Further differences between baseband code and UWB 
monocycle tracking include the low duty cycle and the 
significantly larger bandwidth in the latter. Consequently the 
effect of pulse shaping by the antenna cannot be ignored, and 
it is no longer adequate to model the received waveform 
simply as rectangular or raised cosine pulses as commonly 
done in narrowband signals. This motivates us, drawing on 
developed PLL, delay locked loop and code tracking loop 
 

 
 
 

 theories detailed in [8][11][12], to devise and investigate 
equivalent error tracking PLL/Time-Locked-Loop (TLL) for 
tracking of UWB impulses. This paper is devoted to 
examining the suitability of our proposed timing detector and 
analyzing its performance when utilized for tracking UWB 
monocycle in a TLL for a AWGN channel.  

The 2nd order derivative Gaussian pulse has been widely 
utilized by many authors to evaluate the performance of their 
UWB systems. This paper presents a general formula for an 
nth order derivative Gaussian monocycle and uses it to model 
the received monocycle waveform. We treat the order n as a 
design parameter and examine its choice in the context of 
tracking of UWB impulses. We show here that the appropriate 
choice of n will indeed have impact on the performance of an 
UWB impulse transceiver.   
 

II.  TIME-LOCKED LOOP 
 

We consider a received signal given by 
)()()( tnktqAty ks +−Ω−= ∑ ξ , (1) 

where we have assumed the communication channel is 
corrupted by AWGN noise n(t) that has zero mean and one-
sided power spectral density No. The received UWB 
monocycle waveform with unit energy is denoted as q(t), the 
unknown time delay is ξ and the pulse repetition period Ω. 
The energy of each received monocycle in the absence of 
noise is 2

sA . The reference signal generated at the receiver is  

∑ −+Ω−= kr ktrAts )ˆ)(()( ξθ ,  (2) 
where r(t) represents the reference signal waveform with unit 
energy. The energy per monocycle of the reference signal is 

2
rA . Here θ  is used to represent the difference in pulse 

repetition period between the transmitter and receiver in units 
of seconds, and ξ̂  is the estimate of ξ in (1). We define the 
following timing processes: 





++Ω=
+Ω=

ξθ
ξ

ˆˆ kkT
kT

k

k .  (3) 

The timing offset between the transmitter and receiver when 
receiving the kth monocycle is: 

kkk TT ˆ−=ε .   (4) 
Using terminology commonly understood in tracking of 
sinusoidal signals, ξξ ˆ−  and θ  are analogous to the 'phase 
step' and 'frequency step' respectively.  
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To track the received UWB monocycles, we employ a time-
locked loop which has a structure similar to conventional 
baseband timing tracking loops and code tracking loops. The 
TLL to be described here has the general structure shown in 
Fig. 1. The reference signal at the receiver is an odd function 
if the received monocycle is modeled as an even function and 
vice versa. If q(t) is even, possible candidates for r(t) are the 
Hilbert transform of q(t), the odd-order derivative of the 
Gaussian function or a rectangular function with opposite 
signs in opposite sides of 0=t . 

The working of the correlation timing detector is shown in 
Fig. 2. It correlates the received UWB impulses with the 
reference signal generated at and timed by the local voltage 
control oscillator (VCO) of the receiver. The timing detector 
operates nominally at symbol/pulse repetition rate, i.e., the 
timing error is computed, and the control signal to the VCO is 
updated only once per pulse repetition period (or per received 
UWB impulse). The output of the timing detector will be a 
signal proportional in magnitude and of the same sign (for 
positive loop gain) as the timing difference between the 
received signal and the locally generated reference signal.  

If we impose the conditions that 0)( =tq  and )(tr =0 for 
|t|> TD, and TD <<Ω, we can let 2TD be the duration of the 
finite integration performed by the timing detector. This 
allows us to express the open-loop output of the timing 
detector by (5), where for simplicity, we have let θ=0, 
assuming the TLL is already in the tracking mode.  

)ˆ()(

)ˆ()()ˆ(
ˆ

ˆ
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In (5), DK  is the detector gain and 
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The noise sample /
kn  is a random variable obtained nominally 

at time interval kΩ. Its auto-correlation function is not a 
function of timing error. It is not surprising since noise 
variables separated Ω seconds or more apart are not correlated 
for sufficient large Ω. This condition is easily satisfied for 
UWB systems where the impulse train typically has low duty 
cycle. A general timing detector model, operating at nominal 
pulse-repetition rate, which is similar to the general phase 
detector model of [1], can be written as: 

/)( kDkDDk nKkTgKx +−Ω+= ε .  (8) 
The simplicity in form of (5), (6) and (7) can be attributed 

to the fact that we have assumed a low duty cycle system such 
that there is no overlap of adjacent pulses and the channel is 
impaired only by AWGN. In addition, if the UWB monocycle 
is sufficiently ultra-wideband and assuming there are a finite 
number of multipaths whose strength does not diminish in the 
resolution process, we will be able to resolve all multiple 
components. Thus there will be minimal overlap of multipath 
pulses. Without lost of generality, we consider only one period 
of the correlation and drop the subscript k from ε. Thus the 
characteristic function of the TLL is: 

∫
∞

∞−
+= dttrtqAAg rs )()()( εε .  (9) 

During tracking, ε  fluctuates about the stable equilibrium 
point at 0=ε . We can then linearize the TLL by 
approximating g(ε) around ε=0 by )0()( gg ′= εε  where 

εεε ddgg /)()( =′ . 
  

III.  OPTIMAL REFERENCE WAVEFORM 
 
After establishing the behavior of the timing detector, we 

devised the equivalent error-tracking TLL linear model as 
shown in Fig. 3. The digital loop filter is denoted as D(z) and a 
description of it can be found in [9].  

If )( kuΖ  is the Z-transform of ku , from Fig. 3, we have 
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Figure 2: Illustration of correlator timing error detector. The input 
signal and the reference signal is multiplied and integrated over a 
period of 2TD to obtain the timing error output.  

Figure 1: General structure of the TLL for tracking of UWB impulses. It 
is assumed that the UWB monocycles, triggered by the positive-going 
zero-crossings of a sinusoid oscillator, serve as timing for the system. 
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Figure 3: Equivalent timing model for the tracking of UWB impulses.
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The parameter KD is commonly chosen to make the effective 
gain of the TLL operating in the linear region equal to 1. This 
requires KD =1/g'(0). After closing the loop, the timing error 
variance, assuming D(z) and I(z) are fixed, is proportional to 

{ } γεσ ε ⋅∝Ε=
2

022

2 sA
N

            (11) 

and   2

0

2

)()(

)(
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


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
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=

=

∞
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∞

∞−

∫

∫

ε

ε
ε

γ

dttrtq
d
d

dttr
.              (12) 

The ratio γ contains all dependence of 2
εσ  on q(t) and r(t).  

Clearly, to minimize the effect of the input noise on the 
timing error variance while having constant signal and noise 
ratio, the task is to minimize γ. The denominator of γ can be 
written as: 

∫∫
∞

∞−=

∞

∞−
=+ dfffFjfFdttrtq

d
d

rq

______________

0

)(2)()()( πε
ε ε

 (13) 

where 
_______

)( fR  is the conjugate of )( fR  and )( fFr  the Fourier 

transform of )(tr . Let ∫ ⋅= dttytxyx )()(,  be the usual inner 
product space in ),(2 ∞−∞L . We denote a bounded linear 
operator on a Hilbert space as K and its adjoint *K  such that 

>>=<< yKxyKx ,*, . Here, these linear operators on )( fFr  
can be written as:   







→
→

)(2)(:*
)(2)(:

______

fFfjfFK
fFfjfFK

xx

xx

π
π           (14) 

K* is shown to be unique in [10]. Applying the Schwartz 
inequality to (12), we obtain 
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rq
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  (15) 

Equality occurs when )(2)( fFfjfF qr πβ−=  or r(t)= -βq'(t). 
Thus the optimal reference signal is the time derivative of the 
received monocycle waveform.  

This result has been arrived at using different techniques in 
different contexts. For example, [13] presented a similar 
result, which also uses linear theory and the Schwartz 
inequality, for despreading chip waveform design in an early-
late code tracking loop and the formulation includes effects of 
early-late spacing. We should further add that multiplying the 
received signal with the first derivative of the receiver 
generated replica of the transmitted signal has already being 
known as the maximum likelihood (ML) timing/phase 
estimator in AWGN as discussed in [12]. Our derivation can 
be viewed as a special case of [14] and is included here for 
completeness. The Cramer-Rao bound on the timing error 
variance for the ML detector as derived in [1], [2] and [15] is: 

{ } 22 2 ϖε ro EN≥Ε           (16) 
where rE  is the received signal energy per pulse and  

∫
∞

∞−
= πωωωϖ 2/|)(| 222 dFq .   

 
IV.  UWB MONOCYCLE MODEL 

 
We model the received UWB monocycle pulse as the nth 

order (n>0) derivative )(twn  of the Gaussian function. The 
time domain and frequency domain representations are given 
by (17) and (18) respectively. Here σ is a scaling factor that 
has the unit of time (e.g., seconds) and p=1/2σ2, (2n-1)!!=(2n-
1)(2n-3)…...3.1. 
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
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−
−

= .        (18)  

The monocycle waveform (17) has the following 
properties: (a) For evenn = , the maximum amplitude is at 
t=0 and positive. (b) For n=odd, the slope at t=0 is positive. 

(c) The monocycle has unit energy, i.e., 1)(2 =∫
∞

∞−

dttwn , and 

satisfies 0)( ≈tw  for DTt ≥ . The proposed model is a 
function of 3 parameters, the peak amplitude As, the order of 
the derivative n and a scaling factor σ. Increasing the 
derivative order of the monocycle waveform has the effect of 
shifting the spectrum to occupy a higher frequency range as 
shown in Fig. 4. Maintaining the same energy per pulse, a 
larger scaling factor stretches the monocycle pulse wider in 
time and thus a more gradual rise of the main lobe of the 
waveform. The amplitude also has a role to play in defining 
the final shape of the monocycle waveform besides directly 
affecting the SNR.  

 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 5, we fit )(4 tw  to an empirically measured UWB 
impulse (with the amplitude at t=0 normalized to 1 ) obtained 
inside an anechoic chamber. The antenna used is a diamond 
dipole antenna. In Fig. 6, the same )(4 tw  is fitted to UWB 
signals measured in an indoor office environment.  

Figure 4: Fourier transform of )(twn  pulse with σ=1. 

0

0 .5

1

1 .5

2

0 0 .2 0 .4 0 .6 0 .8 1

W
n(f

) 

Frequency (Hz) 

n=2        4    6    8   10 

0-7803-7975-6/03/$17.00 (C) 2003



 

We observe that the model as given by (17) fits a possible 
class of UWB impulses radiated from dipole antenna. Such a 
UWB monocycle waveform, which is even symmetric about 
its peak with side lobes on each side of a main lobe is said to 
be the typical time-domain response of a continuously loaded 
dipole [6]. Similar monocycle waveforms, possibly of order 
higher than 4, have also been used in [7].   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V.  TLL PERFORMANCE 
 

If )()( twtq n=  and )()( twtr m= , from (12) and (17), we 
obtain the gradient of the slope at 0=ε  as in (19). It is noted 
here that a larger gradient corresponds to a larger pull-in force 
for the TLL to achieve lock.   
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It can be shown that in the optimal case when 1+= nm , we 
have for n  even: 

pndttwtw
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In table 1, we tabulated the ratio γ  for various values of n  
and m . It indicates that a higher order Gaussian monocycle is 
desirable if the objective is to reduce the effect of AWGN at 
the input of the TLL by reducing the timing error variance. 
The improvement when raising the order from (n=2,m=3) to 
(n=10,m=11) is as high as 6.23dB. It seems that a higher 
order Gaussian monocycle has a main lobe that rises faster 
than a lower order pulse which contributes to this gain.  

Table 1: The ratio γ  for various values of n  and m  (
)()(
)()(
twtr
twtq

m

n
=
=

) 

 m=2 3 4 5 6 
N=
2 

 )5/(1 p  - )35/(9 p   

3 p/20.0  - )7/(1 p  - )63/(11 p  
4 - p/14.0≈  - )9/(1 p  - 
5 p/26.0≈  - p/11.0≈  - )11/(1 p  
6 - p/17.0≈  - p/09.0≈  - 
7 p/45.0≈  - p/13.0≈  - p/08.0≈  
8 - p/28.0≈  - p/10.0≈  - 

 
The next reference signal function to be analyzed is the 

Hilbert transform of )(twn  (denoted )(~ twn ). The general 
formulae for )(~ twn  is omitted as its complexity does not 
allow tractable mathematical analysis. Instead we present only 

)(~
4 tw  which is obtained with the aid of [4] and [5]. 
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π

π
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where )()(
2

izerfcez z −≡Ω − [6]. Here )(oℑ  is used to denote 
the imaginary part of a complex function.  

If )()( twtq n=  and )(~)( twtr n= , we obtained numerically 
the ratio γ  and tabulated it in Table 2. There is no significant 
difference between using the next higher order derivative 
(which is the optimal) or the Hilbert transform of the received 
waveform as the reference signal. 

Reference [16] analyzed timing jitter via specific system 
simulation employing a monocycle waveform similar to the 
n=2 Gaussian derivative function and a conventional early-late 
gate tracking loop. In such early-late loops, the received signal 
is multiplied by early and late reference signals (or their 
difference) typically matched to the transmitted signal pulse 
shape. We will not reproduce the results of [16] here because 
we have shown in Section III that the ML optimal reference 
waveform is the derivative of the received signal. Instead, we 
present our next result when the reference signal )(tr  is of the 
form: 


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Equation (22) represents a reference signal waveform that 
can be implemented easily. The slope at 0=ε  when the 
received signal is )(twn  and n  even is: 
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In Fig. 7, we plotted (23) as a function of τ  for 8,6,4,2=n  
and 10. As expected, as τ  increases, the slope approaches a 
non-zero limiting values. And there is an optimal maxττ =  that 
maximizes the gradient. For all cases considered, through 
careful simulation, maxτ  is close to the width from the peak at 

0=t  to the first negative peak of )(twn  as illustrated in Fig. 
8. The ratio γ  when maxττ =  is tabulated in Table 2. As the 
order n  increases, the timing error variance with )()( twtr r=  
degrades compared to the optimal )()( 1 twtr n+= . At 2=n , 
the difference is about 0.98 dB while at 10=n , the difference 
is as high as 2.5 dB. At στ 16= , 1=σ , γ  is about 10.406 for 
all n  in Fig. 7, this is about 17.9 dB away from the optimal 
when 10=n . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 2: Comparison of γ  for higher order Gaussian derivative  
and Hilbert transform reference signals 
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)1,(
2 =
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γ nn
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max
2 ,1

))(,(

ττσ
γ

==

twn r  

2 0.4000 0.4418 0.5021 
4 0.2222 0.2349 0.3100 
6 0.1538 0.1599 0.2358 
8 0.1176 0.1212 0.1957 

10 0.0952 0.0975 0.1701 
 
 

We continue with our analysis of the TLL by examining its 
phase-plane plot. The phase plane plot is obtained by 
simulating the TLL shown in Fig. 1. The digital loop filter is 
of the form )1/()( 21 −+= zzGGzD  with G1=0.28 and 
G2=0.06. Thus we have a 2nd order loop which is able to 
handle mismatch between the transmitter and receiver pulse-
repetition-rate.  

In Fig. 9 and 10, an example of the TLL phase-plane for 
two different pairs of q(t) and r(t) are shown. In both figures, 
the same D(z) is utilized in the TLL. When (n=4,m=5), the 
TLL cannot acquire lock for |θ| as small as 0.2σ. After we 
reduce the order to (n=2,m=3), lock acquisition is still 
possible for |θ|=0.3σ. It illustrates that lower order n and m 
can acquire lock for a larger range of mismatch in pulse 
repetition rate θ.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Phase-plane εε vsdtd )/(  for a second order loop. Here 
)()( 2 twtq =  and )()( 3 twtr = .  
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Figure 7: Gradient of the S-curve at 0=ε  when )()( twtq n=  and 

)()( twtr r=  for various n as a function of τ . We have fix 1=σ .  
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VI.  MATCH FILTER & AGC PRE-PROCESSING 
 

There are three main issues that need to be addressed before 
the tracking loop described in previous sections can be 
effective. Firstly, the received UWB impulse may not be even 
symmetric about its peak and may have a more complicated 
form then that prescribed in our model for a realistic multipath 
channel. This will result in a fixed bias in the timing detector 
output that can vary according to the channel.  Secondly, 
unlike baseband communication, UWB impulse transceivers 
use pulses of nanosecond width with very low duty cycle. As a 
result, the lock range is small. Thus, we may need an initial 
estimate of the time-of-arrival of the UWB impulses at the 
receiver. Lastly, (9) suggests that the loop gain is a function of 
the signal amplitude As. This is undesirable. Generally, the 
receiver is required to maintain essentially a constant loop 
gain during operation in order to maintain a stable closed-loop 
time-error tracking system. We thus require some form of 
automatic gain control (AGC) circuits to provide amplitude 
and thus gain stability [2][8].  

To mitigate the second and third constraints, we suggest 
placing a peak searching matched filter, with modification 
from its conventional form to provide an initial estimate of As, 
before the TLL to generate an estimate as shown in Fig.11.  

The peak searching matched filter works by passing the 
received signal through a matched filter followed by a zero-
crossing detector as shown in Fig. 11. As stated in [3], the 
output of the matched filter is first differentiated. If the 
matched-filter output is above a detection threshold, indicating 
the presence of a valid signal, the zero crossing of the 
derivative signal will trigger a timing marker indicating the 
occurrence of a peak correlation between the reference and 
input signal. The timing marker will also trigger a circuit that 
samples the peak of the correlation output to provide an initial 
estimation sÂ . It is said that the SNR at the output of the 
matched filter must be large (at least large enough for reliable 
detection) to prevent gross errors caused by noise peaks not 
associated with a signal. 

 
VII.  CONCLUSIONS 

 
We have not analyzed the effect of the one-sided loop 

bandwidth on the performance of the TLL. In narrowband 
communications, it is usually assumed that the received signal 

timing process fluctuates very slowly with respect to the 
channel symbol period to justify the use of a small loop 
bandwidth to reduce the effect of noise on the timing error. 
However, it is not clear whether the same assumption of slow 
fluctuations is applicable for UWB systems.  

The release of the FCC First R&O on UWB transmissions 
opens up a very large bandwidth for the possible use of UWB 
devices transmitting impulses. As a result, there is 
considerable freedom in the choice of the signal waveform to 
exploit this ultra-wide bandwidth for novel applications. The 
proposed model, though ideal, is more comprehensive than the 
2nd order model currently used in the literature, and at the 
same time, provides more design parameters to the engineer 
designing an UWB device. For example, from our analysis, 
we may first choose a lower order monocycle pulse for the 
purpose of acquiring lock. After this, we can change to a 
higher order monocycle pulse to reduce the variance of the 
timing jitter due to additive noise in the input.  
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