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Abstract

Synchronization is one of the most critical issues in PPM/TH ultra-wideband
(UWB) communications due to the short duration of the pulses. In this work,
we study a semi-blind synchronization scheme based on maximum-likelihood (ML)
techniques to recover both symbol and frame timing. The proposed algorithm offers
rapid acquisition and is robust against small timing errors due to a joint timing and
channel estimate. The performance of the proposed algorithm is analyzed based on
correlated Gaussian random variables and shown to be accurate for moderate to
high SNR values.

1 Introduction

In ultra-wideband communications (UWB), communications information is conveyed with
a train of ultra short and very low power spectral density pulses [10]. A key advantage
of UWB signalling is its robustness against multipath fading. To fully exploit this fea-
ture, optimized matched filter detection requires knowledge of the channel response (CR).
However, due to the large delay spread and large bandwidth inherent in UWB systems,
channel estimation can be particularly cumbersome. An alternative to RAKE-type re-
ceivers are transmitted reference (TR) systems which do not require explicit channel
estimation but rely on the transmission of unmodulated reference frames to form a tem-
plate that is correlated with the incoming waveform [6]. Both, TR receivers, as well
as coherent detectors need to know the timing of each symbol before performing data
detection. Due to the short duration of the pulses, timing acquisition is a challenging
task in the context of UWB communications and timing errors as small as fractions of
nanoseconds can seriously degrade the system performance [9].

In UWB communications, a single data symbol is associated with several consecutive
pulses, each located in its own frame. Multiple access to the transmission channel is made
possible by changing the pulse position within a frame according to a user-specific time-
hopping code. Thus, timing recovery may be conveniently viewed as a two-part process
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[3]. The first part consists of estimating the beginning of the individual frames relative to
receiver clock ticks running at frame rate and is called frame timing (FT). The second part
consists of identifying the first frame of each symbol in the incoming frame stream and is
referred to as symbol timing (ST). The FT problem is approached in [7] by looking for a
peak of the correlation between the received waveform and a locally generated template
of the transmitted signal. Various search strategies are investigated and compared in
terms of mean acquisition time. This is particularly important in the context of UWB
communications since UWB signals are characterized by low power spectral density and
low overall transmission power. As a consequence, long training sequences are needed to
achieve high probability of acquisition. However, a large number of pilot symbols might
not be feasible in the presence of a time-varying channel and in general is not desirable
since it reduces the spectral efficiency of the system.

Maximum-likelihood techniques (ML) have been investigated in [5]. Both, training-
based and blind strategies are proposed and the solution involves sub-pulse sampling. A
different approach to ST based on frame-rate samples is proposed in [12]. It operates in
a blind fashion and hinges on the cyclo-stationary nature of the UWB signals resulting
into a long acquisition time.

In this work, we propose a semi-blind synchronization scheme based on ML techniques
to recover ST and FT. Semi-blind schemes combine the methods of channel and timing
acquisition based on a pilot signal and blind channel and timing recovery from the infor-
mation bearing signal [1]. Channel estimation is viewed as a by-product, which can be
exploited or not, depending on the detection scheme (coherent or transmitted reference).
Simulation results indicate that the semi-blind scheme achieves acquisition rapidly and
can successfully be employed in conjunction with both coherent and TR detection. Due to
the long multipath delay spread in UWB systems the assumption of independence of the
decision statistics proves invalid [4, 13] and the performance of the proposed algorithm is
assessed by modeling the decision statistics as correlated Gaussian random variables.

The paper is organized as follows. In Section 2 we present the signal model and
introduce the basic notation. Section 3 describes the semi-blind ML timing estimator.
The performance of the proposed algorithm is analyzed in Section 4. Simulation results
are discussed in Section 5 and conclusions are drawn in Section 6.

2 Signal Model

The transmitted signal is an antipodal modulated signal with time-hopping and is ex-
pressed as

s(t) =
∑

i

ai

Nf−1∑
j=0

g(t− iNfTf − jTf − cjTc), (1)

where {ai} are the information symbols taking values ±1 with equal probability, g(t) is
the elementary pulse (referred to as monocycle), Nf is the number of frames per symbol,

Tf is the frame period, Tc is the chip period, and {ci}
Nf−1
i=0 is the time-hopping sequence

whose elements are integer values randomly chosen in the range 0 ≤ ci ≤ Nh. We assume
that there is no inter-frame interference. This requires that the frame period Tf exceeds
the channel delay spread plus the maximum difference between consecutive time shifts of
the hopping code.

The received waveform is modeled as

r(t) =
∑

i

ai

Nf−1∑
j=0

Np∑
l=1

γlg(t− iNfTf − jTf − cjTc − νTf − τl) + n′(t). (2)

Here, γl and τl represent the gain and delay associated to the l-th channel path, Np is the
number of paths, ν ∈ [0, Nf − 1] is an integer reflecting the hopping-code misalignment



between the transmitter and the receiver in a scale of multiples of Tf , and n′(t) is AWGN
with two-sided PSD N0/2. Without loss of generality we assume that the minimum path
delay τmin = minl{τl} is smaller than the frame duration Tf . Indeed, if it were larger, say
a multiple of Tf plus a fraction, then the multiple part could be absorbed into the code
misalignment νTf . The received waveform is passed through a receive filter gR(t) and is
sampled with period Ts = Tf/Q , a sub-multiple of Tf . The filter output is

r(t) =
∑

i

ai

Nf−1∑
j=0

Np∑
l=1

γlg
′(t− iNfTf − jTf − cjTc − νTf − τl) + n(t), (3)

where g′(t) is the convolution g(t) ∗ gR(t) and n(t) represents the filtered noise. This
equation may be rewritten in a more convenient form by denoting µ the integer part of
τmin/Ts and letting εl = τl − µTs be the fractional delay, where Ts is the sampling period.
Note that µ takes values in the range 0 ≤ µ ≤ Q − 1 since τmin < Tf by assumption.
Substituting εl into (3) and rearranging yields

r(t) =
∑

i

ai

Nf−1∑
j=0

h(t− iNfTf − jTf − cjTc − νTf − µTs) + n(t), (4)

with the channel response (CR) h(t)
∆
=
∑Np

l=1 γlg
′(t − εl). The signal component corre-

sponding to the symbol ak is

sk(t) = ak

Nf−1∑
j=0

h(t− kNfTf − jTf − cjTc − νTf − µTs). (5)

Matched-filter detection requires knowledge of h(t), µ and ν. With reference to Figure
1, the parameter ν identifies the first frame of sk(t) (beginning at t = kNfTf + νTf )
while µ indicates the frames starting times (at mTf + µTs with m = 0, 1, 2, . . . ). Let
h = [h[0], h[1], . . . , h[L − 1]]T be the sampled version of the CR and denote by p(µ,h)
the Q-dimensional vector obtained from h as follows

p(µ,h) = [0, 0, . . . , 0︸ ︷︷ ︸
µ

, h[0], h[1], ..., h[L− 1], 0, 0, ..., 0︸ ︷︷ ︸
Q−L−µ

]T . (6)

The received signal r(t) in an observation interval of K symbols is sampled with period
Ts and its samples are stored in r. In the noise-free case, the received vector corresponding
to the kth data symbol can be written as rk = aksk, where

s0 =
[(

J1
µp(NccNf−1−ν ,h)

)T
,p(NccNf−ν ,h)T , . . . ,p(NccNf−1,h)T

]T
(7)

Figure 1: Noise-free component of the received waveform.



sk =
[
p(Ncc0,h)T ,p(Ncc1,h)T , . . . ,p(NccNf−1,h)T

]T
, k 6= 0, k 6= K, (8)

sK =

[
p(Ncc0,h)T ,p(Ncc1,h)T , . . . ,

(
J2

Q−µ−1
p(NccNf−1−ν ,h)

)T
]T

. (9)

Here, J1
l =

[
0l×(Nf Q−l) Il

]
and J2

l =
[
Il 0l×Nf Q−l

]
are selection matrices where Il is the

l× l identity matrix and 0l×(Nf Q−l) is an all zero matrix. To focus on the algorithm rather
than the notation we disregard r0 and rK (which account for edge effects) and concentrate
on {rk}K−1

k=1 , i.e. K − 1 symbols.
Assuming that the first Nt symbols [a1, . . . , aNt ] are known, while the remaining K −

Nt − 1 are not, the likelihood function can be written as

Λ (µ, ν,h) ∝ exp

(
− 1

2σ2

Nt∑
k=1

‖rk − aksk‖2

) ∑
aNt+1,...,aK−1∈±1

exp

(
− 1

2σ2

K−1∑
k=Nt+1

‖rk − aksk‖2

)
,

(10)
where the K−Nt−1 unknown symbols have been averaged out. With reference to Figure
1, the length-NfQ received vector rk, k = 1, 2, . . . K − 1 can be expressed as

rk = [r [µ + νQ + (k − 1) NfQ] , · · · , r [µ + νQ + kNfQ− 1]]T . (11)

In the next section we discuss a semi-blind maximum likelihood approach for jointly
estimating h, ν and µ.

3 Semi-Blind ML Synchronization Algorithm

We denote by s̃k a trial value of sk (depending on µ̃, ν̃ and h̃) and r̃k a trial value of rk

(depending on µ̃ and ν̃, as it is seen from (11)). Since the received vector is linear in h,
a joint optimization with respect to the parameters h, ν, and µ reduces to a non-linear
search with respect to ν and µ. For fixed µ̃ and ν̃ and using manipulations similar to [6],
the estimate of the CR is obtained as

h̃ [l] =
1

Nf (K − 1)

(
Nt∑

k=1

akr̃k,l +
K−1∑

k=Nt+1

tanh

(
r̃T

k s̃

σ2

)
r̃k,l

)
, (12)

where

r̃k = [r [µ̃ + ν̃Q + (k − 1) NfQ] , · · · , r [µ̃ + ν̃Q + kNfQ− 1]]T , (13)

s̃ =
[
p(Ncc0, h̃)T ,p(Ncc1, h̃)T , . . . ,p(NccNf−1, h̃)T

]T
, (14)

and

r̃k,l =

ν̃+kNf−1∑
i=ν̃+(k−1)Nf

r
[
l + Ncci−(k−1)Nf−ν̃ + µ̃ + iQ

]
. (15)

Thus h̃[l] can be interpreted as a weighted average of known and estimated data

symbols. It is worth noting that (12) is not an explicit expression of h̃[l] in that sk in the

right hand side is in its turn a function of h̃[l]. Substituting (12) back in (7) and making
the approximation (valid for low SNR) log cosh(x) ≈ x2/2, the approximate log-likelihood
function is obtained as

log Λ (µ̃, ν̃) ∝
Nt∑

k=1

akr̃
T
k s̃ +

1

σ2

K−1∑
k=Nt+1

(
r̃T

k s̃
)2 − K−1∑

k=Nt+1

s̃T s̃. (16)



Figure 2: Histogram of the soft-decisions for
Eb/N0=0 dB.

Figure 3: Histogram of the soft-decisions for
Eb/N0=5 dB.

Note that the first term in (16) involves the training symbols, whereas the second and
third represent the blind part of the algorithm. Finally, the estimates of µ and ν are
computed by maximizing the log-likelihood function in (16), i.e.:

{µ̂, ν̂} = arg max
µ̃,ν̃

{log Λ (µ̃, ν̃)} , (17)

for µ̃ = [0, 1, . . . , Q− 1] and ν̃ = [0, 1, . . . , Nf − 1].
One might be tempted to view the tanh()-terms in (12) as a soft-estimate of the data

symbols. However, in our experiments we observed that the argument of the tanh()-
terms is large (� 1) for most of the noise realizations. Figures 2 and 3 show a histogram
of the soft-estimates for a SNR of 0 dB and 5 dB when the transmitted data is set to
ai = +1. It can be observed that independent of the SNR, the estimates are essentially
hard-decisions. What changes with increasing SNR is the probability that the estimated
data symbol is correct. Therefore, without noticeable degradation in performance, we
can replace tanh() by sign() and obtain an iterative decision-directed algorithm.

The reason for not obtaining soft-decisions is manifold. First, both the received signal
vector as well as the template estimate are noisy, causing a large variance at the correlator
output. Second, (12) is initialized by an estimate of the CIR based on the pilot-symbols
only. Thereafter, estimates of the unknown data symbols are made and a new (hopefully
more accurate) template estimate is obtained. Having more than one iteration, on the
one hand, reduces the BER on the soft-decisions at each stage of the recursion; on the
other hand, it also introduces correlation between the received signal vector and the
template estimate. This correlation can be avoided by implementing a computationally
more expensive GLRT-like scheme [6].

An iterative structure similar to (12) based on the EM-algorithm is proposed in [11]
for a CDMA system. Soft estimates are taken on the ’missing’ data (E-step) and based
on these decisions the time-varying channel is estimated using a Kalman filter (M-step).
In [11], soft-decisions on the unknown data symbols appear to be more reliable due to
the reduced dimensionality of the CIR and the problems mentioned above have a reduced
impact on the performance of the algorithm. In a realistic UWB scenario however, this
is no longer the case as can be observed in Figure 2 and 3.

Finally, observe that the algorithm does not provide any reliability information for
the channel estimate during the iterations (i.e. noisy template) which appears in the
argument of the tanh()-terms. A possible way to deal with this problem would be imple-
menting a turbo-like iterative scheme which performs joint detection and channel estima-
tion. Unfortunately, in order for the turbo algorithm to be effective, prior knowledge on
the statistical distribution of the channel impulse response is needed. In the context of



UWB communications this is quite a challenging task since the statistical description of
the channel parameters as given in [8] rules out the possibility of deriving an analytically
tractable model for the statistics of h.

4 Performance Analysis

In this section, we provide an analysis of the probability of acquisition under the sim-
plifying assumption that the FT is acquired correctly, that is we assume µ̃ = µ and we
concentrate on the symbol timing. The justification is that small FT errors do not entail
significant degradation in the receiver performance. Indeed, for µ̂ < µ, the CR as seen by
the receiver is [0, 0, . . . , 0, h[0], h[1], . . . , h[L− 1 + µ̂− µ]]T with µ− µ̂ zeros at the begin-
ning. Vice versa, for µ̃ > µ, it is [h[µ̂−µ], . . . , h[L− 1], 0, 0, . . . , 0]T . As long as |µ̂−µ| is
limited to a few samples the energy of the CR does not change much. In contrast, a ST
error deteriorates the BER performance since the phase of the time-hopping code is not
estimated correctly. Furthermore, to simplify the analysis we focus on a training-based
scheme which uses M pilot symbols to form the template. Notice that this corresponds
to setting Nt = K − 1 = M in (16), i.e. assuming high SNR such that the soft-estimates
in (12) are replaced by the actual data symbols.

The output decision statistics

D(ν̃) = log Λ (µ, ν̃) (18)

for ν̃ = 0, . . . , Nf −1, are modeled as correlated Gaussian random variables. An indepen-
dence assumption usually employed in the analysis of synchronization algorithms [4, 13]
is not justified for UWB systems due to the long delay spread of the channel response.
Once the first and second moments of D(ν̃) are known, we employ the union bound to
determine the probability of acquisition

Pacq = 1− Pr

{⋃
ν̃ 6=0

{D(ν̃) > D(0)}

}
≥ 1−

∑
ν̃ 6=0

Pr {D (ν̃)−D (0) > 0}, (19)

where D(0) corresponds to the correct hypothesis. A detailed derivation of the results
presented in the sequel can be found in [2].

Before we calculate the first and second moments of D(ν̃), we rewrite the decision
statistics in a form that shows explicitly the dependence on the received signal. Consider
the expression of the decision statistic for a training-based scheme with M pilot symbols

D (ν̃) =

(
M∑

k=1

akr̃
T
k

)
s̃. (20)

The received vector r̃k can be partitioned into Nf sub-vectors r̃k,m of length Q

r̃k =
[
r̃T

k,0, . . . , r̃
T
k,ν̃−1, r̃

T
k,ν̃ , . . . , r̃

T
k,Nf−1

]T
, (21)

given by r̃k,m = bk,mm̃m + ñk,m, where m̃n and ñk,n are the mean and the noise of the
received vector, bk,m = ak−1 for m ∈ [0, ν̃− 1] and bk,m = ak for m ∈ [ν̃, Nf − 1]. Defining
the matrices

Tm =
[

0L×cmNc IL 0L×(Nf N−L−cmNc)

]
(22)

of dimension L×NfN that select only the non-zero elements according to our hypothesis,
the channel estimate can be rewritten as

h̃ =
1

NfM

M∑
k=1

Nf−1∑
n=0

akTnr̃k,n. (23)



Similarly, the template vector can be partitioned as

s̃ =
[
s̃T
0 , s̃T

1 . . . , s̃T
Nf−1

]T
, (24)

where the sub-vectors are given by

s̃m =
[
01×cmNc , h̃,01×(Nf N−L−cmNc)

]T
. (25)

Using the results above and neglecting the constant factor 1/((M − 1)Nf ) the decision
statistic in (20) can be written as

D(ν̃) ∝

∥∥∥∥∥∥
M∑

r=1

Nf−1∑
n=0

arTnr̃r,n

∥∥∥∥∥∥
2

. (26)

With the model provided above, and denoting t̃n = Tnm̃n, it can be easily verified that
the first moment and the variance are obtained as

E {D (ν̃)} = M
(
t̃ν̃,ν̃
0,0 + M t̃

Nf ,Nf

ν̃,ν̃

)
+ MLNfσ

2 (27)

σ2
D(ν̃) = E

{
D (ν̃)2}− E {D (ν̃)}2

=
(
2(M − 1)2 − 6(M − 1) + 4

) (
t̃ν̃,ν̃
0,0

)2

+ 4M3
(
t̃
Nf ,ν̃
ν̃,0

)2

(28)

+ 4M2Nfσ
2
(
t̃ν̃,ν̃
0,0 + M t̃

Nf ,Nf

ν̃,ν̃

)
+ 2LM2N2

f σ4,

where

t̃ν̃,ν̃
0,0 =

ν̃−1∑
i=0

ν̃−1∑
j=0

t̃T
i t̃j, t̃

Nf ,Nf

ν̃,ν̃ =

Nf−1∑
i=ν̃

Nf−1∑
j=ν̃

t̃T
i t̃j, t̃

Nf ,ν̃
ν̃,0 =

Nf−1∑
i=ν̃

ν̃∑
j=0

t̃T
i t̃j. (29)

With correct ST (27) and (29) become

E {D(0)} = M2N2
f ‖h‖

2 + MLNfσ
2

σ2
D(0) = 2σ2M2N2

f

(
2MNf ‖h‖2 + σ2L

)
. (30)

The last term to be calculated is the cross-correlation E {D(0)D(ν̃)}. After some manip-
ulations [2], we obtain

E {D(0)D (ν̃)} =
(
M3N2

f ‖h‖
2 + M2NfLσ2

) (
t̃ν̃,ν̃
0,0 + M t̃

Nf ,Nf

ν̃,ν̃

)
+ 4σ2M2

Nf−1∑
i=0

ν̃
ν̃−1∑
j=0

t̃T
j t̃i + (Nf − ν̃) M

Nf−1∑
j=ν̃

t̃T
j t̃i


+ M3N3

f Lσ2 ‖h‖2 + M2N2
f L2σ4

+ 2
(
M2 (Nf − ν̃)2 + Mν̃2

)
Lσ4. (31)

Introducing the variable z̃ = D(ν̃)−D(0), the probability that the ”bin” corresponding
to a wrong trial value is larger than the true one can be written as

P(z̃ > 0) = Q

(√
m2

z̃

σ2
z̃

)
, (32)



Figure 4: Probability of Acquisition vs
Eb/N0: Analytical and numerical results for
semi-blind and training-based scheme (M =
Nt = 10, K − 1 = 30).

Figure 5: Probability of Acquisition vs
Eb/N0: Comparison between semi-blind and
training-based scheme (M = Nt = 5, M =
Nt = 10, K − 1 = 30).

where mz̃ and σ2
z̃ denote the mean and the variance of z, respectively and are given as

mz̃ = E {D(ν̃)−D(0)}
σ2

z̃ = σ2
D(ν̃) + σ2

D(0) − 2E {D (ν̃) D (0)}E {D (ν̃)}E {D (0)} . (33)

Substituting into (19) we obtain a lower bound for the probability of acquisition of the
training-based synchronization strategy in (20).

5 Simulation Results

We assume a single user scenario. The pulse g(t) is shaped as the second derivative of a
Gaussian function and has a width of 1 ns. The frame period Tf is set equal to 110 ns,
the number of frames per symbol Nf is 25, the chip period Tc is 2 ns, and the elements
of the time-hopping code are randomly chosen in the interval 0 ≤ cj ≤ 24. The receive
filter has a rectangular transfer function over ±4GHz and the sampling rate Q/Tf is 8
GHz. The Nyquist rate corresponds to Q = 880 samples per frame. The performance of
the estimation algorithms are expressed as functions of the SNR and the probability of
acquisition. The former is defined as the ratio Eb/N0, where Eb is the energy per symbol
at the filter output (before sampling). The channel is modelled as indicated in the report
[8] of the IEEE 802.15.3a task group.

5.1 Probability of Acquisition

Our criterion for declaring that the receiver is synchronized is that correct ST is achieved.
As mentioned in the previous section, the receiver can cope with an offset of a few samples
with respect to the FT without serious degradation of the performance. Therefore, we
assume perfect FT, i.e. µ̂ = µ. The lower bound on the probability of acquisition
derived in Section 4 is shown in Figure 4 for M = 10. For moderate to high SNR the
analytical expression provided in (19) is in good agreement with the numerical results
obtained setting K − 1 = Nt = M = 10 in (16). As expected, (19) represents a lower
bound also for the proposed semi-blind strategy which exploits Nt = 10 pilot symbols
and K − 1−Nt = 20 unknown data symbols.

In Figure 5, the semi-blind strategy in (16) is compared to a training-based scheme
which uses M pilot symbols to form the template. The parameters Nt and M are varied



Figure 6: BER vs Eb/N0 for a correlation
receiver: Comparing semi-blind and training-
based scheme (M = Nt = 5, K − 1 = 30).

Figure 7: BER vs Eb/N0 for the GLRT and
the ML receiver with ideal and estimated
timing parameters (Nt = 5 and K − 1 = 30).

from M = Nt = 5 to M = Nt = 10 and K − 1 = 30. Note that the former exhibits
higher probability of acquisition, i.e. it requires shorter acquisition time for the same
probability of acquisition, which represents a significant advantage when only a few pilot
symbols are available at the receiver for synchronization and channel estimation.

5.2 BER performance

In the previous section we evaluated and compared the probability of acquisition of the
proposed blind scheme assuming perfect frame alignment. In order to complete the anal-
ysis, we now present BER performance results which have been obtained averaging over
several channel realizations but selecting only the cases where ν̂ = ν. By doing so we
are able to isolate ST from FT and to evaluate the accuracy of both frame level acqui-
sition and channel estimation. In fact, as noted at the beginning of Section 4, an error
in the frame timing corresponds to an increase in the number of zero valued taps in the
estimated channel response and results into a lower energy capture, which degrades the
BER of a receiver provided with such estimates.

The BER performance of the blind strategy in comparison to a training-based scheme
which uses M = 5 pilot symbols is shown in Figure 6. The correlation receiver is provided
with both timing and channel estimates obtained with the two strategies mentioned above.
The BER curve of an ideal correlation receiver (ICR) with perfect timing and channel
estimates is also shown. It is seen that the blind technique outperforms the other scheme
by almost 2 dB and is about 1 dB far away from the ideal case.

Finally the BER results in Figure 7 correspond to a transmitted reference (TR) re-
ceiver employing either maximum-likelihood (ML) or generalized likelihood ratio test
(GLRT) decision criterion [6]. Two different scenarios are considered. In the first, perfect
knowledge of the timing parameters (PTK) is assumed whereas, in the second, both re-
ceivers are fed with timing estimates (TE) obtained from (17). Also, we have set Nt = 5
and K − 1 = 30. The template vector for the ML receiver is obtained from (12) setting
µ̃ = µ̂ and ν̃ = ν̂, whereas the template vector for the jth data symbol in case of the
GLRT receiver is obtained by using

ĥj [l] =
1

Nf (K − 1)

(
Nt∑

k=1

akr̂k,l +
K−1∑

k=Nt+1,k 6=j

tanh

(
r̂T

k ŝk

σ2

)
r̂k,l

)
, (34)

where r̂k, ŝk and r̂k,l are given by (13)-(15) replacing (µ̃, ν̃) with the estimated timing

parameters (µ̂, ν̂). Note that (34) requires the calculation of a different vector ĥj =



[ĥj[1], ĥj[2], . . . , ĥj[L − 1]]T for each data symbol aj. Thus the GLRT receiver is more
complex than the ML-based receiver.

It is seen that for moderate to high SNR the GLRT outperforms the ML receiver by
approximately 1 dB. This fact is explained observing that the correlation between the
template and the incoming waveform generates a non-Gaussian cross noise term which
degrades the BER. This term is not present when the GLRT rule is applied (the sum over
k in (34) does not include the index j). Furthermore, both receivers converge to their
ideal counterparts at moderately low SNR.

6 Conclusions

We have described a semi-blind ML-based channel and timing estimation algorithm that
recovers both symbol and frame timing. Channel estimation is inherent in the timing
acquisition algorithm and can be used for data detection. The proposed scheme uses Nt

pilot symbols to initialize the recursive computation of the CR and then operates blindly
over the remaining observed symbols taking ’soft’ decisions on the data. In this specific
context, we have found that soft-estimates are almost identical to hard-decisions. An
explanation of this fact is provided and a lower bound on the probability of acquisition
has been derived based on correlated Gaussian random variables.

Simulations show that the semi-blind technique presented here compares favorably
with a training-based scheme which uses M = Nt pilot symbols to form the template.
Also, the BER of a TR receiver endowed with the estimated parameters and employing
a ML and a GLRT detection test has been computed in a realistic scenario.
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