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Abstract

As data rates in wireless communications systems continue to increase, as networks

become more populated with users, and as these networks of communications nodes

are operated in increasingly harsh environments such as indoor and densely populated

urban areas, the effects of multipath will become increasingly significant. Therefore

a thorough understanding of its effects on communication systems will be neces-

sary. One key element required in communication systems is synchronization, which

produces alignment of transmitter and receiver clocks so that information can be

accurately exchanged. Here the process of synchronization is studied in the pres-

ence of dense multipath for ultra-wideband (UWB) signals. The analytic framework

developed for this purpose is applicable to a number of different problems involving

synchronization in multipath and is not restricted to the case of the ultra-wideband

signals considered herein. In fact, these analysis techniques are applicable to any

problem involving a group of observers searching for a group of objects in some arbi-

trary fashion.

The mathematical framework developed here for search analysis is based upon

graphical techniques. Specifically, a generalized signal flow graph is introduced which

xiii



is well suited for acquisition in multipath. This graph produces a complete statis-

tical description of the search time, as well as the acquisition probability. Hybrid

serial/parallel acquisition of UWB signals, as well as sequential detection schemes,

can also be examined using these graphical techniques. Efficient search permutations

are found for hybrid acquisition in multipath, specifically the bit reversal search is

introduced. This search permuation significantly reduces the mean acquisition time in

the presence of multipath without any additional complexity versus traditional linear

search permutations. The process of acquisition is divided into two main parts, coarse

acquisition followed by fine acquisition. The coarse acquisition process attempts to

locate the group of paths which, because of the multipath channel, tend to cluster

together. Fine acquisition attempts to locate the strongest paths within the multi-

path cluster of arriving paths, effectively combining the processes of verification and

channel estimation. A combined graphical structure, termed a self-similar signal flow

graph, has been developed to study the combined coarse/fine acquisition process.

xiv



Chapter 1

Introductory Material on UWB

Signals and Systems

This chapter provides an overview of several key concepts in the area of communica-

tion systems employing Ultra-Wideband (UWB) signals in a wireless dense multipath

channel. A definition of general UWB signals is given, along with the specific signal

waveform to be considered. Also described in this chapter is a statistical model of

the UWB multipath channel.

1.1 An Overview of Ultra-Wideband Signals

Ultra-Wideband (UWB) signals, those with large fractional bandwidths, are currently

being investigated for use in communications systems where an advantage over more

narrowband signals exists. These advantages are listed in a number of references and

specifically include improved penetration through materials [29] as well as improved

1



performance in dense multipath environments [64] where the UWB signals can be

resolved in time making the use of a RAKE receiver possible [37]. Both of these

advantages make UWB communication systems well suited for urban and indoor

wireless applications where many local objects act as scatterers and absorbers of the

transmitted electromagnetic energy. Also, these specific advantages allow for reduced

transmitted signal power, which in turn result in low probability of detection or

interception (LPD/LPI). To specifically define what is meant by an Ultra-Wideband

signal, the following fractional bandwidth definition is employed:

Bf = 2
fH − fL

fH + fL

(1.1)

where fL and fH are the lower and upper end (3 dB points) of the signal spectrum,

respectively. UWB signals are then those signals that have a fractional bandwidth

greater than 25 percent [33]. Narrowband signals are defined as those signals with

fractional bandwidths less than 1 percent, while wideband signals are between 1 and

25 percent [57].

There are many conceivable signals which will have the required fractional band-

width to be termed UWB signals. Specifically in this document, the signal choice

for the UWB signal is a baseband pulse that is shaped as the 2nd derivative of a

Guassian pulse. This pulse derives from the application of a Gaussian pulse to the

antenna. The electromagnetic wave radiated by an antenna is proportional to the

time derivative of the antenna’s driving current [57] while an additional derivative

results from the receive antenna. In more narrowband systems employing carriers,

2



this derivative is well approximated as a time-shift. The 2nd derivative pulse shape

is defined as

p(t) =

√
4

3σ
√

π

(
1−

(
t

σ

)2
)

exp

(
−1

2

(
t

σ

)2
)

(1.2)

The factor
√

4/(3σ
√

π) ensures that the signal is normalized to unit energy, i.e.,

∞∫
−∞

p2(t) dt = 1 (1.3)

This allows all the energy in the received waveform to be stated explicitly, that is, the

received energy in
√

Ep ·p(t) is simply Ep. The scale factor, σ, determines the effective

time width of the pulse shape and will be considered approximately (2
√

π)−1 · 1 nsec,

resulting in an effective width on the order of one nanosecond. The pulse shape in

(1.2) can be considered as the transmitted pulse shape by lumping both derivatives

at the transmitter end of the system. This propagation model is very simplistic, but

will suffice for the present purpose. For detailed propagation studies of UWB signals

see [1] or [8] and the references therein.

3



1.2 UWB Modulation and Multiple Access For-

mat

There are many possible modulation formats that can be considered when using Ultra-

Wideband signals. An example of one such modulation format is time-hopped pulse

position modulation on a per frame basis [46]:

x(k)(t) =

√
E

(k)
p ·

∑
n

p
(
t− nTf − c(k)

n Tc − δ
2
d

(k)
n

)
(1.4)

Figure 1.1 below should help to explain this modulation format. The superscript

(k) represents the kth user in a multiple user system. The frame time, Tf , is the

reciprocal of the pulse repetition frequency (PRF) and must be large enough to allow

sufficient room for time-hopping and data modulation. The multipath channel also

places a lower limit on the frame time, to be discussed below. In order to reduce the

number of collisions in the multi-user system, each user has a unique time hopping

code sequence, {c(k)
n } , where each element in the sequence is an integer between 0 and

Ng. The smallest time shift associated with successive elements of the time-hopping

code is determined by the chip time, Tc. In order to prevent energy from spilling into

the next frame when multipath is present, the maximum time shift, termed the guard

time and given as Ng · Tc, must be sufficiently small with respect to the frame time.

The data symbol for the kth user is d
(k)
n ∈ {±1}. The difference between the two

possible data locations is δ, and in general the decision error rate will be a function of

this parameter so that an optimum value can be determined in the sense of minimum

4



Figure 1.1: The nth frame of x(k)(t) for c
(k)
n = 4, Ng = 5, and d

(k)
n = +1

decision error probability. The data modulation sequence may contain some form of

error-correcting code in order to decrease this decision error probability, one example

being to simply repeat the same data for some prescribed number of successive frames

[46]. Other forms of data modulation are also possible [38],[39],[40],[41],[65].

1.3 UWB Multipath Channel

The dense multipath wireless channel has been examined for the urban environment

[55], [59], the indoor environment [45], [50], and also for the UWB impulse radio

channel [9], [63]. A common model for the impulse response of the dense multipath

channel, first introduced in [45], is the clustering model. This model is based upon

observations from experimental data where it was noticed that rays tended to arrive

in closely spaced groups, or clusters. The inter-arrival times of the rays within a

cluster are exponentially distributed, as are the cluster inter-arrival times, giving rise

to a double Poisson arrival process. The amplitude of each ray can be either positive
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or negative with the magnitude being Rayleigh distributed with a mean-square value

which decays with increasing ray and cluster arrival time.

h(t) =
∞∑
l=0

∞∑
k=0

aklδ (t− Tl − τkl) (1.5)

The amplitude of the kth ray of the lth cluster, akl, is the product of an equilikely

random ±1 with a Rayleigh random variable βkl where the mean square values of

these Rayleigh random variables are exponentially decaying functions of the arrival

times, Tl and τkl:

E
(
β2

kl

)
= E

(
β2

00

)
e−Tl/Γe−τkl/γ (1.6)

Here E (β2
00) is the mean square value of the first ray of the first cluster and is

determined by the path loss that exists between the transmitter and receiver. This

path loss is determined by the physical distance, d, between the transmitter and

receiver and assumes that the received power is of the form [54]:

P(dB)(d) = P(dB)(d0)− 10β log10(d/d0) + ε(dB) (1.7)

Here β is the path loss exponent which determines the rate at which the received signal

amplitude decreases with distance and in free space, β is 2. The path loss exponent

for the propagation experiment described in [63] was determined to be approximately

1.75 in [9]. Also, d0 is the distance at which a reference measurement of the received
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signal amplitude is made and is typically 1 m for indoor environments. An explicit

relationship between E (β2
00) and the path loss is given in [45]. As stated in [54], the

ε(dB) term is a zero mean, Gaussian random variable (in dB) which represents any

measurement error in the path loss and arises because of shadowing.

As was mentioned above, the cluster inter-arrival time, ∆Tl = Tl − Tl−1, and the

ray inter-arrival time, ∆τkl = τkl − τ(k−1)l, are each exponentially distributed with

probability density functions:

f(∆Tl) = Λ exp (−Λ ·∆Tl) (1.8)

f(∆τkl) = λ exp (−λ ·∆τkl) (1.9)

As with the amplitude of the first arrival in the first cluster, β00, the arrival time of this

first path, τ00 must be explicitly given. If the distance between the transmitter and

receiver is known, then τ00 can be computed. This is usually not the case, however,

as this distance is not known, along with the location, number, and composition of

obstacles between the transmitter and receiver. For the case of the pulsed UWB

waveform of (1.4) the periodic nature of the signal will cause τ00 to be uniformly

distributed over a code period, [0, Nc · Tf ).

The impulse response in (1.5) can also be represented as a single summation by

a one-to-one mapping of the amplitude coefficients, akl, into a new set of coefficients,

am. Likewise the arrival time, Tl + τkl, can be mapped into a new arrival time,

7



τm. It will be assumed that this mapping occurs so that the path arrival times are

strictly increasing in their indices, that is τ0 < τ1 < τ2 < . . . where the inequality is

strict because it is assumed that multiple paths arriving at the same time are lumped

together as a single path. This yields a slightly simpler model which will be used in

later sections of this document:

h(t) =
∞∑

m=0

amδ (t− τm) (1.10)

The models in (1.5) and (1.10) are known as specular multipath models. They

assume that the effect of the channel is simply to sum up many scaled and time-shifted

versions of the original transmitted pulse, i.e., there is no pulse waveform distortion.

The appropriate multipath model when considering waveform distortion is the diffuse

model. Such distortions can occur from the diffraction of electromagnetic waves

around objects, the non-plane wave nature of these waves at near field distances, or

when transmitter or receiver motion is involved. The diffuse model can be thought of

in a couple different ways. First, the same form as (1.10) with the summation taken

over an uncountable set can be considered. Secondly, the summation can remain

countable with the output pulse waveform becoming a function of the index m. Of

course, a combination of these two models might also be conceivable. The diffuse

model is more accurate but comes with increased complexity. For the purposes of this

work, the specular model will suffice as many observed channel response waveforms

can be adequately modeled as such [9], [13], [63].
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A typical waveform from the output of a dense multipath channel excited by a

pulse shape as in (1.2) is shown in Figures 1.2 and 1.3. The clustering phenomenon is

evident in Figure 1.2 as is the overall decaying nature with time in Figure 1.3. Both

figures are of the same data but with different time axes. The source of this data is a

UWB propagation experiment in an indoor office environment as described in [63]. In

fact, the worst case multipath channel (Channel Model 4) in the IEEE 802.15.SG3a

channel model final report [13] produces single realizations which are comparable to

the one seen here in Figures 1.2 and 1.3. There exist several methods of experimentally

determining the nature of the multipath channel as described in [42]. One possible

method as discussed in [42] and employed in [63] is the direct pulse method whereby

a narrow pulse in time is repeatedly transmitted over the channel with the received

waveform at the receiver stored in a digital oscilloscope. Another method described

in [42] is that of frequency domain channel sounding where a network analyzer is

stepped through a discrete set of frequencies and the overall frequency response of

the channel is determined. Both methods provide similar results when compared

against one another as discussed in [60]. As an example of this, Figures 1.4 and 1.5

are provided which were taken from a UWB propagation experiment performed in the

cargo hold aboard a Navy cargo ship. The first of these figures, 1.4, contains a direct

pulse measurement as well as the inverse Fourier Transform of a frequency domain

channel sounding measurement taken at the same transmit and receive locations.

Notice that the measurements are very closely correlated giving some validation that

the two channel measurement techniques provide similar results about the nature of
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the channel. The data collected from these channel sounding techniques can be used

to generate estimates of the specular multipath parameters in (1.10). This procedure

is discussed below in Section 1.4.

The square of the amplitude in either Figure 1.2, 1.3, 1.4, or 1.5 is known as the

power delay profile. A single statistical parameter which quantifies the extent of the

multipath signal in time is the rms delay spread, defined as the square root of the

second central moment of the power delay profile [42]. Notice that the delay spread

of Figure 1.3 is much shorter than the delay spread of Figure 1.5. This is due to the

fact that the measurements were taken in significantly different environments.
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Figure 1.2: Output of a dense multipath channel excited by the 2nd derivative Gaus-
sian pulse. Experimental data taken from [63].

Figure 1.3: Output of a dense multipath channel excited by the 2nd derivative Gaus-
sian pulse (Larger time axis). Experimental data taken from [63].
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Figure 1.4: Output of a dense multipath channel excited by the 2nd derivative Gaus-
sian pulse. Experimental data taken aboard Navy cargo ship. Direct pulse (time
domain) measurement and frequency domain channel sounding measurement both
shown.

Figure 1.5: Output of a dense multipath channel excited by the 2nd derivative Gaus-
sian pulse (Larger time axis). Experimental data taken aboard Navy cargo ship. Only
the direct pulse measurement is shown.
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The time varying nature of the channel is described by a parameter known as the

coherence time [42] and is a measure of the time duration over which the channel

remains statistically unchanged. Changes in the channel can result from one of two

sources. First, if either the receiver or transmitter is moving, such as in the mobile

channel, then the statistics of the multipath channel will change as a function of time.

The am and τm terms in (1.10) will then become non-stationary and their distributions

will vary with time. The degree with which these parameters change in time depends

on the velocity involved relative to the coherence time. Secondly, objects in the local

environment can move, e.g., people, vehicles, etc. Such movements of local scatterers

will cause slight variations in the multipath channel.

It is known that the local environment of scatterers and absorbers determines the

impulse response of the multipath channel. For this reason it would be expected that

for a fixed transmitter location, two receiver locations which are very close to one

another would have similar impulse responses. Likewise, if the receiver locations were

far apart, drastically different impulse responses for the channel would be expected.

The measure of similarity of the channel impulse response for any two locations is

given by the spatial correlation function of the channel. For the purposes of this work,

the users will be considered far enough apart so that the channels are statistically

uncorrelated.
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1.4 Specular Multipath Channel Estimation

This section describes the procedure used to estimate the am and τm parameters of

the multipath channel impulse response in (1.10). The method described here is a

form of subtractive deconvolution, also known as the CLEAN algorithm, as described

in [9], [18], and [60].

The received signal from one of the channel sounding measurements discussed in

the previous section will be denoted as r(t). The signal estimate will be denoted as

r̂(t) and will assume the following form:

r̂(t) =
M∑

m=1

âmp (t− τ̂m) (1.11)

The UWB pulse, p(t), is given in (1.2) and thus an estimate of the pulse width

parameter, σ, will be required. One method of determining this estimate, σ̂, is to

select the value which maximizes the correlation between the received signal and the

UWB pulse:

σ̂ = arg max
(τ,σ)

|Rrp(τ)| (1.12)

where p(t) is a function of σ so that the correlation function, Rrp(τ), is also a function

of σ. This correlation function will be an essential part of the channel estimation

algorithm described below and is given explicitly as:

Rrp(τ) =

∫ ∞

−∞
r(t)p(t− τ)dt (1.13)
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Figure 1.6: Maximum absolute correlation, maxτ |Rrp(τ)|, versus the effective pulse
width of p(t). (r(t) from Figure 1.2)

For the measurement shown in Figure 1.2, the function maxτ |Rrp(τ)| is plotted below

in Figure 1.6. As mentioned earlier, the effective pulse width of p(t) is (2
√

π) ·σ, and

from Figure 1.6 is found to be 0.95 nsec.

The subtractive deconvolution technique based upon the CLEAN algorithm works

on a dirty map of the received signal and produces a clean map of the estimated chan-

nel impulse response. The term dirty map is from [18] which referred to measurements

taken on an array of interferometers which were distorted by the array sidelobes. The

clean map was the resultant array output after removing the sidelobe affects, i.e.,

after ‘cleaning’ the received signal. At the nth algorithm iteration, the dirty and

clean maps will be denoted dn(t) and cn(t), respectively. The algorithm, given as

follows, will be allowed to iterate until n = N .
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1. Initialize the dirty map to d0(t) = r(t) and the clean map to c0(t) = 0. Compute

the UWB pulse energy, Rpp(0). Initialize n = 1.

2. Compute the ‘normalized’ correlation between dn−1(t) and p(t) as fn−1(τ) =

R−1
pp (0)Rdn−1p(τ).

3. Compute τ̂n = arg maxτ |fn−1(τ)| and ân = fn−1(τ̂n).

4. Update the dirty map, dn(t) = dn−1(t)− ânp(t− τ̂n).

5. Update the clean map, cn(t) = cn−1(t) + ânδ(t− τ̂n).

6. If n = N then proceed to the next step, otherwise iterate, n = n + 1, and

proceed to step (2).

7. The estimate of the channel impulse response is ĥ(t) = c(t) and the received

signal estimate is r̂(t) = ĥ(t)∗p(t) where ∗ represents the convolution operator.

Although the UWB pulse in (1.2) is normalized to have unit energy, i.e., Rpp(0) = 1,

the algorithm outlined above is given in its most general form for arbitrary p(t).

It should also be noted that at any given iteration, the possible location of τ̂n is

unrestricted. Thus, it is possible for τ̂n to be exactly equal to τ̂k for k 6= n, in which

case the amplitude estimate for that arrival time is simply the sum, ân + âk.

Two possible measures of estimator quality for the above algorithm are the nor-

malized mean-square error and the fractional energy captured, both as functions of

the iteration number, n. The normalized mean-square error at the nth iteration, εn,
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is defined as R−1
rr (0) ·Rr̃r̃(0) where r̃(t) = r(t)− r̂(t). Written explicitly, this quantity

becomes

εn =

∫∞
−∞(r(t)−

∑n
m=1 âmp(t− τ̂m))2dt∫∞

−∞ r2(t)dt
(1.14)

The fractional energy captured at each iteration, φn, is determined by the amount of

energy removed from the dirty map at the previous iteration:

φn = 1−
∫∞
−∞ d2

n(t)dt∫∞
−∞ r2(t)dt

(1.15)

For N = 300 with an effective pulse width of 0.95 nsec as determined above, the

algorithm results for the data given in Figure 1.2 are shown below. Figure 1.7 shows

a portion of the original data and the reconstruction, r̂(t), while Figures 1.8 and 1.9

show the normalized mean-square error and the fractional energy captured, respec-

tively, as just defined.

For the data in Figure 1.2, after 300 iterations of the algorithm, 296 distinct path

arrival estimates were determined, indicating that anywhere from 4 to 8 iterations

produced non unique path arrivals. Since almost all 300 iterations produced a unique

arrival path, each iteration can be viewed as adding another unique separate path to

a RAKE receiver, for example. Thus the plot in Figure 1.9 gives roughly the number

of correlators required in such a RAKE receiver for a prescribed SNR degradation

(determined as 10 log φn). For roughly 300 correlators the total energy captured in

r(t) is 85%, resulting in an SNR degradation of 0.7 dB. Note that this degradation
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Figure 1.7: Original data from Figure 1.2 and reconstructed waveform

Figure 1.8: Normalized mean-square error for data in Figure 1.2
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Figure 1.9: Energy capture curve for data in Figure 1.2

is merely an approximation since the received signal, r(t), has been corrupted by

noise (the data of Figure 1.2 is seen to be a relatively high SNR case so that this

approximation is close).

As was mentioned above, the received data, r(t), has passed through the multipath

channel which, in actuality, is not purely specular. Also, the received signal has been

corrupted by noise. These are the two primary reasons that the energy capture curve

will never reach one (100% of the received energy accounted for with a specular model)

and the normalized mean-square error curve will never reach zero.

A more efficient algorithm can be implemented which is identical to the one out-

lined above. Specifically, the number of operations required at each iteration can

be substantially reduced by removing the correlation. This can be done by directly
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‘cleaning’ the original correlation function. To see this, note that at each step the

correlation function, Rdn−1p(τ), is computed. However, this correlation can be deter-

mined recursively from the previous correlation function:

Rdn−1p(τ) =

∫ ∞

−∞
dn−1(t)p(t− τ)dt (1.16)

=

∫ ∞

−∞
(dn−2(t)− ân−1p(t− τ̂n−1))p(t− τ)dt (1.17)

= Rdn−2p(τ)− ân−1Rpp(τ − τ̂n−1) (1.18)

Thus, the only correlations required, Rpp(τ) and Rd0p(τ) = Rrp(τ), can be done

outside the iteration loop. The updated algorithm is given as:

1. Initialize the ‘normalized’ correlation between r(t) and p(t) as f0(τ) =

R−1
pp (0)Rrp(τ) and the ‘normalized’ correlation of p(t) with itself as g(τ) =

R−1
pp (0)Rpp(τ). Initialize n = 1.

2. Compute τ̂n = arg maxτ |fn−1(τ)| and ân = fn−1(τ̂n).

3. Update the correlation function, fn(τ) = fn−1(τ)− âng(τ − τ̂n).

4. If n = N then proceed to the next step, otherwise iterate, n = n + 1, and

proceed to step (2).

5. The estimate of the channel impulse response is ĥ(t) =
∑N

n=1 ânδ(t− τ̂n) and the

received signal estimate is r̂(t) = ĥ(t) ∗ p(t) where ∗ represents the convolution

operator.

20



1.5 Single User Receiver Structure

The receiver structure to be considered here will simply be the matched filter, or

equivalently, the correlator receiver. The optimum receiver structure in the presence

of specular multipath has been determined as the RAKE receiver [37]. Instead of

matching to the user’s transmitted pulse as in (1.2), the RAKE receiver matches to

the multipath channel output. In light of the fact that the multipath channel output is

simply the sum of scaled, time-shifted versions of the pulse shape in (1.2), a correlator

based receiver seems more attractive from a hardware implementation point of view.

One additional advantage to the correlator based receiver versus the matched filter

comes when a sub-optimum, sinusoidal local template waveform is considered. A

sinusoidal template waveform has an advantage over the optimal template waveform

of (1.2) in that it is much easier to generate locally at the receiver. The degradation

from using such a template is shown below to be small, around 0.8 dB. This makes

such a sub-optimum correlator receiver quite feasible. Such structures are currently

being investigated [28]. Also shown below are several other attractive features of such

a correlator design.

Figure 1.10 shows a correlator receiver for a single path without the frame time,

time-hopping, or data modulation. The template waveform is v(t). Because of the

linear nature of the operations involved, the RAKE receiver can be implemented by

working on the outputs of each correlator (Z in Figure 1.10) or by using a single inte-

grator and correlating the receiver input directly with the multipath channel output.

This means that v(t) in Figure 1.10 can be either p(t) as in (1.2) or it can be p(t)∗h(t)
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Figure 1.10: Single user correlator receiver

where h(t) is the multipath channel impulse response of (1.10) and ∗ represents the

convolution operator. In practice only a finite number of correlators can be built

in the receiver giving rise to a suboptimum RAKE receiver structure known as the

selective RAKE receiver. Energy capture curves show that a fairly large number of

correlators are required to capture a significant portion of the received signal energy,

e.g., for 50% energy capture roughly 25 correlators are needed and for 80% energy

capture roughly 200 correlators are needed for the indoor environment as shown in

[9], [63], and Section 1.4.

A general expression for the SNR at the output of the Ultra-Wideband correlator

in Figure 1.10 is now examined. The results obtained will also be valid for a pulsed

system with time-hopping and multipath, provided that the pulses are transmitted

far enough apart so they don’t overlap and the limits of integration and sampling

instants are updated accordingly for each pulse or path.

The signal portion of the correlator output, S, is easily computed as

S =
√

Ep ·
∆∫

−∆

w(t) · v(t− τ)dt (1.19)

22



Here the template waveform has a time shift of τ relative to the input pulse shape

due to time asynchronism between the transmitter and receiver. The cross-correlation

function will be explicitly defined as

Rwv(τ) =

∆∫
−∆

w(t) · v(t− τ)dt (1.20)

Thus the signal component of the correlator output becomes

S =
√

Ep ·Rwv(τ) (1.21)

The output noise component, N , is a random variable due to the AWGN, n(t). The

mean of n(t) is zero while the autocorrelation function is Rnn(t1, t2) = N0 · δ(t1− t2).

Thus the mean of N is zero and the variance is:

E
(
N2
)

= E

∆∫
−∆

∆∫
−∆

n(t1)n(t2)v(t1)v(t2)dt1dt2

=

∆∫
−∆

∆∫
−∆

E {n(t1)n(t2)} v(t1)v(t2)dt1dt2

=

∆∫
−∆

∆∫
−∆

Rnn (t1, t2) v(t1)v(t2)dt1dt2

= N0

∆∫
−∆

∆∫
−∆

δ (t1 − t2) v(t1)v(t2)dt1dt2

= N0

∆∫
−∆

v2(t)dt

= N0Rvv(0)
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The output SNR, computed as S2/E (N2), is:

SNR =
Ep

N0

· R2
wv(τ)

Rvv(0)
(1.22)

1.5.1 UWB Correlator with Optimum Template

The optimum template is, of course, v(t) = w(t) and the output SNR is:

SNR =
Ep

N0

· R2
ww(τ)

Rww(0)
(1.23)

The maximum SNR is obtained when the timing error, τ , is zero:

SNRmax =
Ep

N0

·Rww(0) (1.24)

In this case, the optimum value of ∆ can be found as that value which maximizes

Rww(0). Examining Rww(0) reveals that its maximum is obtained as ∆ →∞. Figure

1.11 validates this assertion and is shown for w(t) = p(t) as in (1.2) with the parameter

σ approximately (2
√

π)−1 · 0.8 nsec. The maximum value of Rww(0) is unity since

p(t) was constructed to have unit energy as per (1.3).

As can be seen in Figure 1.11, any value of ∆ above a certain level (approximately

0.7 nsec as shown for this example) will produce nearly the maximum SNR achievable,

this maximum achievable value being:

lim
∆→∞

SNRmax =
Ep

N0

· lim
∆→∞

Rww(0) =
Ep

N0

(1.25)
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Figure 1.11: Rww(0) for the UWB pulse of (1.2)

Assuming ∆ is sufficiently large such that Rww(0) is close to unity yields the following

expression for the output SNR as a function of timing error:

SNR =
Ep

N0

·R2
ww(τ) (1.26)

The function Rww(τ) in (1.26) can be replaced with the limiting function since ∆

is chosen sufficiently large, where this limiting function has a closed form expression.

Recall that in this section w(t) = p(t) which yields

lim
∆→∞

Rww(τ) =

∞∫
−∞

p(t)p(t− τ)dt (1.27)
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Substitution of (1.2) into the previous equation eventually leads to the following

expression where γ(τ) is defined as the limit of Rww(τ):

γ(τ)
4
= lim

∆→∞
Rww(τ) =

4

3σ
√

π

∞∫
−∞

(
N∑

n=0

an · tn
)
· exp

(
−α(t− β)2

)
dt (1.28)

where

a0 = 1−
( τ

σ

)2

, a1 =
2τ

σ2
, a2 = − 2

σ2
+

τ 2

σ4
, a3 = −2τ

σ4
, a4 =

1

σ4
(1.29)

and

N = 4, α =
1

σ2
, β =

τ

2
(1.30)

The following identity can then be employed:

∞∫
−∞

(
N∑

n=0

an · tn
)

exp
(
−α(t− β)2

)
dt =

√
π

N∑
n=0

anα
−n+1

2 (2i)−nHn

(
iβ
√

α
)

(1.31)

where Hn(t) is the Hermite polynomial of order n and i =
√
−1. This identity results

in:

γ(τ) =
4

3σ
√

π

√
π ·

N∑
n=0

an · σn+1 · (2i)−n ·Hn

(
i

2
· τ

σ

)
(1.32)
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Figure 1.12: Normalized output SNR (dB) vs. timing error

This representation of the correlator output as a sum of Hermite polynomials simpli-

fies to the following result:

γ(τ) =

(
1−

( τ

σ

)2

+
1

12
·
( τ

σ

)4
)
· exp

(
−1

4
·
( τ

σ

)2
)

(1.33)

The SNR of (1.26) can be represented as Ep

N0
· γ2(τ) and a logarithmic plot of this

SNR, normalized by Ep/N0, is shown in Figure 1.12 versus timing error (for the same

σ as above). Of particular interest is the rapid decrease in output SNR for very small

timing errors. This induces a very stringent timing requirement in a real system.
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Figure 1.13: Ideal template versus sinusoidal template (fc = 1.4 GHz)

1.5.2 UWB Correlator with Sinusoidal Template

In lieu of actually generating the ideal template at the receiver, the simpler sinusoidal

template signal, v(t) = cos(2πfct), is examined. Of course, in a pulsed system the

phase of the oscillator used to generate v(t) needs to be adjusted for each pulse so

as to accurately align the template with the incoming signal. Figure 1.13 shows the

properly aligned oscillator template for one specific oscillator frequency, fc. This

oscillator frequency and the integration time, ∆, need to be chosen so as to maximize

the output SNR of the correlator. The output SNR in (1.22) depends upon the

functions Rwv(τ) and Rvv(0) which are inherently functions of fc and ∆. Rather than

obtaining closed form expressions as was done for the ideal template, the expressions

are left as integrals.
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For the sinusoidal template, the output SNR of (1.22) becomes:

SNR =
Ep

N0

·

(
∆∫

−∆

w(t) · cos (2πfc(t− τ)) dt

)2

∆∫
−∆

cos2(2πfct)dt

(1.34)

The degradation to output SNR with respect to the ideal template’s maximum achiev-

able SNR is simply Ep/N0 divided by the output SNR for the sinusoidal template as

per (1.34):

D(τ, ∆, fc)
4
= SNR Degradation =

∆∫
−∆

cos2(2πfct)dt(
∆∫

−∆

w(t) · cos (2πfc(t− τ)) dt

)2 (1.35)

Thus the optimum parameters are obtained by minimizing the SNR degradation at

zero timing offset:

(∆, fc)
opt = arg min

(∆,fc)
D(0, ∆, fc) (1.36)

Equation (1.35) is shown in Figures 1.14 and 1.15 for various values of fc and ∆.

These plots provide rough estimates of the optimal parameters.

The lowest degradation achievable is roughly 0.72 dB when ∆ = 0.6 nsec and

fc = 1.25 GHz. Notice, however, that when ∆ = 0.5 nsec, the degradation in Figure

1.15 becomes fairly independent of fc. This is a very beneficial property in lieu of

oscillator frequency stability, i.e., a slight oscillator drift would not be catastrophic to

the system. Choosing ∆ = 0.5 nsec because of this reason, a good choice of oscillator
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Figure 1.14: Output SNR degradation (dB) vs. ∆

Figure 1.15: Output SNR degradation (dB) vs. fc
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Figure 1.16: Normalized output SNR (dB) vs. timing error (for both the ideal and
sinusoidal templates)

frequency from Figure 1.15 is roughly fc = 1.1 GHz. Figure 1.16 shows the normalized

output SNR versus timing offset for this choice of parameters. Also shown in Figure

1.16 is the normalized output SNR for the ideal template as in Figure 1.12. For the

parameters chosen, an interesting observation is made, namely that the output SNR

for the sinusoidal template is larger than the output SNR for the ideal template at

large timing errors.

1.6 Selective RAKE Receiver

As mentioned earlier, a RAKE receiver is an optimum single-user detector in the

presence of specular multipath [37]. In order for such a detector to be realizable, the

31



number of paths considered in the receiver must be limited to a finite number, say

Lp. For optimum RAKE performance, these Lp dominant paths will be those pairs

(am, τm) in (1.10) corresponding to the Lp largest am values, with the set of indices

corresponding to these pairs being represented by M.

In actuality, however, the exact multipath channel will not be known and only

estimates of the (am, τm) pairs will be available, possibly due to one of the channel

sounding techniques discussed earlier or from the fine acquisition process described in

Chapter 5. Denoting these estimates as (âm, τ̂m) and accounting for a time difference

between transmitter and receiver of τ yields the correlator template, v(t) in Figure

1.10.

v(t) =
∑

m∈M

âmp (t− τ̂m − τ) (1.37)

The limits of integration in Figure 1.10 must be changed for the selective RAKE

receiver and for the purposes of this section (to determine a mathematical formulation

of the RAKE output) these limits will be set to ±∞. Straightforward calculation of

the signal component of the correlator output, S, yields:

S =
√

Ep ·
∞∑

m=0

∑
n∈M

amânγ(τm − τ̂n − τ) (1.38)
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The correlation of the pulse waveform with itself, γ(τ), is given in (1.33). The signal

component, S, can be divided into two terms based upon those am’s for m ∈M and

m 6∈ M.

S =
√

Ep

(∑
m∈M

∑
n∈M

amânγ(τm − τ̂n − τ) +
∑

m6∈M

∑
n∈M

amânγ(τm − τ̂n − τ)

)
(1.39)

The signal portion of the correlator output, S, can also be written compactly as

a vector-matrix product:

S =
√

Ep

(
aTRsâ + ζ

)
(1.40)

where ζ is the second term in (1.39), a is an Lp × 1 column vector of the amplitude

coefficients am for m ∈ M, â is an Lp × 1 column vector of amplitude coefficient

estimates and Rs is the Lp×Lp ‘signal-only’ correlation matrix. Letting the elements

of M be denoted as {m1, m2, · · · , mLp}, the vectors a, â, and the matrix Rs can be

explicitly stated:

a = [am1 , am2 , · · · , amLp
]T (1.41)

â = [âm1 , âm2 , · · · , âmLp
]T (1.42)

Rs =


γ(τm1 − τ̂m1 − τ) . . . γ(τm1 − τ̂mLp

− τ)

...
. . .

...

γ(τmLp
− τ̂m1 − τ) . . . γ(τmLp

− τ̂mLp
− τ)

 (1.43)
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The noise component of the correlator output, N , is due solely to wide-sense

stationary AWGN n(t) present at the input. The mean of n(t) is zero and the auto-

correlation function, E(n(t1)n(t2)) is N0δ(t1− t2). As with the signal component, the

noise component is computed in a straightforward manner as:

N =

∫ ∞

−∞
n(t) ·

∑
m∈M

âmp(t− τ̂m − τ)dt (1.44)

The mean of N is found to be zero and the variance is found to be

σ2
N = N0 ·

∑
m∈M

∑
n∈M

âmânγ(τ̂m − τ̂n) (1.45)

As with the signal component, S, the variance of the noise component can be written

in vector-matrix form:

σ2
N = N0 · âTRnâ (1.46)

where â is given in (1.42) and the ‘noise-only’ correlation matrix, Rn, is given by:

Rn =


γ(τ̂m1 − τ̂m1) . . . γ(τ̂m1 − τ̂mLp

)

...
. . .

...

γ(τ̂mLp
− τ̂m1) . . . γ(τ̂mLp

− τ̂mLp
)

 (1.47)

34



The diagonal elements of Rn are always one since γ(0) = 1. The off-diagonal terms

are not necessarily zero and depend on the path arrival time estimate differences as

well as the signal correlation function. Finally, a general expression for the selective

RAKE receiver signal-to-noise ratio, S2/E(N2), is seen to be:

SNRsRAKE =
Ep

N0

· (aTRsâ + ζ)2

âTRnâ
(1.48)

The multipath channel is said to be separable if |τm − τn| > ‘width’ of p(t) for all

m 6= n so that γ(τm − τn) = 0 for all m 6= n. For perfect estimates of the multipath

channel (âm = am and τ̂m = τm for all m ∈ M), perfect synchronization (τ = 0),

and for a separable multipath channel as just defined, the correlation matrices, Rs

and Rn, both reduce to the Lp × Lp identity matrix, I, and the ζ term is exactly

zero. Thus, for the channel which is almost separable, estimates which are nearly

perfect, and near perfect synchronization (τ ≈ 0), the ζ term can be assumed to be

approximately zero 1. The selective RAKE output SNR of (1.48) for ζ = 0 becomes

SNRsRAKE =
Ep

N0

· (aTRsâ)2

âTRnâ
(1.49)

1It can also be assumed that ζ ≈ 0 since the am’s for m ∈M are by definition the largest group
of am’s so that ζ � aTRsâ.
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If the channel is separable with perfect channel estimates and perfect synchronization

then the above SNR expression in (1.48) reduces exactly to

SNRsRAKE =
Ep

N0

·
∑

m∈M

a2
m (1.50)

In order for the energy in the transmitted pulse to be properly conserved through

the multipath channel, the SNR for an infinite RAKE receiver (one in which Lp

approaches infinity) must be equivalent to the maximum attainable SNR in a perfect

channel without multipath 2. This maximum SNR is given in (1.25) as Ep/N0. The

infinite RAKE receiver SNR is found as Lp becomes unbounded:

SNRiRAKE
4
= lim

Lp→∞
SNRsRAKE =

Ep

N0

·
∞∑

m=0

a2
m (1.51)

This infinite RAKE SNR reveals the following constraint on the multipath channel

amplitude coefficients:

∞∑
m=0

a2
m = 1 (1.52)

Thus it can be seen that a selective RAKE receiver is always a suboptimum detector

suffering from a lower output SNR with respect to the infinite RAKE receiver since∑
m∈M a2

m <
∑∞

m=0 a2
m = 1 which implies that SNRsRAKE < SNRiRAKE in (1.50).

This is evident in the energy capture curves of Figure 1.9.

2Here the multipath channel is assumed to be specular so that as Lp approaches infinity, 100%
of the signal energy will indeed be accounted for in the selective RAKE receiver template.

36



Chapter 2

Search Analysis Techniques

The process of synchronization is to bring into alignment the transmitter and receiver

time references. The majority of literature on synchronization, as discussed in [19],

[30], [31], [32], for example, deals with narrowband sinusoidal carrier signals modu-

lated in some fashion with a data stream. A shift in time of these signals results in a

carrier phase shift of the sinusoid so that one can think of phase synchronization (at

least within one wavelength of the carrier) as analogous to time synchronization. As

a result, much of the synchronization literature discusses Phase-Locked Loop (PLL)

architectures. There also exist PLL structures which use phase estimates to reduce

the acquisition time [21] as well as modified 2nd order PLL structures which pro-

vide estimates of slowly varying frequency offset, such as Doppler shifts in satellite

communications, while still tracking small user frequency offsets [20]. For UWB or

‘carrier-less’ systems, the Doppler shift of a carrier is no longer applicable. In this

case the general theory of relativity is employed, and specifically, time-dilation is used

to account for relative motion effects between the transmitter and receiver [58].
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A significantly different form of signaling, known as pulse position modulation

(PPM), requires a different framework when discussing synchronization. The UWB

signals discussed earlier fall into the category of PPM signals as do signals used for

optical communications. One significant difference between sinusoidal carrier modu-

lated signals and PPM signals is that the carrier modulated signals are always present

for any observed location in time. This is not true for PPM signals. The phase locking

techniques rely on continuously attempting to drive an error term to zero through

either feedback or feedforward systems, and can be done since a carrier is always

present. For PPM signals there will exist a large portion of time where no signal is

present. There are certain methods that can be employed to allow the use of a PLL

for synchronization of PPM signals as discussed in [11].

The PLL techniques working on the carrier phase can only resolve the transmitter

and receiver clocks to within one wavelength of the sinusoidal carrier signal. Because

of the ranges involved in practical applications and the presence of sequential time

events in the data stream, additional delay must be resolved and/or tracked. Direct

sequence coding for multiple users is one such system. TDMA burst mode commu-

nications is another example where synchronization of the time references beyond a

wavelength must be established. The UWB signals defined earlier will also require

this level of synchronization because of the frame time and time-hopped coding (and

because no carrier signal is employed.) This type of timing synchronization is usually

accomplished via delay-locked loops [15], [51], [52] or tau-dither loops [17].
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These delay-locked loops are typically used for signal tracking which resolves small

timing errors. These small timing errors typically result from timing instabilities in

the clocks. In contrast, the large initial timing errors are resolved during the acquisi-

tion portion of the synchronization process. Both frame acquisition and code acqui-

sition will be addressed. Because of the multipath present in the channel and the

presence of a RAKE receiver, for optimum detection the strongest paths in ampli-

tude must be assigned to the available correlators. This process will be termed fine

acquisition while the process of simply finding the multipath ‘cluster’ will be termed

coarse acquisition.

Delay-locked loops typically use two local shifted versions of the received signal,

one advanced in time and the other delayed in time (hence the term early-late gate).

The early-late gate generates an error signal which is then used to update the local

timing references accordingly. An analysis of the early-late gate proceeded by a mem-

oryless nonlinearity (MNL) is given in [23] for a TDMA burst mode communication

system employed root-raised cosine shaped QPSK. The same analysis without the

MNL is given in [22].

An extension of the early-late gate which correlates with more than two time-

shifted versions of the local signal allows a large expanse in time to be investigated.

Actually, if a correlator could be placed at each possible time location, the correlator

with the maximum value would yield the maximum likelihood estimate of the timing

error. However, there are usually too many possible locations, perhaps an uncountable

number, making the maximum likelihood receiver impractical. Generally the timing
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Figure 2.1: Equally spaced correlators across the frame time

error of the arriving signal is assumed random with some prior distribution. As

discussed in Section 1.3, the timing error of the first multipath arrival is uniform over

the frame time. Thus to make the problem tractable, the frame time is divided into

discrete regions with the width of each region determined by some predetermined

correlator spacing. Figure 2.1 shows an example with a specific spacing between

correlators, where the correlator output function γ(τ) is shown.

The spacing between correlators is ultimately determined by the false alarm and

detection probabilities, discussed here. Denoting the jth correlator output as Zj, and
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assuming a detection threshold of T , the probability of detection for the jth correlator

is

Pd = Pr(|Zj| > T |Hj ) (2.1)

Here the hypothesis Hj represents the event that the timing error falls within ±λ of

the jth correlator peak, as shown in Figure 2.1. The notation H̄j will represent the

event that the timing error falls outside of a window ±λ around the jth correlator.

This means that H̄j is simply one of the other hypotheses, Hk for k 6= j. Thus the

false alarm probability is defined as

Pfa = Pr(|Zj| > T
∣∣H̄j ) (2.2)

The correlator spacing sets the required number of correlators to cover a fixed frame

time. Increasing the spacing decreases the number of correlators and thus reduces the

overall receiver complexity. However, if the correlator spacing is too large then the

correlator output for all of the correlators could be low resulting in a low detection

probability. Conversely, if the correlators spacing is too small then an excessively

large number of correlators outputs could exceed the detection threshold.

In light of the fact that an impractical number of correlators could be required to

simultaneously investigate each hypothesis, H0, H1, · · ·, a type of hypothesis testing

known as a search is employed. As discussed in [53], a search is the process of

converting a multiple hypothesis test into a series of simpler binary hypothesis tests.
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The trade-off inherent here is reduced complexity at the cost of increased time to reach

a final decision. The first stage of the search tests the observed random variable (in

this case the correlator output) against two hypotheses, say Hj and H̄j as defined

above. If the selected hypothesis is Hj then the search is terminated, otherwise the

process is continued with another set of hypotheses, Hk and H̄k. To be as general

as possible, k is unrestricted and can equal j, as will be the case for a truly random

search to be defined below.

Traditionally, a search will properly terminate only with one correct hypothesis.

This assumption is found in [53] and the results therein are useful only with this

assumption. In order to properly analyze the UWB acquisition problem in Chapters

4 and 5 this assumption needs to be removed and the search needs to be reexamined

when multiple hypotheses will correctly terminate the search. The following section,

2.1, provides background material for the single terminating hypothesis situation.

The results are then extended to deal with multiple terminating hypotheses in the

subsequent sections.

2.1 Search Performance for a Single Terminating

Hypothesis

While the performance measures for a search ultimately depend upon the application,

in most cases a predominant measure is the time required to complete the search,

denoted by Ts. There are two distinct classifications of searches: A) a search which is
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allowed to run indefinitely until a hypothesis is selected and B) a search which needs

to be completed before some specified time, say T ∗s . For example, the first scenario

arises when the acquisition signal always has data present. The latter type of search

arises when data transmission occurs only after the specified time, T ∗s , thus making

it imperative that the search be completed with high probability before T ∗s .

Since the search time, Ts, will be random in nature, a statistical description will

be required. A complete statistical description, i.e., a distribution function for Ts, is

often too difficult to obtain. Thus, for the ‘type A’ search the mean and sometimes the

variance of the search time will often suffice. For the ‘type B’ search the probability

that the search terminates on time is of importance and is given as Pr(Ts ≤ T ∗s ),

where it is desired that this probability be as large as possible.

An important parameter of either type of search is the probability that the search

terminated by selecting the correct hypothesis, denoted as Pc. Often the goal of a

well designed search algorithm is to maximize Pc while attempting to minimize the

number of observations required to complete the search. A common practice used in

this optimization is to fix Pc and then to minimize the search time. In order to attain

a specific value for Pc a verification phase as described in [34] is employed.

Having described the appropriate performance measures, the single terminating

hypothesis scenario will now be investigated. If there are N total hypotheses, each of

which is a-priori equally likely to be the terminating hypothesis, then the expected
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search time (in number of hypotheses tested) for an exhaustive search is given in [53].

Denoting the search time as ν, the expected search time is shown to be

E(ν) =
∞∑

ν=0

ν Pr(ν) =
N−1∑
i=0

∞∑
j=0

(jN + i + 1) Pr(ν = jN + i + 1) (2.3)

There are two summations above since the search quite possibly could examine all N

hypotheses without selecting one of them. At this point the search is restarted, thus

the j variable above represents the number of times the entire collection of hypotheses

has been searched without termination. The i variable represents the number of

hypotheses that have been tested on the current ‘pass’ of the entire collection. The

probability of the search terminating on any given number is given as

Pr(ν = jN + i + 1) =
1

N
(1− β)j(N−1)αj

[
(1− β)i(1− α)

+ iαβ(1− β)i−1 + (N − i− 1)β(1− β)i
]

(2.4)

Here the quantities α = 1 − Pd and β = Pfa, i.e., 1 − α is the detection probability

and β is the false alarm probability. A simplified expression for (2.3) is not given in

[53] but can be computed as follows:

E(ν) =
1

β
+

1

Nβ2
· 1− (1− β)N

1− α(1− β)N−1
· (α + β − 1) (2.5)
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2.2 Search Performance for Consecutive Termi-

nating Hypotheses

Given the hypotheses H0, H1, · · ·, HN−1 a ‘search variable’, Ym for m = 0,1,· · ·,∞,

can be defined. Ym represents the index of the current hypothesis being tested while

the variable m represents the observation number, that is for the mth observation

the hypothesis under test is HYm . The particular sequence of indices, Y0, Y1, Y2, · · ·,

determines the order in which the hypotheses are tested. The term ‘search algorithm’

is used to describe the general methodology for determining the search order, which

may be completely deterministic or it may be a random sequence. Five different

search algorithms will be investigated below: 1) linear search, 2) truly random search,

3) random permutation search, 4) ‘look and jump by K bins’ search and 5) bit

reversal search. The indices of the ‘true’ hypotheses that will terminate the search are

represented by the random variables X1, X2, · · · , XK , and are K consecutive indices.

Note that these values will wrap from hypothesis HN−1 back to H0 if need be. The

general problem assumptions are listed explicitly below:

1. Ym is the search variable for m = 0, 1, · · · ,∞.

2. M is the stopping time associated with finding the ‘cluster’ of bins

X1, X2, · · · , XK and is given as M = inf(m : Ym ∈ {X1, X2, · · · , XK}) + 1.

3. Pr(X1 = n) = 1/N for n = 0, · · · , N − 1, i.e., X1 is discrete uniform.

4. K ∈ {1, 2, · · · , N} and is deterministic.
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5. X1 is independent of Ym for all m.

6. Xk = X1⊕ (k−1) for k = 1, 2, · · · , K where ⊕ is modulo N addition and allows

for ‘wrap-around’. By construction X2, · · · , XK are dependent upon X1.

7. The observations are perfect such that the detection and false alarm probabili-

ties are unity and zero, respectively.

Linear Search

For this particular search, Ym = m mod N for m = 0, 1, · · · ,∞. As with all the

searches to be examined, the stopping time, M , will be finite with probability one as

long as the detection and false alarm probabilities are not both zero. For the ideal

case at hand, the detection probability is one and the false alarm probability is zero,

assuring that the search will indeed terminate with probability one. Each value that

the stopping time can assume is listed explicitly below. These values will then be

used to compute the expected stopping time.

• M = 1 with probability Pr(X1 = 0 or X1 = N − K + 1 or X1 =

N −K + 2 or · · · or X1 = N − 1) = 1
N

+ (K − 1) · 1
N

= K
N

• M = 2 with probability Pr(X1 = 1) = 1
N

...

• M = N −K + 1 with probability Pr(X1 = N −K) = 1
N

• M = N −K + 2 with probability zero
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...

• M = N − 1 with probability zero

• M = N with probability zero

The probability is zero that M = N − K + 2, · · · , N − 1 since a ‘wrap-around’ will

occur and the search will terminate with M = 1. As a check on the validity of

the distribution of M , note that
∑N

m=1 Pr(M = m) = K
N

+
∑N−K+1

m=2 Pr(M = m) =

K
N

+ 1
N

(N −K) = 1. The expected stopping time is computed as

E(M) =
N∑

m=1

m Pr(M = m) =
K

N
+

1

N

N−K+1∑
m=2

m (2.6)

=
K

N
+

1

N

(
(N −K + 1)(N −K + 2)

2
− 1

)
(2.7)

=
(N −K)2 + (3N −K)

2N
(2.8)

A plot of the normalized mean stopping time, E(M)/N , versus the parameter K/N

is shown in Figures 2.2, 2.3, and 2.4 for the first four search algorithms listed earlier.

The figures correspond to increasing values of N . The parameter K/N is the fraction

of the total search area occupied by terminating hypotheses. In terms of the UWB

acquisition problem discussed later, this parameter is related to the multipath delay

spread normalized by the frame time, Tf . Of particular interest in these figures is the

fact that the linear search algorithm performs the poorest for sufficiently large values
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of K/N . This is an intuitive result stemming from the fact that the hypotheses are

consecutive and if the current bin does not terminate the search then the next bin to

be searched should be sufficiently far from the current bin. This reasoning gives rise

to the ‘look and jump by K bins’ and bit reversal search algorithms which are found

to be optimum among the group. The three values of N in these figures are 25,50,

and 100. These values are selected merely for illustrative purposes, as a typical value

of N for the UWB frame time acquisition problem could be in the neighborhood of

5000 to 10000 or more.

One final note is given here. Recall for the single terminating hypothesis scenario

that for ideal detection and false alarm probabilities the expected search time was

shown in (2.42) to be (N +1)/2. If a single hypothesis properly terminates the search

then K = 1. Substituting K = 1 into (2.8) yields the same result, (N + 1)/2.

Truly Random Search

The truly random search is one in which the history of the previously searched bins

is ignored. Thus the search variable, Ym, is selected at random from 0, 1, · · · , N − 1

for each m. The probability of selecting any particular Ym is 1/N and every Ym is

independent of every other Yn for m 6= n. The distribution of M can be found by

noting that the search terminates if the current search variable sees a terminating

hypothesis and if none of the previous search variables saw a terminating hypothesis.

Letting X represent {X1, · · · , XN} we see that:

Pr(M = k) = Pr(Yk−1 ∈ X , Yk−2 6∈ X , · · · , Y0 6∈ X ) (2.9)
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Figure 2.2: Normalized mean stopping time for N = 25.

Figure 2.3: Normalized mean stopping time for N = 50.
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Figure 2.4: Normalized mean stopping time for N = 100.

=
K

N
·
(

1− K

N

)k−1

(2.10)

It is easily verified that the distribution sums to one,
∑∞

k=1 Pr(M = k) = 1. The

expected stopping time is computed as

E(M) =
∞∑

k=1

k Pr(M = k) (2.11)

=
K

N

(
1− K

N

)−1 ∞∑
k=1

k

(
1− K

N

)k

(2.12)

=
N

K
(2.13)
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For a single terminating hypothesis, K = 1, the expected search time for a truly

random search is seen to be N , which is roughly twice that of the linear search,

(N + 1)/2. However, as can be seen in Figures 2.2, 2.3, 2.3 the truly random search

actually performs better than the linear search when K is only slightly larger than

one. This occurs since the distance between successive search bins is much larger for

the truly random search as compared to the linear search.

Random Permutation Search

For this particular search strategy, the integers {0, 1, · · · , N − 1} are randomly per-

muted and the bins are searched according to this random permutation. More pre-

cisely, if σn is a random permutation of {0, 1, · · · , N − 1} for n = 0, 1, · · · , N − 1,

then the search random variable is simply Ym = σm mod N for m = 0, 1, · · ·. Two

necessary facts are now pointed out. Firstly, the search variables Y0, Y1, · · · are no

longer independent. Secondly, since the detection probability is one and the false

alarm probability is zero the search will need to visit at most N −K + 1 bins. This

implies that Pr(M = k) = 0 for k ≥ N −K + 2.

The distribution of M is now found inductively, where X is defined as the set of

terminating hypotheses {X1, X2, · · · , XK} as above.

• M = 1 with probability Pr(Y0 ∈ X ) = K
N

• M = 2 with probability Pr(Y1 ∈ X , Y0 6∈ X ) = Pr(Y1 ∈ X |Y0 6∈ X ) ·Pr(Y0 6∈ X )

= K
N−1

(1− K
N

)
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• M = 3 with probability Pr(Y2 ∈ X , Y1 6∈ X , Y0 6∈ X ) = Pr(Y2 ∈ X |Y1 6∈ X , Y0 6∈

X ) · Pr(Y1 6∈ X , Y0 6∈ X ) = Pr(Y2 ∈ X |Y1 6∈ X , Y0 6∈ X ) · Pr(Y1 6∈ X |Y0 6∈

X ) · Pr(Y0 6∈ X ) = K
N−2

· N−1−K
N−1

·
(
1− K

N

)
= K

N−2
·
(
1− K

N−1

)
·
(
1− K

N

)
...

• By induction, Pr(M = k) = K
N−k+1

∏k−2
j=0

(
1− K

N−j

)
for 2 ≤ k < N −K + 2

• Pr(M = k) = 0 for k ≥ N −K + 2

Summing the distribution of M yields:

N∑
k=1

Pr(M = k) =
K

N
+

N−K+1∑
k=2

K

N − k + 1
·

k−2∏
j=0

(
1− K

N − j

)
(2.14)

Although difficult to compute, this sum can be shown to equal one. Likewise the

mean stopping time is seen to be:

E(M) =
K

N
+

N−K+1∑
k=2

k · K

N − k + 1
·

k−2∏
j=0

(
1− K

N − j

)
(2.15)

This is equally difficult to evaluate but does indeed simplify. The simplified result is

found to be:

E(M) =
N + 1

K + 1
(2.16)

It is noted that for K = 1, i.e., the single terminating hypothesis scenario, the

performance of the random permutation search is identical to the linear search, namely
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the expected search time for both is (N + 1)/2. This is actually the case for all the

search algorithms except the truly random search as is evident in Figures 2.2, 2.3,

and 2.4 by the fact that all the curves (except the truly random search) start at the

same point.

‘Look and Jump by K Bins’ Search

The random permutation search algorithm previously analyzed gives the mean stop-

ping time, averaged over all permutations of the integers, 0, 1, · · · , N − 1. Since the

linear search is one special case of such a permutation, and the mean stopping time

of the random permutation search is lower than that of the linear search as seen in

Figures 2.2, 2.3, and 2.4, this reveals that certain permutations must exist that give

an even lower mean stopping time. The ‘Look and Jump by K Bins’ search analyzed

here is one such permutation, as is the search analyzed in the next section.

The easiest way to compute the mean stopping time for the current search algo-

rithm is to assume that N/K is an integer. The result obtained with this assumption

is then valid even if N/K is not and integer. The basic idea for the current search is

as the name suggests, e.g., starting in bin 0, the search continues on to bin K, then

to 2K, etc. As before, the probability of terminating the search after one observation

is simply Pr(Y0 ∈ X ) = K/N , where again X is the set of terminating hypotheses.

On the next observation, there still remain K bins that will terminate the search

because it was not terminated on the first observation. The same reasoning applies

to observations 3, 4, · · · , N/K, and hence the search will terminate with probability
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one after at most N/K observations. This argument leads to the distribution of M

which is

Pr(M = k) =


K/N for k ∈ {1, 2, · · · , N/K}

0 for k > N/K

(2.17)

Note that
∑∞

k=1 Pr(M = k) =
∑N/K

k=1 (K/N) = 1. The mean stopping time is found

as

E(M) =
∞∑

k=1

k · Pr(M = k) =
K

N

N/K∑
k=1

k (2.18)

=
K

N
· (N/K)[(N/K) + 1]

2
(2.19)

=
1

2
·
(

N

K
+ 1

)
(2.20)

As mentioned, the same result applies for N/K not an integer. This algorithm

is simply the set of all random permutations which have the initial sequence of

{0, K, 2K, · · · , } and thus is a specific subset of the random permutations which all

happen to perform better than the average. This results because the search termi-

nates after N/K observations with probability one, due to the ideal detection and

false alarm probabilities. Additionally, the K = 1 case produces the expected result

for the mean stopping time of (N +1)/2, the same result for all other searches (except

the truly random search) when a single hypothesis terminates the search. Finally, it

54



should be noted that the ‘Look and Jump’ mean search time with parameters N and

K reduces to a linear search with parameters N/K and 1.

Bit Reversal Search

For UWB frame and code acquisition, the delay spread of the channel will not be

known exactly or, quite possibly, at all. Also, due to the nature of the multipath

channel, there will most likely not be K consecutive bins which terminate the search

but a cluster of bins, some with high probability and some with low probability of

terminating the search. For this reason, a search is desired which does not rely on the

knowledge of K but has similar performance. The algorithm discussed in this section

is such a search. In fact, as will be seen in Section 2.4 the performance is exactly

equal to the ‘Look and Jump’ search when K is a power of 2. For other values of K

the bit reversal search is approximated very well by the ‘Look and Jump’ search so

that the mean search time given in the last section is useful.

The current search is first described by assuming that N is a power of 2,

e.g., N = 2n for n a positive integer. The manner in which the bins are

searched is then determined by bit reversing the linear search variable. For exam-

ple, the integers for an N = 16 search can be represented in binary (base 2)

as 0000, 0001, 0010, 0011, 0100, · · · , 1101, 1110, 1111. Obviously a linear search as

per these indices will perform poor as shown above, due to the fact that the

search does not sufficiently ‘jump’ far enough from the current location. One

permutation of these integers which does maximize the distance between observa-

tions is obtained by ‘bit reversing’ the binary representation, e.g., searching as per
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0000, 1000, 0100, 1100, 0010 · · · , 1011, 0111, 1111. In decimal representation this is the

sequence Y0, Y1, Y2, Y3, · · · , Y13, Y14, Y15 = 0, 8, 4, 12, · · · , 11, 7, 15. What this search is

really doing is dividing the current group of bins in half and jumping to the halfway

point of the current division, thus maximizing the distance between the current search

point and the previous search point. If the number of bins N is not a power of 2,

then dividing by 2 and rounding to the nearest integer produces a similar search.

2.3 Search Performance for Multiple Terminating

Hypotheses

A general framework, based upon a Markov chain model, will now be used to compute

the expected search time. The previous scenarios of a single terminating hypothesis

and consecutive terminating hypotheses can be considered as a special case of the

multiple terminating hypotheses scenario to be described here. As an example of

this, the results from Section 2.1 will be compared to a special case of the results to

be derived here, with exact agreement existing between the two sections.

Each hypothesis, Hn, for n = 0, 1, · · · , N − 1 can be assigned to a state in a

Markov chain, e.g., state 0 represents H0, state 1 represents H1, etc. One additional

state is added to the chain, state N , which represents that the search has terminated.

Obviously this state will be absorbing, meaning that once entered there is no path

leaving that state. Once the verification phase is introduced below, this state will

be divided into multiple states, one absorbing and the rest transient. One of these

56



Figure 2.5: Markov chain model for the linear search of Section 2.3

transient states will also be termed the false alarm state as was done in [34] for the

circular state diagram. For now, however, the Markov chain is shown in Figure 2.5.

The probabilities shown in Figure 2.5 are known as the transition probabilities

and are defined for the linear search as

pn = Pr(Ym+1 = n⊕N 1|Ym = n) (2.21)

1− pn = Pr(Ym+1 = N |Ym = n) (2.22)

Here Ym is the current state of the Markov chain at time index m = 0, 1, · · · ,∞, i.e.,

the value of Ym represents the current hypothesis being tested, HYm . The operator
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⊕N represents modulo-N arithmetic. The transition probability matrix, denoted by

S, for the Markov chain in Figure 2.5 is

S =



0 p0 0 0 . . . 0 1− p0

0 0 p1 0 . . . 0 1− p1

0 0 0 p2 . . . 0 1− p2

...
...

...
...

. . .
...

...

0 0 0 0 . . . pN−2 1− pN−2

pN−1 0 0 0 . . . 0 1− pN−1

0 0 0 0 . . . 0 1



(2.23)

Here the row index represents the current state of the Markov chain, Ym, and the

column index represents the next state of the Markov chain, Ym+1. For example,

the probability that the chain starts from state 0 and goes to state 1 is found by

looking up the element at row 0 and column 1 which is p0 as shown in S. Starting

from any state, the transition probabilities into any of the other states must sum

to one, thus each row of the transition probability matrix must sum to one. Notice

that starting from state N , at row N , the only nonzero element in that row is at

column N , representing that once state N is entered, with probability one the chain

will remain in that state forever. This is the only absorbing state in the chain, as

described above.
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The starting state, Y0, of the Markov chain is determined by the initial distribu-

tion, π, where each element of this (N +1)×1 vector is the probability that the chain

starts in that state.

π = [π0, π1, · · · , πN ]T (2.24)

πn = Pr(Y0 = n) (2.25)

Obviously the sum of the elements of π must be one,
∑

n πn = 1, since the Markov

chain must start in one of the states.

The expected search time computed in the previous section can now be determined

with the Markov chain model. Since state N is the only absorbing state of the chain

and represents the fact that the search has terminated, the expected search time can

be computed by finding the expected time it takes to enter this absorbing state. This

is a commonly investigated problem from Markov theory as discussed in [56] and is

given as

E(Ta) = 1T[I− ST
tr]
−1πtr (2.26)

Ta is the time (in number of states visited) to enter an absorbing state, 1 is the

N × 1 all ones vector, I is the N ×N identity vector, πtr is the initial distribution of

the transient states, and Str is the reduced state transition matrix corresponding to
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only the transient states. This reduced matrix is formed by eliminating the rows and

columns of S which correspond to the absorbing state of interest:

Str =



0 p0 0 0 . . . 0

0 0 p1 0 . . . 0

0 0 0 p2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . pN−2

pN−1 0 0 0 . . . 0



(2.27)

The mean time to absorption by state N , denoted as E(Ta), given in (2.26) can be

simplified for the reduced transition matrix, Str as just given. Specifically, it can be

shown that

I− ST
tr =



1 −p0 0 0 . . . 0

0 1 −p1 0 . . . 0

0 0 1 −p2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −pN−2

−pN−1 0 0 0 . . . 1



T

(2.28)
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The determinant of this matrix is easily computed as

∆ = det(I− ST
tr) = 1−

N−1∏
n=0

pn (2.29)

The inverse of I− ST
tr can then be computed in terms of the above determinant:

1

∆
·



1 p0 p0p1 . . . (p0p1 · · · pN−2)

(p1p2 · · · pN−1) 1 p1 . . . (p1p2 · · · pN−2)

(p2p3 · · · pN−1) (p2p3 · · · pN−1p0) 1 . . . (p2p3 · · · pN−2)

...
...

...
. . .

...

pN−1 pN−1p0 pN−1p0p1 . . . 1



T

(2.30)

If the Markov chain starts in state 0 with probability one then the initial distribution

is simply π = [1, 0, · · · , 0]T. For any matrix A, the vector product 1TA[1, 0, · · · , 0]T

is simply the sum of the elements in the first column of A. Thus for the initial

distribution that always starts in state 0, the mean time to absorption in (2.26)

becomes:

E(Ta) =
1

∆
· [1 + p0 + p0p1 + · · ·+ (p0p1 · · · pN−2)] (2.31)
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This expression can be represented as

E(Ta) =

1 +
N−2∑
m=0

m∏
n=0

pn

1−
N−1∏
n=0

pn

(2.32)

Although this result was computed for a linear search, it is also applicable to any

search order which is a permutation of the integers 0, 1, · · · , N − 1, as will be done in

Section 4.1.

To demonstrate the use of the Markov result in (2.32), the results of Section 2.1

are now derived, where only one hypothesis, say Hk, would properly terminate the

search. If the search was currently testing this hypothesis, the Markov chain would be

in state k. Thus, the search would properly terminate as per the detection probability,

Pd, and would improperly continue as per the miss probability, 1− Pd. For all other

hypotheses, Hj with j 6= k, the probability of terminating the search by selecting that

hypothesis would be determined by the false alarm probability, Pfa, and the search

would properly continue as per the correct dismissal probability, 1 − Pfa. Thus the

transition probabilities are now functions of the true terminating hypothesis index,

k, and can be denoted as pn(k).

pn(k) =


1− Pd if n = k

1− Pfa if n 6= k

(2.33)

1− pn(k) =


Pd if n = k

Pfa if n 6= k

(2.34)
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The mean time to absorption in (2.32) now becomes conditional on the true hypoth-

esis, Hk. In order to find the unconditional expected search time, the conditional

mean time is averaged by the a-priori distribution of the true hypothesis, Pr(Hk):

E(Ta) =
N−1∑
k=0

E(Ta|Hk) Pr(Hk) (2.35)

Assuming that any of the hypotheses is a-priori equally likely then Pr(Hn) = 1/N

for all n. From this assumption and equations (2.32) and (2.35), the unconditional

expected search time is found:

E(Ta) =
1

N

N−1∑
k=0

1 +
N−2∑
m=0

m∏
n=0

pn(k)

1−
N−1∏
n=0

pn(k)

(2.36)

This can be simplified by noting that
∏N−1

n=0 pn(k) = (1 − Pd)(1 − Pfa)
N−1 for any k

so that the denominator in (2.36) is independent of k and can be brought outside the

sum. The numerator can be simplified by noting that

m∏
n=0

pn(k) = p0p1 · · · pm =


(1− Pfa)

m+1 if k > m

(1− Pd)(1− Pfa)
m if k ≤ m

(2.37)

Relying on this fact, the numerator of (2.36) becomes

1 +
N−2∑
m=0

m∏
n=0

pn(k) = 1 +
k−1∑
m=0

(1− Pfa)
m+1 +

N−2∑
m=k

(1− Pd)(1− Pfa)
n (2.38)
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After several straightforward calculations the above expression can be simplified. The

resulting expression becomes

1 +
1− Pfa

Pfa

[
1− (1− Pfa)

k + (1− Pd)(1− Pfa)
k−1 − (1− Pd)(1− Pfa)

N−2
]
(2.39)

Combining these simplified expressions for the numerator and denominator in (2.36)

and simplifying yields:

E(Ta) =
1

Pfa

+
1

NP 2
fa

· 1− (1− Pfa)
N

1− (1− Pd)(1− Pfa)N−1
· (Pfa − Pd) (2.40)

Recalling that α = 1−Pd and β = Pfa reveals that (2.40) is identical to the previous

expected search time in (2.5). Also of interest is the ideal case as the false alarm

probability vanishes to zero:

lim
Pfa→0

E(Ta) =
N(1− Pd)

Pd

+
N + 1

2
(2.41)

This is exactly equation 2.5.6 in [53]. If the detection probability is now allowed to

approach one, the ideal case is achieved:

lim
Pfa→0

Pd→1

E(Ta) =
N + 1

2
(2.42)

This result is simply the expected search time for a linear search of N bins, one of

which contains a single object placed at random. Additional insight can be obtained
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into the search performance by considering such ideal situations, i.e., perfect detection

and false alarm probabilities, as was done in Section 2.2.

Unless the false alarm probability is zero the possibility of incorrectly terminating

the search always exist. Because of this fact, synchronization algorithms generally

include some sort of verification phase which makes additional observations in an

attempt to decrease the overall false alarm probability to a negligible level. This is

usually done by simply dwelling for some extended period of time on the candidate

hypothesis. The Markov analysis presented in this section did not include any verifi-

cation, but can be adapted to include it. Rather than present such an analysis here,

a signal flow graph analysis is presented in the next section which is better able to

incorporate verification.

2.4 Generalized Signal Flow Graph Approach

The generalized signal flow graph considered in this section is shown in Figure 2.6.

This signal flow graph, which is an extension of the basic signal flow graph of [35], will

be used to analyze UWB acquisition. As can be seen from Figure 2.6, the generalized

signal flow graph allows for an arbitrary search permutation, ε(n). An arbitrary

detection scenario is also now possible such that any of the states can terminate the

search by entering the single trapping state in the middle of the graph, termed the

ACQ state. Thus there are Ns + 1 states in the flow graph: one trapping state and

Ns states representing the bins in the uncertainty region. These bins are labeled

0, 1, . . . , Ns − 1 and the specific order in which they are searched is determined by
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the permutation ε(n) of the integers 0, 1, . . . , Ns − 1. The initial distribution of the

states is given by πε(n). The generating function into the acquisition state is defined

as

PACQ(z) =
∞∑

n=0

pACQ(n)zn (2.43)

Here z is a complex number and pACQ(n) is the probability of entering the acquisition

state in n transitions. This generating function can be found by various flow graph

loop reduction techniques, Mason’s gain formula, etc., and is given below, where ⊕

represents modulo Ns addition and
∏−1

j=0(·) is defined to be unity:

PACQ(z) =

Ns−1∑
k=0

πε(k)

Ns−1∑
i=0

Hε(i⊕k)(z)
i−1∏
j=0

Gε(j⊕k)(z)

1−
Ns−1∏
i=0

Gε(i)(z)

(2.44)

The path gains Hε(n)(z) and Gε(n)(z) are polynomials in the complex variable z and

include the transition probabilities and the transition times. For example, a path

gain of 0.9z2 between any two states means that with probability 0.9 that particular

transition occurs and requires 2 ‘units’ of time. The basic unit of time considered

here is a single dwell-time, i.e., the amount of time an observer dwells on a particular

bin when the search is underway. Dwelling longer on a particular bin increases the

overall detection probability or decreases the overall false alarm probability depending

on whether or not that bin leads to the acquisition state.
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Figure 2.6: Generalized acquisition signal flow graph

The generating function in (2.44) can be used to determined the probability that

the search correctly terminated simply by setting z = 1. It also yields a complete

statistical description of the acquisition time through the inverse transform relation:

pACQ(n) =
1

2πj

∮
PACQ(z)

zn+1
dz (2.45)

where pACQ(n) is the probability mass function of the acquisition time (in integer

multiples of the dwell-time) and the contour of integration is a counterclockwise

closed circular contour in the region of convergence of PACQ(z) centered around the

origin of the complex plane. Typically, only the first few moments of the acquisition
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time are analyzed for a specific problem and are related to the first few derivatives

of the generating function. In this document only the mean search time is examined

which is given as follows:

E(TACQ) =
d

dz
PACQ(z)

∣∣∣∣
z=1

(2.46)

Note that the mean acquisition time just listed is in units of dwell-times, so that

the mean time in seconds is simply the product of E(TACQ) · TD, where TD is the

dwell-time in seconds. A general sequence design problem can now be formulated,

even though a solution in the general case seems, at best, very difficult to obtain.

Namely, the minimum mean search time can be found from the right choice of search

sequence:

εmin(n) = arg min
ε(n)

E (TACQ|ε(n)) (2.47)

Several specific examples are now considered to demonstrate the applicability of

the generalized signal flow graph and its associated generating function in (2.44). First

consider the classical scenario of [35] where the search pattern is linear or consecutive,

i.e., ε(n) = n, and there is only one state, say Ns−1, leading to the acquisition state.

This implies that the path gains, Hn(z), are all zero except for HNs−1(z) which is

set equal to an arbitrary detection path gain HD(z). The path gains between states

are set equal to GNs−1(z) = HM(z) and Gn(z) = HF (z) for n = 0, 1, . . . , Ns − 2,

where HM(z) is an arbitrary path gain associated with missed detection and HF (z)
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is an arbitrary path gain associated with a false alarm. This leads to the generating

function in equation (4) of [35], Part I:

P
(LINEAR,1)
ACQ (z) =

HD(z)

1−HM(z)HNs−1
F (z)

Ns−1∑
i=0

πiH
Ns−i−1
F (z) (2.48)

Here the superscript on PACQ(z) represents the search type and the number of detec-

tion states, i.e., (LINEAR,1) means a linear search and one detection state.

A second example is examined in [25] in which L consecutive states, 0, 1, · · ·,

L− 1, lead to the acquisition state and the search pattern is again linear, ε(n) = n.

Thus the path gains are Hn(z) = HD(z) for n = 0, 1, · · · , L − 1 and zero for other

n while Gn(z) = HM(z) for n = 0, 1, · · · , L − 1 and Gn(z) = HF (z) for all other n.

The prior initial distribution of the states is uniform, πn = 1/Ns for all n. Using

(2.44) with these path gains and initial distribution leads to the generating function

in equation (3) of [25]:

P
(LINEAR,L)
ACQ (z) =

1

Ns

· HD(z)

1−HL
M(z)HNs−L

F (z)

[ L−1∑
j=0

Hj
M(z)

N−L∑
i=0

H i
F (z)

+
L∑

i=1

[
L− i + (i− 1)HNs−L

F (z)
]
·H i−1

M (z)
]

(2.49)

As one final example, it is noted that the generating function found in [48] can also

be found using the generalized flow graph of Figure 2.6. The search permutation

found in that particular reference, here termed the Look and Jump search as in [24],

is discussed in more detail below.
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The mean acquisition time can be found from the generating function of (2.44) as

E(TACQ) =
d

dz
PACQ(z)

∣∣∣∣
z=1

=
Num′ ·Den−Num ·Den′

Den2
(2.50)

where Num and Den are the numerator and denominator of (2.44), respectively,

evaluated at z = 1. Num′ is the derivative of the numerator evaluated at z = 1:

Num′ =
Ns−1∑
k=0

πε(k)

Ns−1∑
i=0

( i−1∏
j=0

Gε(j⊕k)(1)
)
·

[
H ′

ε(i⊕k)(1) + Hε(i⊕k)(1)
i−1∑
l=0

G′
ε(l⊕k)(1)

Gε(l⊕k)(1)

]
(2.51)

Here the summation
∑−1

l=0(·) is defined as zero. Den′ is the derivative of the denom-

inator evaluated at z = 1:

Den′ = −
Ns−1∑
i=0

G′
ε(i)(1)

Gε(i)(1)
·

Ns−1∏
j=0

Gε(j)(1) (2.52)

The factor G′
ε(i)(1)/Gε(i)(1) appears in the above expressions. Care should be exer-

cised when computing the mean acquisition time if this factor approaches zero. One
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way around this, which is computationally less efficient, involves using the following

alternate expression in the derivative of the numerator and the denominator:

d

dz

n−1∏
j=0

Gε(j)(1) =
n−1∑
i=0

G′
ε(i)(1) ·

n−1∏
j=0
j 6=i

Gε(j)(1) (2.53)

Figure 2.7 gives an example of the mean search time, E(TACQ), for three different

search patterns, K consecutive detection states, Ns = 16, and the path gains as

follows:

Hε(i)(z) =


PDz if i ∈ I

0 else

(2.54)

and

Gε(i)(z) =


(1− PD)z if i ∈ I

(1− PFA)z + PFAzJ+1 else

(2.55)

The index set, I, represents those indices i of ε(i) that lead to the acquisition state.

Here these states are assumed to be 0, 1, · · · , K − 1 so that the size of the set I is

K. Since ε(j) is simply a permutation of the integers, its inverse ε−1(j) exists and

can be used to produce the index set. That is I = {ε−1(0), ε−1(1), · · · , ε−1(K − 1)}

for the example currently being considered, namely K consecutive detection states.

The false alarm penalty time is shown in the path gains to be J dwell times where

J is a known value. This represents a deterministic amount of time, via some level
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Figure 2.7: Mean acquisition time for PD = 0.9, PFA = 0.1, Ns = 16, and a false
alarm penalty time of J = 10

of verification, that is added to the overall search time at every occurrence of a false

alarm. In practice the verification phase produces a random penalty time but in

order to simplify the acquisition analysis it is often assumed to be fixed. Chapter 5,

which deals with fine acquisition, discusses the process of verification in more detail.

Appendix A discusses the (PD = 1, PFA = 1) scenario for the path gains of (2.54)

and (2.55). As will be discussed in Chapter 4 this scenario is equivalent to setting

the detection threshold to zero.

The search permutations shown in Figure 2.7 are the linear, look and jump, and

bit reversal searches. The linear search, as mentioned above, is simply a consecutive

search with ε(n) = n. The index set for this linear case is I = {0, 1, · · · , K − 1}. The

look-and-jump search is the permutation 0, K, 2K, · · · , 1, K + 1, 2K + 1, · · · with the
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index set being computed as discussed earlier. For example, when K = 3 the index set

is seen to be I = {0, 6, 11} for Ns = 16. As it turns out, the look-and-jump search is

the optimum serial search permutation for K consecutive detection states. However,

one issue with this type of search is that K, which must be known to generate this

search permutation, is related to the number of detectable paths in the multipath

channel for the UWB acquisition problem. As will be discussed in the next section,

this quantity may not be known to the receiver.

In lieu of this fact, a class of searches is introduced that yield minimum mean

search times but do not require knowledge of K. The searches are known as the

base-b reversal searches. For example, the b = 2, or bit, reversal search is the spe-

cific permutation obtained from a bit reversal of the binary representation of the

integers 0, 1, · · · , Ns − 1, assuming Ns is a power of 2. For Ns = 16, the bit rever-

sal search pattern is (in binary) 0000, 1000, 0100, 1100, · · · , 0111, 1111 or (in decimal)

0, 8, 4, 12, · · · , 7, 15. The index set for the bit reversal search is the first K elements

of the bit reversal search permutation, namely I = {0, 8, 4, 12, · · ·}, since this permu-

tation is its own inverse.

As can be seen in Figure 2.7, the bit reversal search and the look and jump search

yield identical mean acquisition times when K is a power of 2 and the two search

schemes yield very similar acquisition times for all other values of K. In fact, the mean

acquisition time is linear in K between values where K is a power of 2. Similarly,

it can also be shown that the base-b reversed indices yield minimum search times

when K and N are powers of b. The b = 2 case is well suited for digital architectures
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and also has an advantage over base-b reversal searches for b > 2. Specifically, for a

fixed N there are more points in the range K = 1, · · · , N that are powers of 2 than

any other power. Thus, when K is not known an appropriate search permutation

for minimizing the mean search time is the bit reversal search. As will be seen in

the next section, the bit reversal search also yields an efficient hybrid search when

multiple observers are introduced given that K is unknown.

2.5 Hybrid Search Analysis using the Generalized

Signal Flow Graph

A fully parallel search would minimize the mean acquisition time but is often too

complex to actually implement. For a discussion of optimal search techniques utilizing

a fully parallel search see [43]. As will be seen in the next chapter, for a short code

length of Nc = 16 with each frame time divided into N = 256 bins, Ns = N · Nc =

4096 correlators would be required to implement a parallel search. A hybrid search

offers a reasonable trade-off between acquisition time and receiver complexity. It is

intuitively obvious that multiple correlators will always reduce the mean acquisition

time versus a single correlator since each correlator can search a different location.

It also seems reasonable that the individual correlator search patterns should not be

independent of one another. In fact, dividing a single search permutation amongst

multiple correlators provides an efficient method of searching the entire uncertainty

region as quickly as possible with no redundancy.
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Figure 2.8: Hybrid bit reversal search example for Ns = 16 bins and M = 4 correlators

The bit reversal search pattern, being the optimum search permutation without

knowledge of K, is now divided amongst M correlators. The permutation can be

listed as β0, β1, β2, · · ·, βNs−1. Then the first correlator is assigned to search as per

β
(0)
j = {β0, βM , β2M , · · ·}, the second correlator searches as per β

(1)
j = {β1, βM+1,

β2M+1, · · ·}, and so on. If M and Ns are both powers of 2, then M divides Ns into

smaller regions of Nh bins, where Nh is also power of 2. Each correlator then performs

a bit reversal search over this smaller region of Nh bins. Figure 2.8 shows an example

of this phenomenon for Ns = 16 search bins and M = 4 correlators. This same

phenomenon is also exhibited for other base-b reversal searches when both Ns and M

are powers of b.

The generating function for the hybrid search can be computed from the gener-

alized acquisition signal flow graph in Figure 2.6. Before this generating function is
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found, an alternate method of determining the mean acquisition time is given. Specif-

ically, the initial distribution of the signal flow graph is set to πε(0) = 1 and πε(j) = 0

for all j 6= 0 so that the search always starts in state ε(0). The resulting generating

function is conditional on the set of states, K = [k1, k2, · · · , kK ]T , that lead into the

acquisition state:

PACQ(z|K) =

Ns−1∑
i=0

Hε(i)(z)
i−1∏
j=0

Gε(j)(z)

1−
Ns−1∏
i=0

Gε(i)(z)

(2.56)

The dependence of this conditional generating function on the set K occurs via the

path gains, Hε(j)(z) and Gε(j)(z), which are both inherently functions of K. The mean

search time found from the conditional generating function is also conditional on the

set K and the overall mean search time is found as E(TACQ) = E (E(TACQ|K)) where

the outer expectation is with respect to K. If the first component of K is uniform

on the integers from 0 to Ns− 1 while the other values are simply some known offset

away from the first random component then the mean search time can be computed

as:

E(TACQ) =
1

Ns

Ns−1∑
k1=0

E(TACQ|k1) (2.57)

The conditional mean, E(TACQ|k1), is computed as the first derivative of the condi-

tional generating function in (2.56) evaluated at z = 1. For the UWB acquisition

problem examined in the next chapter, the uniform nature of the direct path arrival
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time, τ0, must be incorporated into the mean acquisition time. It is fairly straight-

forward to show:

E(TACQ) =
1

Nc · Tf

Nc·Tf∫
0

E(TACQ|τ0) dτ0 (2.58)

The first M search locations are ε(0), ε(1), · · ·, ε(M − 1), the next M locations

are ε(M), ε(M +1), · · ·, ε(2M −1), etc. It will be assumed that M divides Ns evenly

into Ns/M regions. Only after the signal flow graph has exited one of these regions

has one dwell-time elapsed since M correlation outputs are available every dwell-time.

This can be expressed by defining a boundary set B = {M − 1, 2M − 1, · · ·, Ns − 1}

and redefining the path gains in terms of this new set. The signal flow graph for the

hybrid search is seen in Figure 2.9. As an example, it is assumed that there are K

consecutive detection states, starting at state k1, which is uniformly random on the

integers from 0 to Ns − 1. The path gains are:

Hε(i)(z) =


PDz if i ∈ I

0 else

(2.59)

and
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Gε(i)(z) =



1− PD if i ∈ I and i /∈ B

(1− PD)z if i ∈ I and i ∈ B

1− PFA + PFAzJ if i /∈ I and i /∈ B

(1− PFA)z + PFAzJ+1 if i /∈ I and i ∈ B

(2.60)

As in Section 2.4, the index set, I, represents those indices i of ε(i) that lead to the

acquisition state. This set consists of the elements k1, k1 + 1, · · · , k1 + K − 1 so that

I = {ε−1(k1), ε−1(k1 + 1), · · ·, ε−1(k1 + K − 1)}. The addition performed here is

modulo Ns. Some results, as computed with (2.57), for a hybrid bit reversal search

are shown in Figure 2.10 for the scenario just described.

2.6 Sorted Hybrid Search

One method of decreasing the acquisition time for the hybrid case is to first sort the

M correlator outputs based upon magnitude. The bins are then examined in order

of decreasing magnitude starting with the largest correlator magnitude. A reduction

in the mean search time occurs since the less likely bins are searched later, thus

potentially reducing the number of false alarm penalties incurred. This idea was first

introduced in [36]. The acquisition time cannot be analyzed using the particular

signal flow graph discussed earlier since the specific search order now depends upon

the outcome of the correlators, which are all random variables. It is possible that a

more general framework, obtained by combining Markov Decision Theory and signal
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Figure 2.9: Signal flow graph for the hybrid search using M observers

flow graphs, could be used to study this type of search. Computer simulations have

revealed, as expected, that sorting in this fashion does indeed reduce the acquisition

time with respect to the unsorted hybrid search, as shown in Figure 2.11. As can

be seen, there is a greater reduction in mean acquisition time for larger values of

M . This is due to the fact that a false alarm is more likely to occur in the group of

observations as M increases.
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Figure 2.10: Bit reversal search mean acquisition time (in number of state transitions)
for the hybrid case of M observers, K consecutive detection bins, PD = 0.9 and
PFA = 0.1 for each bin, Ns = 16, and a false alarm penalty time of J = 10

A bound on the sorted hybrid search can be found using the generalized signal

flow graph approach of Section 2.5. This bound is obtained by first searching those

cells with the largest transition probabilities into the acquisition state, where the
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Figure 2.11: Bit reversal and sorted bit reversal search mean acquisition time for the
hybrid case of M correlators, K consecutive detection bins, PD = 0.9 and PFA = 0.1
for each bin, Ns = 16, and a false alarm penalty time of J = 10

transition probability from state ε(n) into the acquisition state is defined as Pε(n).

Specifically this is done by defining a new search order εs(j) where:

εs(0) = {ε(j0) : Pε(j0) = max
i=0,···,M−1

Pε(i)}

εs(1) = {ε(j1) : Pε(j1) = max
i=0,···,M−1

i6=j0

Pε(i)}

...

εs(M − 1) = {ε(jM−1) : Pε(jM−1) = min
i=0,···,M−1

Pε(i)}

εs(M) = {ε(jM) : Pε(jM ) = max
i=M,···,2M−1

Pε(i)}

...

εs(2M − 1) = {ε(j2M−1) : Pε(j2M−1) = min
i=M,···,2M−1

Pε(i)}

...

(2.61)
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Figure 2.12: Mean acquisition time for the sorted bit reversal search and correspond-
ing bound for the hybrid case of M correlators, K consecutive detection bins, PD = 0.9
and PFA = 0.1 for each bin, Ns = 16, and a false alarm penalty time of J = 10

The signal flow graph, and thus the generating function, from the previous sections are

now updated with εs(j) replacing ε(j). Figure 2.12 shows some bounding results for

the hybrid bit reversal search for a very simple case of Ns = 16 bins and consecutive

acquisition bins as was done in Figures 2.7, 2.10, and 2.11. As can be seen in Figure

2.12, the bound is tighter for lower values of M .
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2.7 Bound on Mean Search Time for a Single

Observer

This section briefly discusses the possibility of a single observer nearly attaining the

search performance of two observers. Recall that an observer is the object performing

the search, e.g., the correlator in the previous sections. A single observer bound under

perfect conditions (PD = 1 and PFA = 0) is derived based upon Markov’s inequality

and compared to an M = 2 hybrid bit reversal search for the same perfect conditions.

It is seen that the single observer bound sits just above the two observer hybrid bit

reversal search mean acquisition time.

Markov’s inequality for a random variable, X, states that if X ≥ 0 and α > 0,

then

Pr(X ≥ α) ≤ E(X)

α
(2.62)

Here the random variable is assumed to be the search time, X = TACQ, and α = 1,

2, · · ·, Ns − K + 1. The probability Pr(TACQ ≥ α) can be computed directly as in

Section 2.2 since it is also assumed here that PD = 1 and PFA = 0. The first few

probabilities can be found as

Pr(TACQ ≥ 1) = 1

Pr(TACQ ≥ 2) = 1− K

N

Pr(TACQ ≥ 3) = Pr(TACQ ≥ 2)− Pr(TACQ = 2) =

(
1− K

N

)
·
(

1− K

N − 1

)
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Pr(TACQ ≥ 4) =

(
1− K

N

)
·
(

1− K

N − 1

)
·
(

1− K

N − 2

)
...

By induction it is seen that for k = 2, 3, · · · , Ns −K + 1:

Pr(TACQ ≥ k) =
k−2∏
j=0

(
1− K

Ns − j

)
(2.63)

Repeated application of Markov’s inequality then yields the greatest lower bound on

the mean search time:

E (TACQ) ≥ max
1≤k≤Ns−K+1

(
k ·

k−2∏
j=0

(
1− K

Ns − j

))
(2.64)

As before
∏−1

j=0(·) is defined to be unity, Ns is the number of search locations, or

bins, and K is the number of consecutive locations that will terminate the search.

The single observer bound is shown in Figure 2.13 along with the hybrid bit reversal

search results for the case of Ns = 16. It is seen that indeed the bound on single

observer performance is very near but slightly above the two observer case. In fact,

this same phenomenon was observed for a wide range of scenarios involving different

values of Ns. This raises the question: Does a single observer search pattern exist

such that the mean search time approaches that of two observers, i.e., such that the

bound given here is attained?
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Figure 2.13: Comparison of the mean search time for the single observer bound vs.
the two observer hybrid bit reversal search (Ns = 16, PD = 1, and PFA = 0)
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Chapter 3

Extended Graphical Structures for

Search Analysis

In the last chapter a generalized signal flow graph was presented as a very useful

tool to analyze the search performance. This performance was given in terms of a

complete statistical description of the search time as well as the probability of correctly

terminating the search. In fact, these two performance parameters can be used to

characterize any search algorithm for purposes of comparison. A search operating

characteristic (SOC) curve can be formed by plotting these two basic performance

measures against one another. Since the acquisition time is generally random, the

mean search time can be used to determine the SOC curve. A general curve is shown

in Figure 3.1 which is purely illustrative. Here the probability, β, is the a-priori

probability of simply guessing correctly. As the mean time approaches zero, the

actual value of the search time must approach zero almost surely since the search

time is a non-negative random variable.
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Figure 3.1: Search operating characteristic example

One inherent assumption for the SOC curve shown in Figure 3.1 is that the com-

plexity is fixed. If a more complex search algorithm is allowed, then performance can

be improved, essentially generating a completely new SOC curve. Assuming com-

plexity can be quantified in some manner, e.g., the number of observers performing

the search, it can be added as another dimension to the SOC curve. As shown in the

figure, as complexity increases the curve is pushed toward the upper left corner as the

mean search time decreases and the probability increases. If complexity is merely the

number of observers then this graph approaches the curve specified by a fully parallel

search.

While any type of search can be described with a curve similar to that of Figure

3.1, one specific example is a serial search which is widely used because of its low

complexity. The generalized signal flow graph introduced in the last chapter can be

used to analyze this type of search (as well the hybrid serial/parallel search), where
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it was inherently assumed that the serial search pattern was a permutation of the

search locations. In the next section, 3.1, additional insight is given regarding this

fact and search graphs are discussed which do not require the search pattern to be a

permutation. Also discussed in this chapter are other graphical structures which find

utility in analyzing search performance of arbitrary algorithms and/or methodologies.

Specifically, the concept of a self-similar signal flow graph is introduced in Section 3.2.

This concept arises if one assumes that instead of terminating the search a new search

is initiated upon completion of the previous one. For the case of UWB acquisition, this

type of graph represents the combined coarse and fine acquisition process described

in Chapters 4 and 5, first locating the multipath cluster then locating the strongest

paths within the cluster.

One highly complex type of search which tends to offer very good performance

are random-dwell-time searches. These searches utilize concepts from the field of

sequential analysis [61] and M-ary sequential hypothesis testing [3] [4] [5] [26] [27].

These types of searches have been used in many different areas, specifically the area

of spread-spectrum code acquisition for DS-CDMA [2] [62], as well as UWB [66]. The

graphical techniques introduced in the last chapter and expanded upon here will be

applied to the analysis of these random-dwell-time schemes in Section 3.3.

3.1 Search Graphs

Given a search space, S, consisting of Ns elements {0, 1, · · · , Ns − 1}, a group of M

observers searching for an index set, I, of elements from the search space, one can
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Figure 3.2: Search graph with Ns + 1 states.

construct an arbitrary search graph. Such a graph is shown in Figure 3.2. This graph

is obtained by mapping each element of S into a state on the graph and, without loss

of generality, element 0 becomes state 0, etc. There is an extra trapping state, Ns,

which represents termination of the search.

Each branch between any two states of the graph in Figure 3.2 is some function of

the search algorithm, the associated error probabilities, as well as the amount of time

spent searching a particular state, and possibly other arbitrary information such as

a vector of costs, rewards, probabilities, etc. In the most general form this function

and its arguments are dependent upon the particular transition (or some number of

past transitions) and are also dependent upon when that transition is made, so that

the function may change over time. Each state in the graph connects to every other

state as evident by the branches between states (although not all these branches are
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Figure 3.3: Specific examples of search graphs

illustrated in the figure). Several three-state examples are shown in Figure 3.3 which

illustrate specific types of graphs.

The first example is a Markov chain as shown in Figure 3.3a. In this case the

states are connected by the transition probabilities and pij represents, for i and j

both integers between 0 and Ns, the probability of entering state j starting from

state i. If the transition probabilities are independent of time then the chain is said

to be homogeneous. The transition probabilities leaving any state, i, must sum to

unity:
∑Ns

j=0 pij = 1. Section 2.3 presented a Markov chain analysis of the mean

search time. One problem with this type of graph when used as to analyze a search

is that the amount of time spent examining any particular state cannot be easily

incorporated into the graph. The Markov chain inherently operates in discrete-time
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where transitions from one state to another occur at integer multiples of some basic,

minimum unit of time. If each state has associated with it some examination time

which is an integer multiple of this minimum unit of time, then extra states can

simply be added to the graph. This produces an entirely different graph and doesn’t

allow these examination times to be easily parameterized. One way around this is to

associate this examination time with the transition. This leads to the next type of

graph discussed in this section, a Markov chain with reward.

As shown in Figure 3.3b, a Markov chain with reward has the associated transition

probabilities between states as well as transition rewards, rij. A reward may also be

associated with a single state, i, by the relationship:

ri =
∑

j

pijrij (3.1)

The expected reward associated with a transition from state i is denoted ri. The

advantage of this type of structure, as alluded to earlier, is that the independent

times associated with the various states can now be modeled as a transition reward.

These times may include examination times (or dwell-times), false alarm penalty

times, etc. A vast body of literature exists pertaining to Markov chains with rewards,

e.g., see [14]. These graphical structures form the basic building block of Markov

Decision Theory.

The third type of graph shown in Figure 3.3c is a signal flow graph. The branches

between states are known as path gains and are functions of the complex variable z.

As was seen in Section 2.4, the signal flow graph is a very useful tool for analyzing
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search performance. It will be assumed that the variable, z, is not a function of

the transition between states. One example where z is a function of the transition,

however, results in a Markov chain with transition probabilities which are complex.

For instance, if the transition probability is pik and the transition reward is rik, then

setting the path gain to pik + jrik where j is the imaginary number,
√
−1, produces

a signal flow graph in which the path gain variable z is indeed a function of the

transition. The other possibility is that z remains independent of the transition and

the path gains are indeed functions of this complex variable. For the same transition

probability and reward just mentioned the path gain can be set to

fik(z) = pikz
rik (3.2)

If the reward, rik, is the amount of time required to transition from state i to state k

then the moment generating function of the search time can be determined from the

graph, as described in Section 2.4.

Since Markov decision theory and the dynamic programming algorithm work on

Markov chains with rewards, a signal flow graph with path gains given in (3.2) forms

an alternate framework for Markov decision theory. Thus the dynamic programming

algorithm can be generalized when (3.2) is not imposed, but the path gain is left as

some arbitrary function of z and another function, rij(z), is also associated with each

transition. This type of graphical structure, shown in Figure 3.3d, is termed a signal

flow graph with rewards.
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Having briefly reviewed several specific types of graphs, we now return to the

general search graph of Figure 3.2 and discuss possible applications of it as well as

some general techniques for reducing the search time. Specifying a search algorithm

sets restrictions and modifies the basic graphical structure as per the algorithm. One

specific example would be to prune the branches of the graph such that each state

only had one exit path (other than possibly a path to the termination state). In

order to cover the entire search space, this pruning must be done such that all states

are still connected. Thus, this pruning is done in such a way that the graph has

only one cycle, which is of length Ns. This implies that the sequence mapped out

by the state transitions is simply a permutation of the Ns states of the graph. This

simple search algorithm makes sense intuitively since revisiting incorrect states only

increases the search time. As was seen in Section 2.4, assuming the specific search

permutation is ε(n) for states n = 0, 1, · · · , Ns− 1 leads to the graph shown in Figure

2.6. Minimization of the search time by selecting the best permutation, ε(n), was

investigated in Chapter 2.

3.2 Self-Similar Signal Flow Graphs

The graphical structure introduced here will be required for the search analysis of

Chapter 5. This structure is known as a self-similar signal flow graph and one example

is shown in Figure 3.4. This is an extension of the generalized signal flow graph of

Section 2.4. This structure is useful when there exists an intermediate stage prior to

terminating the search. This intermediate stage itself represents a search which, in
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Figure 3.4: Self-similar signal flow graph with two rings

general, can be from a completely new search space. The example shown in Figure

3.4 consists of only an outer ring, which is defined as a circular arrangement of states

as in a search graph, and Ns inner rings. In general, however, many more levels are

possible and it is also possible for more than one state to connect into and out of

the rings above and below the current ring. The final state which indicates search

termination is labeled the acquisition state, ACQ. The two ring example shown

in Figure 3.4 is sufficient for the analysis of Chapter 5 where the process of fine

acquisition is examined. Now, however, the general subject of multi-ring self-similar

signal flow graphs is briefly discussed.

If the outermost ring of the self-similar signal flow graph represents the search

space S0 with |S0| = N0 states, then the next ring consists of N0 graphs, each repre-

senting a new search space. It will be assumed that the size of these new spaces is
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constant across this inner ring, so that each graph in the ring has N1 states. The next

ring will consist of N1 graphs each of size N2, and so on. This is depicted graphically

in Figure 3.5. The total number of states, Ns, in this r-ring self-similar signal flow

graph, not accounting for the termination state, is found to be:

Ns =
r−1∑
k=0

k∏
i=0

Ni (3.3)

If each of the termination states in the center of the final ring is considered to be

the same state then there is obviously only one such state. However, if each of these

states is distinct then the total number of these acquisition states, denoted as Na, is

as follows:

Na =
r−2∏
i=0

Ni (3.4)

As before
∏−1

i=0(·) is defined to be unity. One interesting observation of (3.3) is the

recurrence of this type of summation of a product, e.g., see (2.14), (2.32), or (2.44).

Under the assumption that only one acquisition state exists, one can compute an

overall generating function into this state in precisely the same way that was done

in Section 2.4. One straightforward way of producing this generating function is to

simply reduce the self-similar signal flow graph to the generalized form of Figure 2.6.

Such a reduction is always possible and reveals one of the main reasons the graph

has been termed self-similar. The other reason comes from the fact that if one starts
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Figure 3.5: Self-similar signal flow graph with r rings

with the graph of Figure 2.6 then ‘examination’ of any path gain into the acquisition

state reveals a new circular graph identical in structure to the outer graph.
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The process of fine acquisition to be studied in Chapter 5 will use the graph

introduced in this section to determine the search performance for a number of differ-

ent stopping and verification criteria. Several specific stopping criteria are examined

in the following sections. The first is a simple exhaustive search of the entire fine

acquisition uncertainty region and leads to a stopping time which is deterministic. A

second, more general, example is seen in Section 3.2.2 where random stopping time

verification algorithms are analyzed. This leads to the general discussion of sequential

search analysis in Section 3.3.

3.2.1 Deterministic Stopping Time

The graph for the example currently under consideration is shown in Figure 3.6.

Recall from Section 1.3 that the multipath channel consists of arrival paths clustered

into groups. The job of the coarse acquisition search is to locate this cluster while the

fine acquisition process attempts to locate a set of useable paths within this cluster.

The end result is basically a channel estimate that can be used for data detection

and for optimum performance in the data detector the strongest paths should be

estimated. One way in which these strongest paths can be located, or any set of

paths for that matter, is to simply search the location immediately adjacent to the

coarse search detection point, say a fixed amount in either direction. For the hybrid

case there exists a total of M observers and here it is assumed that all M of these

observers are diverted to fine search from coarse search. Thoughts about the general
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resource allocation problem of diverting some smaller number of observers to the fine

search are discussed in Chapter 6.

For the example currently being considered, the kM bins to the right of the

current bin will be searched followed by the kM bins to the left. The bins with

the largest observed values (correlator magnitude) will be chosen as the strongest

paths. If these largest observations satisfy some sort of verification criterion then the

search is terminated, otherwise it continues along the outer ring. Since all 2kM bins

surrounding the current bin will be searched, the order in which they are searched is

irrelevant.

As can be seen from the graph of Figure 3.6 the coarse search exits the outer ring

at state ε(n) as per the path gain H̃ε(n)(z). This path gain is a function of the coarse

search detection criterion and in its simplest form is

H̃ε(n)(z) = Pε(n) (3.5)

Here the transition probability, Pε(n), is inherently conditional on whether or not

state ε(n) is a proper detection state. This will become more evident shortly when

a specific example involving the detection and false alarm probabilities is examined.

The function G̃ε(n)(z) determines when the next state in the coarse search is visited

and keeping in line with the path gain just defined yields

G̃ε(n)(z) =


1− Pε(n) if n /∈ B(

1− Pε(n)

)
z if n ∈ B

(3.6)
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Figure 3.6: Self-similar signal flow graph representation of a fine acquisition search
with a fixed, deterministic stopping time and M observers

.

As in Section 2.5, the boundary set is defined as B = {M−1, 2M−1, · · ·, Ns−1} and

only upon exiting one of these states has a dwell-time elapsed in the coarse search.

Again M is assumed to divide Ns evenly.

The states comprising the inner ring of Figure 3.6 are labeled ε(n) + 1, ε(n) +

2, · · · , ε(n) + kM, ε(n) − 1, · · · , ε(n) − kM where the addition and substraction is

performed modulo Ns. Most of the path gains around this inner ring are simply unity

and only after M consecutive states have been visited has a single dwell-time elapsed
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as evident by the path gain of z. Once all 2kM states have been visited in the inner

ring, which will require 2k dwell-times, either the search terminates or the coarse

search continues on the outer ring. This is determined by the path gains z · F̃ε(n)(z)

and z · Ẽε(n)(z). The extra factor of z in these path gains is due to the dwell-time

required for the last group of M observations, thus completing the search of the 2kM

state uncertainty region about state ε(n). F̃ε(n)(z) is a function of the verification

criterion which, for this example, is simply

F̃ε(n)(z) =


Pv,ε(n) · z if n ∈ I

0 else

(3.7)

The verification probability, Pv,ε(n), is set by the stopping criterion, properly selected

to ensure that the strongest paths are indeed strong enough for data detection. The

verification probability will be discussed in more detail shortly and will be left arbi-

trary for now so that the mean search time can be parameterized without selecting a

particular verification criterion. The last function to be defined takes the search from

the inner ring back to the outer ring. Here it is assumed, as was the case in Sections
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2.4 and 2.5, that a final level of verification exists which confirms with high proba-

bility that the search should have indeed ended. This assumption will be removed

shortly and the functions F̃ε(n)(z) and Ẽε(n)(z) will be redefined accordingly.

Ẽε(n)(z) =



1− Pv,ε(n) if n ∈ I and n /∈ B

(1− Pv,ε(n))z if n ∈ I and n ∈ B

1− Pv,ε(n) + Pv,ε(n)z
J if n /∈ I and n /∈ B

(1− Pv,ε(n))z + Pv,ε(n)z
J+1 if n /∈ I and n ∈ B

(3.8)

As was mentioned earlier, the self-similar nature of the graph of Figure 3.6 allows for a

reduction to the generalized form of Figure 2.6. The path gains for this representation

are:

Hε(n)(z) = H̃ε(n)(z) · F̃ε(n)(z) · z2k (3.9)

Gε(n)(z) = G̃ε(n)(z) + H̃ε(n)(z) · Ẽε(n)(z) · z2k (3.10)

Substituting (3.5), (3.6), (3.7), and (3.8) into the above paths gain equations reveals

that:

Hε(n)(z) =


Pε(n) · Pv,ε(n) · z2k+1 if n ∈ I

0 else

(3.11)
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Gε(n)(z) =



1− Pε(n) + Pε(n) · (1− Pv,ε(n)) · z2k if n ∈ I, n /∈ B

(1− Pε(n)) · z + Pε(n) · (1− Pv,ε(n)) · z2k+1 if n ∈ I, n ∈ B

Pε(n) ·
[
1− Pv,ε(n) + Pv,ε(n) · zJ

]
z2k + 1− Pε(n) if n /∈ I, n /∈ B

Pε(n) ·
[
1− Pv,ε(n) + Pv,ε(n) · zJ

]
z2k+1 + (1− Pε(n)) · z if n /∈ I, n ∈ B

These path gains can then be used directly to find the mean acquisition time, e.g.

see (2.50). The verification probability is computed directly based upon the specific

verification criterion selected. For example, the scenario involving the M largest

observations exceeding some predetermined value will be examined in Chapter 5.

There, the verification probability will be determined from the order statistics of the

non-IID collection of observations. As will be seen in Chapter 5, for the verification

process to be accurate it is required that the verification probability be as large as

possible for proper detection bins, n ∈ I, and as small as possible for the other bins,

n /∈ I. As can be seen from the path gains just listed above, this requirement also

minimizes the mean acquisition time. Specifically, if Pv,ε(n) = 1 when n ∈ I and

zero otherwise, then the acquisition time is minimized with respect to the verification

probability. For now, however, the effect of verification on the acquisition time will

be examined by directly varying the verification probability. Two example scenarios

are considered below. The first case is no verification and the second is verification

at low signal-to-noise ratios.
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No Verification

For no verification the probability, Pv,ε(n), is set to unity. The path gains for this

situation become:

Hε(n)(z) =


Pε(n) · z2k+1 if n ∈ I

0 else

(3.12)

and

Gε(n)(z) =



1− Pε(n) if n ∈ I and n /∈ B

(1− Pε(n)) · z if n ∈ I and n ∈ B

1− Pε(n) + Pε(n) · zJ+2k if n /∈ I and n /∈ B

(1− Pε(n)) · z + Pε(n) · zJ+2k+1 if n /∈ I and n ∈ B

(3.13)

For illustrative and comparative purposes, assume that the transition probabilities,

Pε(n), are defined in terms of constant detection and false alarm probabilities, PD

and PFA, respectively. Immediately it is seen that (3.13) is equivalent to (2.60)

with the false alarm penalty time replaced by the sum of verification time and false

alarm penalty time, i.e., J is replaced by J + 2k. In Section 2.5, the verification

time was not accounted for, but if it had been then (2.59) would have simply been

Hε(n)(z) = PDz2k+1 for n ∈ I and zero otherwise. This is precisely the path gain in

(3.12). Thus the mean search time results of Section 2.5, written as MSTcoarse(J),

and the figures therein yield the mean search time here, denoted MSTfine(J − 2k)
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for all other parameters held constant. Both these mean search times are functions

of J and are related as follows:

MSTfine(J − 2k) = MSTcoarse(J) + 2k (3.14)

Verification at Low Signal-to-Noise Ratios

As will be seen in Chapter 5, as the signal-to-noise ratio is decreased the verification

probabilities for bins in the detection set approach the verification probabilities for

bins outside the detection set. Thus for adequately small signal-to-noise ratios the

verification probability can be assumed constant, say Pv. The mean search time can

then be minimized with proper selection of Pv. One way to find the minimum mean

search time is to solve for Pv in the equation:

d

dPv

(
d

dz
PACQ(z|Pv)|z=1

)
= 0 (3.15)

Instead of solving this equation, which is a complicated endeavor, we simply plot

several specific examples of the mean acquisition time versus Pv, as shown in Figures

3.7 through 3.10. These results are plotted for Ns = 16 bins in the search space

and the mean search time is measured in terms of the number of states visited. The

number of detection bins, K, is varied from 1 to 16. The state number of the first of

these detection bins is assumed uniform on the discrete set 0, 1, · · · , 15 and the initial

distribution is πε(0) = 1 so that (2.57) yields the mean search time. Notice from these

graphs, that the K = 16 case is independent of the false alarm penalty time, J , since
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there are no false alarms if all bins in the search space are detection bins. Figures

3.7 and 3.8 show the results for a linear and bit reversal search, respectively, and for

a small verification time of 2k = 4. Figures 3.9 and 3.10 show results for a large

verification time of 2k = 200.
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Figure 3.7: Mean search time versus constant verification probability, Pv, for a linear
search with K consecutive detection bins out of Ns = 16 total bins, constant detection
and false alarm probabilities PD = 0.9 and PFA = 0.1, false alarm penalty time as
shown, a verification time of 2k = 4, and M = 2 observers.
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Figure 3.8: Mean search time versus constant verification probability, Pv, for a bit
reversal search with K consecutive detection bins out of Ns = 16 total bins, constant
detection and false alarm probabilities PD = 0.9 and PFA = 0.1, false alarm penalty
time as shown, a verification time of 2k = 4, and M = 2 observers.
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Figure 3.9: Mean search time versus constant verification probability, Pv, for a linear
search with K consecutive detection bins out of Ns = 16 total bins, constant detection
and false alarm probabilities PD = 0.9 and PFA = 0.1, false alarm penalty time as
shown, a verification time of 2k = 200, and M = 2 observers.
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Figure 3.10: Mean search time versus constant verification probability, Pv, for a bit
reversal search with K consecutive detection bins out of Ns = 16 total bins, constant
detection and false alarm probabilities PD = 0.9 and PFA = 0.1, false alarm penalty
time as shown, a verification time of 2k = 200, and M = 2 observers.
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The verification probability which minimizes the mean search time is seen from

Figures 3.7 through 3.10 to be a function of the search type, the false alarm penalty

time, and the verification time. In general this minimizing verification probability is

a function of all the system parameters. However, a couple observations are apparent.

Firstly, it is seen that for a sufficiently small false alarm penalty time the mean search

time is minimized when Pv = 1. Secondly, with only a single detection bin, K = 1,

the mean search is also minimized for Pv = 1. This scenario, however, is not of

much interest when examining UWB acquisition in multipath. Lastly, it is seen for

all cases examined that the bit reversal search produces a mean search time which

decreases monotonically with increasing verification probability, independent of the

various other parameters. Thus when using the bit reversal search, the verification

process employed should attempt to drive Pv as close to unity as possible to minimize

the average search time. As a general note, all four of the aforementioned graphs

were generated for M = 2 observers. The same general results mentioned here were

also seen for M ranging from 1 to 16.

As just discussed, the verification probability affects the mean search time. How-

ever, the accuracy of the overall decision is also affected by the selection of verification

criterion and thus an inherent tradeoff exists between decision accuracy and mean

search time, as discussed at the beginning of this chapter and illustrated in Figure

3.1. In order to see this tradeoff for the particular example under consideration we

remove the false alarm penalty time and assume that no second level of verification

exists. The probability of correctly terminating the search can be computed as a
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function of Pv which can then be related back to the mean search time producing

the desired search operating characteristic curve. The path gains of Figure 3.6 are

redefined as follows, allowing for incorrect decisions:

F̃ε(n)(z) =


Pv · z if n ∈ I

0 if n /∈ I
(3.16)

Ẽε(n)(z) =


1− Pv if n /∈ B

(1− Pv) · z if n ∈ B
(3.17)

The path gains, G̃ε(n)(z) and H̃ε(n)(z), remain unchanged. Substituting these new

path gains into (3.9) and (3.10) for constant detection and false alarm probabilities,

PD and PFA, respectively yields:

Hε(n)(z) =


PD · Pv · z2k+1 if n ∈ I

0 if n /∈ I
(3.18)

Gε(n)(z) =



PD · (1− Pv) · z2k + 1− PD if n ∈ I, n /∈ B

PD · (1− Pv) · z2k+1 + (1− PD) · z if n ∈ I, n ∈ B

PFA · (1− Pv) · z2k + 1− PFA if n /∈ I, n /∈ B

PFA · (1− Pv) · z2k+1 + (1− PFA) · z if n /∈ I, n ∈ B

(3.19)
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The probability of correctly terminating this hybrid search is found as Pc = PACQ(1)

which, because of the uniform nature of the the first detection bin, k1, is:

Pc =
1

Ns

Ns−1∑
k1=0

PACQ(1|k1) (3.20)

Here PACQ(1|k1) is a function of k1 through the path gain dependence on the index

set, I, as is also the case when computing the mean search time in this fashion. Figure

3.11 shows this probability as a function of the false alarm probability for the various

parameters listed. Because of the method in which the hybrid search is performed,

i.e., redistributing a single search permutation amongst the various observers, Pc is

independent of the number of observers, M . Computing the mean search time for the

same parameters as shown in Figure 3.11 allows the search operating characteristic

curve of Figure 3.12 to be generated. The mean search time is in units of the number

of states visited. Notice that the bit reversal search lies above the linear search for

most values of PFA. Also, if the number of observers, M , is considered to be a measure

of complexity, Figure 3.12 reveals that as complexity increases the curves are pushed

upward and to the left. This phenomenon was discussed at the beginning of this

chapter and illustrated in Figure 3.1.
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Figure 3.11: Probability of correctly terminating search, Pc, versus false alarm prob-
ability, PFA, for Ns = 16, PD = 0.9, K = 2, Pv = 0.7, 2k = 4, and the search
permutation as shown.

Figure 3.12: Search operating characteristic generated by varying PFA for various
values of M where Ns = 16, PD = 0.9, K = 2, Pv = 0.7, 2k = 4, and the search
permutations are as shown.
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3.2.2 Random Stopping Time

The end result of the fine acquisition process is a reliable set of estimates for M

paths of the multipath channel. The previous section performed an exhaustive search

of some fixed offset around the coarse acquisition termination point, ε(n), by first

searching some fixed amount to the right then by the same fixed amount to the left.

Selection of this fixed amount assumes a certain amount of knowledge about the delay

spread of the channel, not necessarily a good assumption. One slight modification,

which alleviates this problem to some extent, would be to allow intermediate checks

after each dwell-time, i.e., after each group of M observations has been made. For

instance, while searching the fine acquisition uncertainty region if all M observations

(assumed to be observations of consecutive bins) are sufficiently small then with high

probability the group of observers has slid past the detection set, i.e., the multipath

‘cluster’. At this point several options are possible. The option analyzed here is

shown in Figure 3.13. As can be seen, at each dwell-time the acquisition state and

the intermediate state, N , can be entered and both path gains are functions of the

stopping and verification criteria. If the stopping criterion is satisfied but the verifi-

cation criteria is not, then state N is entered which leads directly to the next state,

ε(n + 1), in the coarse search. Changes to the search order of the fine acquisition

uncertainty region have not been considered here. The moment generating function

for an arbitrary search permutation of the fine acquisition uncertainty region can be

found in Appendix D.
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Figure 3.13: Self-similar signal flow graph representation of a fine acquisition search
with a random stopping time and M observers

.

Collapsing the graph of Figure 3.13 into the generalized form of Section 2.4 pro-

duces the following overall path gains:

Hε(n)(z) = H̃ε(n)(z) ·
2k∑
i=1

zi · F̃ε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z) (3.21)

Gε(n)(z) = G̃ε(n)(z) + H̃ε(n)(z) ·
2k∑
i=1

zi · Ẽε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z) (3.22)
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The product
∏−1

i=0(·) is again defined to be unity. Note that if D̃ε(n),j(z) = 1 for

all j, F̃ε(n),i(z) = F̃ε(n)(z) and Ẽε(n),i(z) = Ẽε(n)(z) both for i = 2k and zero for

i = 0, 1, · · · , 2k − 1 then the results of the previous section are obtained.

One alternate method of fine acquisition is now discussed. Previously, as indicated

in Figure 3.13, all the bins to the right of ε(n) were examined followed by all the bins to

the left. At any dwell-time the search can exit the verification stage by either acquiring

or returning to coarse acquisition. An alternate approach is shown in Figure 3.14. In

this approach, the fine acquisition procedure searches to the right of ε(n) until some

stopping criterion is satisfied then searches to the left until some (possibly different)

stopping criterion is satisfied. As can be seen in Figure 3.14, the intermediate state,

N1, is entered only by the bins to the right of ε(n) and this intermediate state leads

directly to the first bin to the left of ε(n). The intermediate state, N2, leads directly

to the next state in the coarse search, ε(n + 1), and is entered only from those states

to the left of ε(n). Possible effects on the search performance due to first searching

the bins to the left followed by searching to the right has not been considered here.

The generalized path gains for this approach are as follows:

Hε(n)(z) = H̃ε(n)(z) ·

[
k∑

i=1

zi · F̃ε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z) (3.23)

+

(
k∑

i=1

zi · Ẽε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z)

)
·

(
k∑

i=1

zi · F̃ε(n),i+k(z)
i−1∏
j=1

D̃ε(n),j+k(z)

)]

116



N2

N1

ACQ

�

� � 1�n�

� � Mn�

�� � Mn�
1

� �n�

�

�
M2

� �n�
�

kM

� � 1�n�

�� � Mn�

� ��n�
kM

1

1

1

1

1

1

1

1

� �� �zH n�
~

� �n�
� �1�n�

� � � �zG n�
~

1

� �
� �z

Ez kn 2,
~

�

� �
� �z

Fz

k
n

2,~
�

� � � �z
Ez

n
1,

~
�

� � � �z
F

z

n
1,

~
�

�

�
�
� �z

E
z

n
2,

~ �
�

� � � �z
Ez

k
n

1
,

~

�

�
�
�
�� z

F
z

k
n

,
~ �

�

� �
� �z

F
z

n
2,

~ ��

� � � �zFz
kn 1,

~
��

� � � �zDz n 1,

~
��

� � � �zDz n 2,

~
��

� � � �zEz kn ,

~
��

� � � �zDz kn 1,

~
�� �

1

Figure 3.14: Self-similar signal flow graph representation of an alternate fine acquisi-
tion search with a random stopping time and M observers

.

For simplicity in representing this path gain D̃ε(n),k(z) and Ẽε(n),k(z) are defined to

be equal.

Gε(n)(z) = G̃ε(n)(z) + H̃ε(n)(z) ·

(
k∑

i=1

zi · Ẽε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z)

)
· (3.24)(

k∑
i=1

zi · Ẽε(n),i+k(z)
i−1∏
j=1

D̃ε(n),j+k(z)

)
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3.3 Sequential Analysis Using Graphs

Sequential analysis techniques applied to detection and search problems allow for a

reduction in the average number of observations required to achieve a fixed detection

probability. Such techniques have already been used for UWB acquisition [66]. Here

the self-similar signal flow graph introduced in the previous section is used to outline

the analysis of a single correlator search scheme involving sequential detection. The

specific graph used for this analysis is shown in Figure 3.15 where an upper limit,

kd, on the amount of time spent dwelling at any state is assumed. This limit will be

removed shortly by allowing kd to increase toward +∞.

Here the dwell-time between states is reduced from a complete code period, as in

the previous section, to that of a single frame time, or single observation time. The

generalized path gains can be computed as follows:

Hε(n)(z) = H̃ε(n)(z) ·
kd∑
i=1

zi · F̃ε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z) (3.25)

Gε(n)(z) = H̃ε(n)(z) ·
kd∑
i=1

zi · Ẽε(n),i(z)
i−1∏
j=1

D̃ε(n),j(z) (3.26)

The path gains, Ẽε(n),i(z) and F̃ε(n),i(z), are functions of the i independent observa-

tions of state ε(n). Specifically, assume that fi is a sequence of real numbers generated

from the set of i observations of the state ε(n). One example is the sample mean of all

i observations. The path gains Ẽε(n),i(z), F̃ε(n),i(z), and D̃ε(n),i(z) can now be defined
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Figure 3.15: Self-similar signal flow graph representation of a search with sequential
detection and M = 1 observer

.

in terms of two arbitrary thresholds, T0(i) and T1(i), which are shown as functions of

i to be as general as possible.

Ẽε(n),i(z) = Pr(fi ≤ T0(i)) (3.27)

F̃ε(n),i(z) = Pr(fi ≥ T1(i)) (3.28)

D̃ε(n),i(z) = Pr(T0(i) < fi < T1(i)) (3.29)
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The resulting moment generating function, PACQ(z) now yields a complete statistical

description of the sequential detection problem. Recall that the amount of time spent

dwelling on any particular state was upper bounded at kd dwell-times. Taking the

limit with respect to kd yields the moment generating function, PSEQ(z), for the

unbounded sequential detection problem:

PSEQ(z) = lim
kd→∞

PACQ(z) (3.30)

The mean acquisition time and the probability of correct termination can then

be determined using this moment generating function as discussed in Section 2.4.

Although it is not discussed here, the hybrid case of M > 1 observers is also possible

in the current framework.
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Chapter 4

Coarse Acquisition of UWB

Systems

In order for any type of data detector to properly function the frame time and the

code hopping sequence, as discussed in Chapter 1, must first be synchronized. For

the multipath data detector, such as the RAKE receiver of Section 1.6, some informa-

tion about the multipath channel must also be known. In spread spectrum systems,

synchronization typically occurs prior to channel estimation because of low SNR envi-

ronments. This scenario will be assumed here. In fact, the final stage of acquisition,

termed fine acquisition as discussed in the next chapter, produces channel estimates.

These channel estimates are simply estimates of the strongest paths within the mul-

tipath cluster as discussed in Section 1.3. The current chapter deals with coarse

acquisition which is simply the process of locating the multipath cluster within the

frame time. Section 4.1 deals with acquisition when no time-hopping code is present.

Since no time-hopping code is present only acquisition of the frame time needs to
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occur before data detection. Section 4.2 assumes a time-hopping code is present and

discusses the process of joint frame and code acquisition. These scenarios are first

examined for the single-user case with consideration given in Section 4.4 to acquisition

in the presence of multiple users.

4.1 Single User Frame Acquisition of Uncoded

UWB Systems

In this section, as in the next, it is assumed that the multipath channel does not

vary significantly with time. For a UWB system with only a single user a time-

hopping code would not be required thus eliminating the cnTc term in (1.4). Also,

one possibility is that the UWB system first acquires without any coding and then

after acquisition begins communicating with a specific time-hopping code. At any

rate, the current scenario helps to understand the situation discussed in the next

section. Also removed is the data term, as it will be assumed that the acquisition

occurs without any data modulation. Thus the UWB received signal becomes

s(t) =
√

Ep ·
∞∑

n=0

Lp−1∑
k=0

ak · p(t− nTf − τk) (4.1)

For a fixed multipath channel, i.e., one that doesn’t vary with time, the only random

quantity will be the first path arrival time, τ0. The ak terms and the inter-arrival

times, ∆τk = τk − τk−1, are assumed to be deterministic quantities. Here τ0 will

be assumed uniform from 0 to Tf . It should be noted that the received signal is
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truncated to the first Lp paths, where for the examples below Lp will be set to 300.

The multipath channel to be considered will be determined from the sample data of

Section 1.4, i.e., see Figure 1.7. Figure 1.9 reveals that for Lp = 300 roughly 85% of

the energy in the measured waveform has been taken into account.

Shown in Figure 4.1 is a single correlator receiver. The value of ∆ in the integrator

limits is set by the effective time width of the pulse shape. The template waveform is

v(t) =
∞∑

m=0

p
(
t−mTf − ε(m mod N)

)
(4.2)

The limits of the integrator are only over the jth frame’s search location. This

search location is determined by a search algorithm εn for n = 0, 1, · · · , N − 1, as

discussed in Chapter 2 1. Thus, ε(m mod N) changes every frame time and represents

the ‘bin’ center where the frame time is divided into N equally spaced bins. A simple

acquisition algorithm for multiple correlators as in a selective RAKE receiver would

be to divide the search among the correlators as discussed in Section 2.5. For now

only the single correlator receiver structure will be considered.

The signal portion of the correlator input, as derived from (1.4) and (1.10), is

s(t) =
√

Ep

∞∑
n=0

Lp−1∑
k=0

akp(t− nTf − τk) (4.3)

1The truly random search would only need the indexing εm for m = 0, 1, 2, · · · since it would be
random and independent of the previous frames.
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Figure 4.1: Single Correlator Receiver

This is an infinite energy, periodic signal with power Ep/Tf . The correlator output,

zj, has a signal and noise component, sj and nj respectively. The simplest, single-

dwell, acquisition scheme terminates the first time the correlator magnitude exceeds

some prescribed threshold, say
√

EpΥ where Υ is some normalized threshold. This

acquisition scheme was examined in Section 2.3 and is represented graphically in the

Markov chain of Figure 2.5. For now only this Markov chain approach is used to

analyze the acquisition time. The next section extends this analysis using the signal

flow graph approach as discussed in Sections 2.4 and 2.5. The transition probabilities

are seen to be

pn = p(j mod N) = Pr(|zj| ≤
√

EpΥ) for j = 0, 1, 2, · · · (4.4)

As will be seen shortly, zj is a function of the multipath parameters ak and ∆τk, which

are assumed deterministic, and τ0 which is uniform over a frame time. Thus, the mean

time to acquisition to be computed here is inherently conditioned on these multipath

parameters. The mean time to acquisition is properly denoted as E(TACQ|a, τ ). If
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a statistical model is introduced for the multipath channel, the results obtained here

are still useful. Namely, the unconditional mean acquisition time can be computed

as

E(TACQ) =

∫
a

∫
τ

E(TACQ|a, τ )f(a, τ ) da dτ (4.5)

Obviously this assumes that the joint probability density of the amplitude coefficients

and path delays, f(a, τ ), can be found.

The correlator output, zj, is easily seen to be a Gaussian random variable with

mean sj and variance var(nj). The noise component, nj, is that portion of the output

due solely to the AWGN, n(t), at the input. The mean of this noise process is

zero and the autocorrelation is simply N0δ(t1 − t2). In all the following expressions,

the substituted variable θj = jTf + ε(j mod N) is used. The noise component is now

computed quite easily as

nj =

∫ θj+∆

θj−∆

n(t)v(t)dt =
∞∑

m=0

∫ θj+∆

θj−∆

n(t)p(t−mTf − ε(m mod N)) dt (4.6)

Here we are only integrating over one portion of a frame and since the frames do not

overlap we see that the output noise sequence is independent and only one term in

the above sum survives, i.e., the m = j term.

nj =

∫ θj+∆

θj−∆

n(t)p(t− jTf − ε(j mod N)) dt (4.7)
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Using the substitution u = t − jTf − ε(j mod N) and noting that the noise process is

wide-sense stationary so that n(t) and n(t − jTf − ε(j mod N)) are equivalent in the

wide-sense 2 reveals the following:

nj =

∫ ∆

−∆

n(t)p(t) dt (4.8)

The mean and variance of nj are found to be 0 and N0, respectively. The output of

the multiplier in Figure 4.1 when signal is present, s(t) · v(t), is seen to be

√
Ep

[
∞∑

m=0

p(t−mTf − ε(m mod N))

]
·

[
∞∑

n=0

Lp−1∑
k=0

akp(t− nTf − τk)

]

=
√

Ep

∑
m

∑
n

∑
k

akp(t−mTf − ε(m mod N)) · p(t− nTf − τk) (4.9)

Several simplifying assumptions are now made. First, the frame time will be assumed

long enough with respect to the ‘delay spread’ of the multipath channel so that only

energy from the (m− 1)st frame will potentially spill into the mth frame 3. It is also

assumed that ε(m mod N) only varies over the mth frame. These assumptions, along

with neglecting the edge effects and potential overlaps of search locations within a

2This means that the first two moments are exactly equal.

3For shorter frame times the effect of inter-frame interference needs to be considered.

126



frame and between frames, reveal that the above summation in n is limited to m and

m− 1. Thus we see that s(t)v(t) is

√
Ep

∑
m

∑
k

akp(t−mTf − ε(m mod N)) · [p(t−mTf − τk)

+ p(t− (m− 1)Tf − τk)] (4.10)

The integrator output is now seen to be

√
Ep

∑
m

∑
k

ak

∫ θj+∆

θj−∆

p(t−mTf − ε(m mod N)) · [p(t−mTf − τk)

+ p(t− (m− 1)Tf − τk)] dt (4.11)

Here we are only integrating over one ‘bin’ of the jth frame and since we have already

accounted for any spillover of previous frames we see that m can only equal j in the

above summation. Thus we have at the output of the integrator

√
Ep

∑
k

ak

∫ θj+∆

θj−∆

p(t− jTf − ε(j mod N)) · [p(t− jTf − τk)

+ p(t− (j − 1)Tf − τk)] dt (4.12)

Again the substitution u = t − jTf − ε(j mod N) is used and the correlator output is

seen to be

sj =
√

Ep

∑
k

∫ ∆

−∆

p(t) ·
[
p(t + ε(j mod N) − τk)

+ p(t + ε(j mod N) − τk + Tf )
]
dt (4.13)
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Recalling the definition of Rpp(τ) as in (1.20) and the fact that ∆ was chosen suf-

ficiently large to yield a closed form expression, γ(τ), for Rpp(τ) as given in (1.33)

yields the following expression for the signal portion of the correlator output:

sj =
√

Ep

∑
k

ak ·
[
γ(τk − ε(j mod N)) + γ(τk − ε(j mod N) − Tf )

]
(4.14)

The possibility does exist for both γ(·) terms in the above sum to be near zero.

This indicates that that the search location εj is not near the multipath ‘cluster’.

Conversely, it is also possible for multiple terms to be significantly different from

zero. However, since the frame time is assumed to be large, the situation cannot

arise where both γ(τk − ε(j mod N)) and γ(τk − ε(j mod N) − Tf ) are non-zero. Recall

from Figure 1.1 that the data modulation format may be designed so as to prevent

the multipath ‘cluster’ from spilling into the next frame. However, prior to frame

synchronization it is possible for this spillover of energy to occur. This is the reason

that the two γ(·) terms are required in the above expression for the correlator signal

component output.

As mentioned earlier, the mean of the correlator output is simply the signal com-

ponent, E(zj) = sj. If the multipath parameters assume a statistical model then the

amplitude coefficients and path delays will be random variables. The mean of the

correlator output will then be random implying that the the correlator output has a

mixture distribution arising from a hierarchical model [7]. This is exactly the reason

that (4.5) is valid, i.e., for any two random variables X and Y the mean of X can be

found as E(X) = E(E(X|Y )).
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We have shown that the correlator output is Gaussian with mean sj and variance

N0. The transition probability, however, requires the probability of the event {|zj| ≤√
EpΥ}. This probability can be computed in a straightforward manner without

knowledge of the density function of R = |zj|. For completeness, however, this density

function is provided here. It can be shown (see Appendix 5A of [49], for example)

that the correlator magnitude has the following density function:

fR(r) =

√
2

πσ2
· exp

(
−r2 + s2

2σ2

)
· cosh

( s

σ2
· r
)

(4.15)

Here s = sj and σ2 = N0. The desired transition probability can be found by

integrating the above density function, although a simpler method exists. Namely,

one can directly compute this probability as

Pr(|zj| ≤
√

EpΥ) = Pr(−
√

EpΥ ≤ zj ≤
√

EpΥ)

= Fzj
(
√

EpΥ)− Fzj
(−
√

EpΥ) (4.16)

The distribution function, Fzj
(z), can be stated in terms of the Gaussian Integral

Function, or Q function as it is also called. Namely, a mean µ and variance σ2

Gaussian random variable, X, has the distribution function FX(x) = 1 − Q
(

x−µ
σ

)
where the Q function is simply

Q(x) =
1√
2π

∫ ∞

x

exp

(
−u2

2

)
du (4.17)
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As mentioned earlier, the absolute values of the path arrival times are not known

and thus only the relative path arrival times will be available. Rewriting the path

arrival times τk in terms of these relative path arrival times also allows for an explicit

relationship between the transition probabilities and the first path arrival τ0. This is

accomplished by noting that τk = τ0 + ∆τk, where ∆τk = τk − τ0. The relative path

arrival times, ∆τk, are determined from the channel sounding procedure (here from

the CLEAN algorithm on the measured results of a channel sounding experiment).

Thus the transition probability can be found as follows, where n = j mod N :

pn(τ0) = Pr(|zj| ≤
√

EpΥ) = (4.18)

1−Q

(√
Ep

N0

(
Υ +

∑
k

ak · [γ(τ0 + ∆τk − εn) + γ(τ0 + ∆τk − εn − Tf )]

))

− Q

(√
Ep

N0

(
Υ−

∑
k

ak · [γ(τ0 + ∆τk − εn) + γ(τ0 + ∆τk − εn − Tf )]

))

These transition probabilities can then be used to compute the performance for a

number of different acquisition algorithms as discussed in Chapter 2. For now the

simplest acquisition scenario will be investigated, namely the single-dwell case as

represented in Figure 2.5. Thus the mean acquisition time can be computed using

(2.32). Since the first path arrival time, τ0 is assumed uniform over the frame time,
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(4.5) must be used. The resultant mean acquisition time (in number of states visited)

is seen to be

E(TACQ) =
1

Tf

∫ Tf

0

1 +
N−2∑
m=0

m∏
n=0

pn(τ0)

1−
N−1∏
n=0

pn(τ0)

dτ0 (4.19)

The transition probabilities for the above expression are given in (4.18). Plots of

this result are shown below in Figure 4.4. The multipath channel used in computing

the transition probabilities is determined from the CLEAN algorithm of Section 1.4

with the data as per Figure 1.7 limited to Lp = 300 paths. Two of the searches

from Section 2.2 are investigated, the linear search and the bit reversal search. For

simplicity in dealing with this bit reversal search, the total number of bins is set to

N = 213 = 8192. It should be noted that the probability of correct termination, Pc,

may be rather poor for these scenarios due to the lack of any verification phase. The

purpose of the figures is simply to demonstrate the inadequacies of the linear search

versus the bit reversal search for the UWB acquisition problem. The probability Pc,

which is the same for either of the two searches examined below, can be improved at

the cost of increased acquisition time as discussed earlier. Due to a lack of verification,

a large false alarm rate will give meaningless results for the mean acquisition time.

To compensate for the current single-dwell example, the input Ep/N0 is set to a large

value, namely 50 dB. The normalized threshold, Υ, sets the detection and false alarm

probabilities, as well as the overall probability of correct termination and the mean

acquisition time. For the figures shown below, a normalized threshold of Υ = 0.05 is
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assumed. A proper threshold can be determined by examining the mean correlator

output, sj, which is shown in Figure 4.2. Since the input SNR is large, this threshold

can be lower and still produce a small false alarm rate. For illustrative purposes, the

first path arrival time is set to τ0 = 100 nsec in Figure 4.2.

For the mean correlator output shown in Figure 4.2, the transition probabilities

of (4.18) can be computed. Again for illustrative purposes, τ0 is set to 100 nsec. The

corresponding transition probabilities for the normalized threshold of Υ = 0.05 are

shown below in Figure 4.3. Notice the that since the input SNR is large, the transition

probabilities appear to be mostly limited to either 0 or 1. The curve in Figure 4.3

can be used to illustrate the behavior of (2.32), i.e., the integrand of (4.19). Recall

that the mean time from these expressions is given in terms of the number of bins

searched, not absolute time itself. Thus for N = 8192, the bin spacing is Tf/8192 or

0.1221 nsec.
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Figure 4.2: Normalized mean correlator output, sj/
√

Ep, for the reconstructed signal
of Figure 1.7, τ0 = 100 nsec, Tf = 1000 nsec, N = 8192 bins, and εn = n

N
· Tf for

n = 0, 1, · · · , N − 1.

Figure 4.3: Transition Probabilities, pn, for the reconstructed signal of Figure 1.7,
Ep/N0 = 50 dB, Υ = 0.05, τ0 = 100 nsec, Tf = 1000 nsec, N = 8192 bins, and
εn = n

N
· Tf for n = 0, 1, · · · , N − 1.
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Figure 4.3 reveals that since τ0 is set to 100 nsec and the SNR is large, the

transition probability is almost identically one for all bins up to approximately 100

nsec. It would be expected, then, that the mean acquisition time for a linear search

conditional on τ0 = 100 nsec should be somewhere around 100 nsec. This is indeed

the case, and can be easily explained using the integrand of (4.19). The denominator,

1 −
∏N−1

n=0 pn, is seen to be one since the product of the transition probabilities, pn,

will always be zero, as can be seen in Figure 4.3. The numerator will be the sum of

the run of 1’s in Figure 4.3 leading up to the first encountered zero. Thus the mean

acquisition time is derived from the the number of bins searched up to approximately

100 nsec, as expected. After this value in Figure 4.3, the sum contributes no more

terms because the product
∏m

n=0 pn will be zero for all remaining m.

The unconditional mean acquisition times as given in (4.19) are simply the means

of the curves in Figure 4.4. The mean acquisition time of the linear search (in number

of states visited) is found to be E(T ) = 3246.6, while the mean acquisition time for

the bit reversal search is much smaller at E(T ) = 28.7. Thus the bit reversal search is

roughly 113 times faster that the linear search for the multipath channel and system

parameters currently considered. Recall that a new state is searched every frame

time, so that multiplying these mean acquisition times by Tf yields the mean time

in units of seconds. If one examines Figure 4.3, it will be noted that although the

terminating hypotheses are not consecutive they can be viewed as approximately

consecutive over about 100 nsec. This implies that the K/N parameter of Section 2.2

is more or less 100/1000 = 0.1. Also the normalized mean acquisition times are seen
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Figure 4.4: Conditional mean acquisition time, E(T |τ0) in number of states visited,
for the reconstructed signal of Figure 1.7, Ep/N0 = 50 dB, Υ = 0.05, Tf = 1000 nsec,
N = 8192 bins.

to be E(T )/N = 3246.6/8192 = 0.396 and E(T )/N = 28.7/8192 = 0.0035 for the

linear and bit reversal searches, respectively. A plot of the results of Section 2.2 is

shown in Figure 4.5 for N = 8192. The curves are for ideal detection and false alarm

probabilities, as well as the assumption of consecutive terminating hypotheses as

explained in Section 2.2. These curves are labeled as ‘Ideal’ searches. Also shown are

the normalized mean acquisition times for the results computed in this section, labeled

as the ‘with multipath’ searches. Namely, the points (K/N,E(T )/N) = (0.1, 0.396)

and (0.1, 0.0035) are plotted for the linear and bit reversal searches, respectively. Even

though the true multipath does not lead to consecutive terminating bins, the results
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Figure 4.5: Comparison of Normalized Mean Acquisition Time for the Multipath
Channel versus ‘Idealized’ Results of Section 2.2 (N = 8192).

from such an assumption are seen to approximate quite well the multipath scenario

examined in this section.

4.2 Single User Acquisition of Coded UWB Sys-

tems

Here it will be assumed, as in the previous section, that the received pulse shape is

that of Section 1.1 and the multipath channel is as described in Section 1.3. Also, a
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time-hopping code will be present, as discussed in Section 1.2, so that at the channel

output the received signal, without any data modulation, is

r(t) =
√

Ep

∑
n

Lp−1∑
l=0

al · p(t− nTf − cnTc − τl) + n(t) (4.20)

The mean zero Guassian random process, n(t), is additive noise with autocorrelation

function N0δ(t1 − t2). The time hopping code assumed here, cn, is a length Nc

sequence of nonnegative integers and Tc is the code chip time. Appendix B discusses

one method for generating these time hopping codes. The frame time, Tf , is assumed

to be an integer multiple of the code chip time so that Tf = NfTc. The receiver and

transmitter frame times are assumed equal while the transmitter/receiver separation

is not known. This gives rise to a uniformly-random direct-path arrival-time over the

period of the received signal, thus implying that the direct path delay, τ0, is uniform

on [0, NcTf ).

At the receiver, a group of M correlators is present with received signal in (4.20)

acting as the input to each of these correlators. It is assumed that there are at

least as many arrival paths as there are correlators, i.e., M ≤ Lp. The received

signal is multiplied by an individual correlator template waveform, which for the mth

correlator is:

l(m)(t) =
∑

j

Nc−1∑
k=0

p(t− α
(m)
j,k − jNcTf ) (4.21)
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The time offset for the mth correlator template can can vary over a code period and

is set by the term α
(m)
j,k . This term is defined as

α
(m)
j,k =

(
(kNf + ck + k

(m)
β,j ) mod NfNc

)
Tc + β

(m)
r,j (4.22)

Proper code phase is accounted for with this term, as well as the proper timing offset

within each frame for an arbitrary time shift of β
(m)
j = k

(m)
β,j Tc + β

(m)
r,j which varies

over [0, NcTf ). The integer term k
(m)
β,j is a nonnegative integer and the remainder term

β
(m)
r,j varies over [0, Tc). The frame time is divided into N bins so that β

(m)
j can be

selected from a set of N ·Nc time offsets.

As discussed earlier, the codes considered here are short codes so that the cor-

relator dwell time is one code period in length. Straightforward analysis reveals the

output of the mth correlator: z
(m)
j = s

(m)
j + n

(m)
j where the correlator noise sequence,

n
(m)
j , is an IID sequence of mean zero, variance NcN0 Gaussian random variables.

The correlator output mean is

s
(m)
j =

√
Ep

(j+1)Nc−1∑
n=(j−1)Nc

Nc−1∑
k=0

Lp−1∑
l=0

al · γ(τl − α
(m)
j,k (4.23)

+c(n mod Nc)Tc − (jNc − n)Tf )

where the pulse autocorrelation function is given in (1.33). Now an example of the

correlation mean, normalized by
√

Ep, is shown where it is assumed that Tc = 10 nsec,

Tf = 1000 nsec, Nf = 100, Nc = 16, and N = 256. The normalized correlation mean,

computed at each of the bin centers for βj = j · Tf/N with j = 0, 1, · · · , N · Nc − 1,
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Figure 4.6: Normalized correlator mean for Nc = 16 and τ0 = 0 nsec

is shown in Figure 4.6 for τ0 = 0 nsec. The code sequence is {cn}Nc−1
n=0 = {0, 13,

52, 43, 61, 30, 26, 48, 21, 21, 48, 26, 30, 61, 43, 52}. This code sequence is based

upon techniques found in [47] and is a sequence of integers between 0 and 70 where

the maximum value of 70 provides some guard time in each frame. A method of

code design for rapid acquisition is studied in [12] for a slightly different modulation

scheme. See Appendix B for further details on code selection.

The generalized signal flow graph approach of Section 2.4 is now used to study the

acquisition of an ultra-wideband signal in dense multipath. The code length and the

number of bins per frame are given above, thus there are Ns = N ·Nc = 256·16 = 4096

bins in the uncertainty region. The code chip time and the frame time are Tc = 10

nsec and Tf = 1000 nsec, respectively, as above and the code sequence and multipath
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channel are also unchanged. Thus the normalized correlator mean of (4.23) and shown

in Figure 4.6 is now used. The acquisition process analyzed here first assumes a single

correlator and detection occurs when the correlator output crosses a predetermined

threshold. This is then extended to use multiple correlators for the hybrid search

using the results of Section 2.5.

The correlator output, zj = sj + nj, is Gaussian with mean sj and variance

NcN0. The probability of the jth code correlator output exceeding the threshold for

a detection threshold of Υ ·
√

Ep, where Υ is the normalized detection threshold, is:

Pj = Pr(|zj| > Υ ·
√

Ep) =

Q
(√ Ep

NcN0

· (Υ +
sj√
Ep

)
)

+ (4.24)

Q
(√ Ep

NcN0

· (Υ− sj√
Ep

)
)

The quantity sj is given in (4.23) and the function Q(x) is the Gaussian integral

function. The permutation ε(j) of the integers 0, 1, · · · , N · Nc − 1 is related to the

search variable βj as:

βj = ε(j) · Tf/N (4.25)
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The initial distribution is set by the uniform nature of the direct path arrival time,

τ0, so that πε(j) = 1/(N ·Nc). In the next section an alternate method of setting the

initial distribution is examined. The signal flow graph path gains in Figure 2.6 are

Hε(j)(z) =


Pjz if j ∈ I

0 else

(4.26)

Gε(j)(z) =


(1− Pj)z if j ∈ I

(1− Pj)z + Pjz
J+1 else

(4.27)

The index set I is selected based upon the number of detectable paths in the multipath

channel and for simplicity was selected as the first K = 50 bins. This assumption

of K consecutive bins is a reasonable assumption since the arrivals are clustered,

even though some paths within the cluster are small in amplitude. The mean search

time in (2.50) is shown in Figure 4.7. Here the normalized detection threshold, Υ,

is optimized for minimum mean acquisition time at each Ep/N0. Again, J is the

false alarm penalty time. Independent computer simulations have verified the results

shown in Figure 4.7. Some of these simulation results are compared in Table 4.1.

Another UWB acquisition example is shown in Figures 4.8, 4.9, and 4.10. The

code length for this example has increased to Nc = 64 while all of the other system

parameters remain unchanged: Tc = 10 nsec, Tf = 1000 nsec, Nf = 100, N = 256,

J = 1000. The code for this example is the 14th code (i = 14) from the p = 67 family

as described in Appendix B.
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Figure 4.7: Mean acquisition time for a single correlator, Tf = 1000 nsec, Tc = 10
nsec, N = 256, Nc = 16, J = 1000, and optimized threshold, Υ

Table 4.1: Comparison of the mean acquisition time with computer simulations for
Tf = 1000 nsec, Tc = 10 nsec, N = 256, Nc = 16, J = 1000, and an optimized
threshold, Υ
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Figure 4.8: Normalized correlator mean for Nc = 64 and τ0 = 0 nsec

Figure 4.9: Normalized correlator mean for Nc = 64 and τ0 = 0 nsec (same graph as
above shown over a narrower time scale)
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Figure 4.10: Mean acquisition time for a single correlator, Tf = 1000 nsec, Tc = 10
nsec, N = 256, Nc = 64, J = 1000, and optimized threshold, Υ

Another example is shown in Figures 4.11 and 4.12 where the code length has

increased to Nc = 256. The false alarm penalty time for Figure 4.11 is J = 1000

while the penalty time for Figure 4.12 is J = 100. All of the other system parameters

remain unchanged: Tc = 10 nsec, Tf = 1000 nsec, Nf = 100, and N = 256. The code

for these examples is the 194th code (i = 194) from the p = 257 family as described in

Appendix B. The differences in the two graphs show the acquisition performance as a

function of false alarm penalty time. As the signal-to-noise ratio increases the number

of false alarms decreases and both graphs converge to the same mean acquisition time.

At lower signal-to-noise ratios the acquisition time is dominated by the false alarm

penalty time and the asymptotic ratio of the mean acquisition times for the two
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graphs (as the signal-to-noise ratio decreases) approaches approximately the ratio of

the false alarm penalty times, 1000/100 = 10. Although this asymptotic limit is not

completely evident in the two figures, the table in Appendix A shows that this ratio

is approximately 10.
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Figure 4.11: Mean acquisition time for a single correlator, Tf = 1000 nsec, Tc = 10
nsec, N = 256, Nc = 256, J = 1000, and optimized threshold, Υ

Figure 4.12: Mean acquisition time for a single correlator, Tf = 1000 nsec, Tc = 10
nsec, N = 256, Nc = 256, J = 100, and optimized threshold, Υ
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A couple observations are evident from Figures 4.7, 4.10, 4.11, and 4.12. The

first observation pertains to both the linear and bit reversal search. Specifically, the

difference in code length between the various graphs increases by a factor of 4, i.e.,

Nc = 16, 64, and 256. In decibels this factor is equivalent to approximately 6 dB

which, from the figures just mentioned, is precisely the amount each of the curves

shifts with respect to Ep/N0 as the code length is increased.

The second observation from Figures 4.7, 4.10, 4.11, and 4.12 pertains only to the

bit reversal search. Specifically, at some point on each of the figures as the signal-

to-noise ratio decreases the mean acquisition time reaches a limit. Once this limit

has been reached, a decrease in the signal-to-noise ratio does not decrease the mean

acquisition time. This limiting, low signal-to-noise ratio mean acquisition time can

be approximated as discussed in Appendix A. The result is as follows:

E(TACQ) = 1 +
1

2
· (J + 1) ·

(
N ·Nc

K
− 1

)
(4.28)

Again this is in units of dwell-times and is multiplied by the dwell-time, Nc · Tf , to

yield the mean acquisition time in seconds. This result is for a normalized detection

threshold of zero, i.e., Υ = 0. For values above the threshold signal-to-noise ratio, the

optimum Υ is some non-zero value and for values below the threshold signal-to-noise

ratio the optimum Υ is zero. A specific example is considered next, but first this

interesting phenomenon is summarized as follows. As the observations become less

and less reliable so that verification is required at each observation it is best to search

the uncertainty region not in a linear fashion, but in such a way as to sufficiently
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spread the distance between observations. This, of course, applies when the detection

bins are clustered together in some local region.

Taking the Nc = 16 case as a specific example, Figures 4.13 and 4.14 show the

mean acquisition time for a linear and bit reversal search, respectively, for normalized

detection threshold values ranging from Υ = 0 to Υ = 15. The lower bounds from

both of these figures, as shown, give the minimum mean acquisition times of Figure

4.7. For the bit reversal search, Figure 4.14 shows that for signal-to-noise ratios below

approximately 6 dB the mean acquisition time is minimized when Υ = 0. For values

6 dB and above the mean acquisition time is minimum for some Υ > 0. Figure 4.15

shows the bit reversal mean acquisition time for Nc = 16 as a function of Υ at a

number of different signal-to-noise ratios.
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Figure 4.13: Mean acquisition time for a single correlator using a linear search, Nc =
16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, J = 1000

Figure 4.14: Mean acquisition time for a single correlator using a bit reversal search,
Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, J = 1000
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Figure 4.15: Mean acquisition time for a single correlator using a bit reversal search,
Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, J = 1000

4.3 Single User Hybrid Acquisition of Coded

UWB Systems

In this section coarse acquisition will be examined assuming multiple correlators are

present in the receiver. The analysis techniques examined in Section 2.5 are employed

here to determine the mean acquisition time of a UWB signal in dense multipath. The

direct path arrival time, τ0, is uniform over a code period so that the mean acquisition

time is the average over this arrival time, as shown in (2.58). With adequate bin

spacing, that is for sufficiently large values of N , it is reasonable to assume that

τ0 is uniform on the discrete set {k1 · Tf/N}Ns−1
k1=0 . This significantly reduces the
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computational complexity associated with generating the mean acquisition time by

allowing (2.57) to be used:

E(TACQ) =
1

Ns

Ns−1∑
k1=0

E(TACQ|k1) (4.29)

As before, Ns = N ·Nc and the conditional mean acquisition time is

E(TACQ|k1) =
d

dz
PACQ(z|k1)

∣∣∣∣
z=1

=
Num′ ·Den−Num ·Den′

Den2
(4.30)

The conditional moment generating function is given in (2.56) so that the numerator,

denominator, and the associated derivatives are:

Num =
Ns−1∑
i=0

Hε(i)(1)
i−1∏
j=0

Gε(j)(1) (4.31)

Num′ =
Ns−1∑
i=0

( i−1∏
j=0

Gε(j)(1)
)
·
[
H ′

ε(i)(1) + Hε(i)(1)
i−1∑
l=0

G′
ε(l)(1)

Gε(l)(1)

]
(4.32)

Den = 1−
Ns−1∏
i=0

Gε(i)(1) (4.33)

Den′ = −
Ns−1∑
i=0

G′
ε(i)(1)

Gε(i)(1)
·

Ns−1∏
j=0

Gε(j)(1) (4.34)
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The dependence of the conditional mean acquisition time on k1 occurs through the

path gains:

Hε(i)(z) =


Pε(i)	k1z if i ∈ I(k1)

0 else

(4.35)

Gε(i)(z) =



1− Pε(i)	k1 if i ∈ I(k1) and i /∈ B

(1− Pε(i)	k1)z if i ∈ I(k1) and i ∈ B

1− Pε(i)	k1 + Pε(i)	k1z
J if i /∈ I(k1) and i /∈ B

(1− Pε(i)	k1)z + Pε(i)	k1z
J+1 if i /∈ I(k1) and i ∈ B

(4.36)

As described in Section 2.5, a single search permutation, ε(n) is divided amongst all M

correlators and only after all M observations have been made has a dwell-time elapsed.

This is reflected in the path gains by the boundary set B = {M−1, 2M−1, · · · , Ns−1}

where it assumed that Ns/M is an integer. In the above path gains, the operator 	

represents modulo Ns integer subtraction. When both arguments x and y are integers

between 0 and Ns − 1, as is the case above, then x 	 y simply becomes x − y when

x ≥ y and Ns + x − y when x < y. The detection set as a function of k1, assuming

K consecutive detection bins as before, is I(k1) = {ε−1(k1), ε
−1(k1⊕ 1), · · · , ε−1(k1⊕

K−1)} where ⊕ represents modulo Ns integer addition. The transition probabilities,

Pj, are computed as per (4.24). The correlator means, sj, are computed a little

differently. Computation of these means in (4.23) is based upon the local template

timing offset term, αj,k, in (4.22). In the last section this term was a function of

the search permutation ε(n) via the expression ε(j) · Tf/N = kβ,jTc + βr,j. In this
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section, however, the search permutation has already been incorporated into the

path gains as shown above. Thus the correlator mean must be computed as per

j · Tf/N = kβ,jTc + βr,j, i.e., the correlator means are listed out linearly as a function

of j.

Some results are shown in Figures 4.16 and 4.17 for a code length of Nc = 16 and

for 1, 2, 4, 8, and 16 correlators. As can be seen from both graphs, the search time

for multiple correlators is always reduced relative to a single correlator. In fact, as

evident from the linear hybrid search of Figure 4.16, for sufficiently large values of

the signal-to-noise ratio the mean acquisition time for M correlators is simply the

mean acquisition time for a single correlator divided by M . As in the last section

the graphs show the mean search time minimized with respect to the normalized

detection threshold, Υ, and each correlator uses this same threshold.
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Figure 4.16: Mean acquisition time for M correlators using a hybrid linear search,
Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, J = 1000

Figure 4.17: Mean acquisition time for M correlators using a hybrid bit reversal
search, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, J = 1000
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4.4 Acquisition in the Presence of Multiple Users

Up until now a single transmitter has been assumed. This assumption will be removed

in this section and Nu active transmitters will be present. One of these transmitters

produces the signal of interest which is to be detected at the receiver while the remain-

ing Nu − 1 signals will contribute to multiple access interference (MAI). Each user

will have its own time-hopping code which is different than the user-of-interest. Also,

all the users are assumed to be spatially separated giving rise to different multipath

channels for each user. Here we will examine the output of a single correlator and not

the combined RAKE output since this single correlator output is sufficient to study

acquisition performance. Multi-user detection schemes exist which provide improved

performance in the presence of MAI [44] [16]. These concepts will not be examined

here, however, and the MAI is shown to be mean zero additive Gaussian noise which

is simply added to the thermal noise at the correlator output [46].

The kth user at the receiver input has the following form, where the superscript,

(k), represents the user number for k = 0, · · · , Nu − 1 as in Section 1.2.

s(k)(t) =

√
E

(k)
p

∑
n

Lp−1∑
i=0

a
(k)
i · p

(
t− nTf − c(k)

n Tc − τ
(k)
i

)
(4.37)
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The overall received signal is the sum of all the users and thermal noise, which can

be written as the sum of the signal-of-interest (SOI), multi-access interference (MAI),

and additive, white, Gaussian noise (AWGN):

r(t) = s(0)(t)︸ ︷︷ ︸
SOI

+
Nu−1∑
k=1

s(k)(t)︸ ︷︷ ︸
MAI

+ n(t)︸︷︷︸
AWGN

(4.38)

Here it is assumed, without loss of generality, that the signal-of-interest is represented

by the k = 0 transmitter. The local template will thus correlate the received signal

using the code sequence, c
(0)
m . This template is defined as in (4.21):

l(t) =
∑

j

Nc−1∑
m=0

p(t− α
(0)
j,m − jNcTf ) (4.39)

As before the search location and code phase is set by the time-offset parameter, α
(0)
j,m.

This parameter is a function of the search location, βj = kβ,jTc +βr,j, which can vary

over the entire code period.

α
(0)
j,m =

(
(mNf + c(0)

m + kβ,j) mod NfNc

)
Tc + βr,j (4.40)

The correlator output, zj = s
(0)
j +

∑Nu−1
k=1 s

(k)
j + nj, is determined as the product of

the received signal in (4.38) and the template in (4.39) then appropriately integrated

156



and summed over a code period as in Section 4.2. Analogous to (4.23), the signal

portion of the correlator output corresponding to the kth user is found to be

s
(k)
j =

√
E

(k)
p

(j+1)Nc−1∑
n=(j−1)Nc

Nc−1∑
m=0

Lp−1∑
i=0

a
(k)
i · γ(τ

(k)
0 + ∆τ

(k)
i − α

(0)
j,m

+c
(k)
(n mod Nc)

Tc − (jNc − n)Tf ) (4.41)

As before, γ(τ) represent the pulse autocorrelation function of p(t). The following

assumptions are made with respect to the multipath channel parameters and time-

hopping codes:

1. τ
(k)
0 is a sequence of IID random variables, each uniform on [0, NcTf ) for k =

0, · · · , Nu − 1

2. a
(k)
i and ∆τ

(k)
i are deterministic parameters which are unknown to the receiver

(the multipath channels are assumed static over the acquisition time)

3. c
(0)
n is deterministic and is the SOI time-hopping code being acquired at the

receiver

4. c
(k)
n is a group of IID random variables, each of which is discrete uniform on the

set {0, 1, · · · , Ng} for k = 1, · · · , Nu − 1 and n = 0, · · · , Nc − 1

5. c
(k)
n and τ

(k)
0 are statistically independent for all k and n
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The mean of s
(k)
j for k = 0 is given in (4.23) and for k 6= 0 using the assumptions

above we see that:

E
(
s
(k)
j

)
=

√
E

(k)
p

(j+1)Nc−1∑
n=(j−1)Nc

Nc−1∑
m=0

Lp−1∑
i=0

a
(k)
i · 1

Nc · Tf · (Ng + 1)
·

Ng∑
l=0

∫ NcTf

0

γ(τ
(k)
0 + ∆τ

(k)
i − α

(0)
j,m + l · Tc − (jNc − n)Tf )dτ

(k)
0 (4.42)

This mean was computed for Nc = 16, a variety of multipath channels and SOI time-

hopping codes and seen to be very close to zero. The same result holds for longer

code lengths. The main factors contributing to this zero mean situation are 1) the

integral of the autocorrelation function is approximately zero and 2) the autocorrela-

tion function is zero everywhere except a narrow window around zero so that most of

the terms contribute nothing to the overall sum. Independent simulation also verified

this zero mean calculation.

The variance of s
(k)
j for k 6= 0 and conditioned directly on the interfering signal’s

time-hopping code is seen to be

E

[(
s
(k)
j

)2

|c(k)
0 , · · · , c(k)

Nc−1

]
= E(k)

p

(j+1)Nc−1∑
n1=(j−1)Nc

Nc−1∑
m1=0

Lp−1∑
i1=0

(j+1)Nc−1∑
n2=(j−1)Nc

Nc−1∑
m2=0

Lp−1∑
i2=0

a
(k)
i1

a
(k)
i2
·

E
[
γ
(
τ

(k)
0 + ∆τ

(k)
i1
− α

(0)
j,m1

+ cn1 mod Nc · Tc − (jNc − n1)Tf

)
·

γ
(
τ

(k)
0 + ∆τ

(k)
i2
− α

(0)
j,m2

+ cn2 mod Nc · Tc − (jNc − n2)Tf

)]
(4.43)

This expression has an extremely large number of terms even for short code lengths,

e.g., Nc = 16, thus making direct computation prohibitive. The following simplifying
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assumptions can be made which lead to a reasonable approximation to the variance,

as verified via simulation. Firstly, the time-hopping code of the interfering user can

be ignored, i.e., c
(k)
n = 0 for all n and for k = 1, · · · , Nu− 1. Secondly, all off-diagonal

terms can be ignored, i.e., those terms such that n1 6= n2, m1 6= m2, and i1 6= i2. This

leads to the following approximation to the variance for k 6= 0:

E

[(
s
(k)
j

)2
]
≈ E(k)

p

(j+1)Nc−1∑
n=(j−1)Nc

Nc−1∑
m=0

Lp−1∑
i=0

(
a

(k)
i

)2

· 1

NcTf

·

∫ NcTf

0

γ2
(
τ

(k)
0 + ∆τ

(k)
i − α

(0)
j,m − (jNc − n)Tf

)
dτ

(k)
0 (4.44)

This summation was found via direct computation to have only Nc
2 surviving terms,

all of which were equal to 1
Nc
·E(k)

p · σ2
γ ·
∑Lp−1

i=0

(
a

(k)
i

)2

where σ2
γ is given below. The

multipath channels are assumed here to consist only of Lp paths and thus from the

multipath coefficient normalization of Section 1.6 it is seen that
∑Lp−1

i=0

(
a

(k)
i

)2

= 1.

Thus the overall variance is reasonably well approximated by:

E

[(
s
(k)
j

)2
]
≈ E(k)

p ·Nc · σ2
γ (4.45)

where

σ2
γ =

1

Tf

∫ ∞

−∞
γ2(τ)dτ (4.46)

The above approximation to the variance of the MAI for a single interferer was

seen via simulation to be quite accurate. For example, when Nc = 16, Tf = 1000
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nsec, and E
(k)
p = 1 it is seen that E

(k)
p ·Nc ·σ2

γ = 0.0078 while simulations consisting of

100, 000 randomly generated time-hopping code sequences and direct path arrivals,

τ
(k)
0 , yielded values averaging 0.0083 for the same multipath amplitude coefficients,

a
(k)
i , and relative path arrival times, ∆τ

(k)
i = τ

(k)
i − τ

(k)
0 . It was also seen by direct

computation, and verified via simulation, that the statistics varied little for different

values of j, thus removing any dependence of the search permutation on the MAI

statistics.

Now that the individual interferer statistics have been computed, the total multi-

access interference can be examined. The multi-access interference term,
∑Nu−1

k=1 s
(k)
j ,

at the correlator output is the sum of a number terms. Each of these terms has zero

mean, so that the mean of the sum is also zero. The variance of each term in the

sum is a function of signal energy, E
(k)
p . The signal energy of the kth user can be

rewritten in terms of the SOI energy, E
(0)
p , and a scale factor, Ak.

E(k)
p = Ak · E(0)

p (4.47)

The assumptions listed earlier ensure that the individual terms, s
(k)
j , are independent

and thus the variance of their sum is simply the sum of the individual variances:

σ2
MAI = E(0)

p ·Nc · σ2
γ ·

Nu−1∑
k=1

Ak (4.48)
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Assuming that the MAI is Gaussian, an assumption that will be discussed in more

detail shortly, the variance can simply be added to the thermal noise variance, NcN0,

at the correlator output.

σ2
n + σ2

MAI = NcN0 + E(0)
p ·Nc · σ2

γ ·
Nu−1∑
k=1

Ak

= Nc ·

(
N0 + E(0)

p · σ2
γ ·

Nu−1∑
k=1

Ak

)
(4.49)

Thus it appears as if the thermal noise variance has increased by the term shown

above. Denoting the ratio of SOI signal energy to total noise variance as a function

of the number of users, SNR(Nu), it is noted that SNR(1) = E
(0)
p /N0 and

SNR(Nu) =
1

1
SNR(1)

+ σ2
γ

∑Nu−1
k=1 Ak

(4.50)

A plot of this signal-to-noise ratio is shown in Figure 4.18 for three different single

user SNR’s. Here it is assumed that perfect power control exists and that Ak = 1 for

all k. The impact of additional users on the mean acquisition time is seen through

the decrease in SNR. For example, it is seen if the initial signal-to-noise ratio is

SNR(1) = 10 dB then for 2000 users SNR(2000) = −0.33 dB. From Figure 4.10,

which is for a code length of Nc = 64, the mean acquisition time for a bit reversal

search at an SNR of 10 dB is approximately 0.45 sec while at an SNR of -0.33 dB the

mean acquisition time has increased to 11.7 sec. However, if SNR(1) = 0 dB then

for 2000 users the SNR has dropped to around -3 dB. This time, from Figure 4.10,

we see that the mean acquisition time changes very little, only by approximately 0.5
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Figure 4.18: Change in signal-to-noise ratio for multiple users

sec. This is because the change in SNR for the latter case is much smaller. As can

be seen from Figure 4.18, the SNR decreases more rapidly as users are added to the

system for a larger SOI signal-to-noise ratio. This simply shows that for the lower

SOI signal-to-noise ratio the total noise is dominated by the thermal noise.

If perfect power control exists then the individual terms of the MAI have equal

variance and the central limit theorem can be used to see that the MAI converges in

distribution to a Gaussian random variable. The density evolution with an increasing

number of users is shown in Figure 4.19 assuming E
(k)
p = 1 for all k. Here histograms

are shown for Nu − 1 = 1 through Nu − 1 = 30, where Nu − 1 is the number of

additional users above and beyond the SOI.
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Figure 4.19: Histograms of multiple-access interference for 1 to 30 additional users

Perfect power control is one sufficient condition which insures that the multiple-

access interference is Gaussian as discussed above. This, however, is not a necessary

condition. A simple example will demonstrate this. Specifically, the case of imperfect

power control was examined where each of the scale factors, Ak, were assumed to be

an independent sequence of random variables, each uniform on the interval [0.5, 1.5].

The mean is obviously E(Ak) = 1 and as expected the MAI for a sufficiently large

number of users was found via simulation to be Gaussian in nature. The histograms,

in fact, are very similiar to the ones shown in Figure 4.19 and the density evolution

with Nu occurs at the same rate for the two cases.
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Chapter 5

Fine Acquisition of UWB Systems

As discussed in Section 1.3, the various arrival paths at the output of a UWB channel

tend to ‘cluster’ into groups. The coarse acquisition process described in the previ-

ous chapter has only determined the location of this multipath cluster, with some

associated probability. The fine acquisition process following coarse acquisition has

two main purposes: verification and channel estimation. As will be seen below, fine

acquisition can be performed in a manner that allows both of these objectives to be

accomplished simultaneously to some extent. The desired output is a reliable set

of M path estimates in the multipath cluster. The total number of arrival paths

is assumed to be a finite number, Lp. As will be seen, exactly which M of the Lp

paths are estimated is dependent on the algorithm employed. Ideally maximal ratio

combining in a RAKE receiver architecture is desired. As described in Section 1.6,

this requires the M strongest paths to be estimated in order to maximize the RAKE

output signal-to-noise ratio.
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Figure 5.1: Normalized correlator mean for a code length of Nc = 64, Tf = 1000 nsec,
N = 256, Tc = 10 nsec. The coarse acquisition termination point is denoted as nc

and is the starting point for fine acquisition.

The clustering phenomenon of the dense multipath channel suggests that when a

single path has been located the immediate vicinity should be searched for other paths.

The bin spacing and the amount of time spent dwelling at each bin are assumed to be

identical to that of the coarse search, although this is not a requirement. Figure 5.1

shows an example of the fine acquisition process. Coarse acquisition has terminated

at the bin, nc, which corresponds to a time offset of nc · Tf

N
. Some subset of the

M correlators then search the neighboring bins outward away from nc until some

stopping criterion is satisfied. In all the algorithms to follow it is assumed that all

M correlators are used for fine acquisition. The general problem of optimal resource
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allocation between coarse and fine acquisition has not been examined and is discussed

briefly in Chapter 6.

Generally an upper limit is set on the distance that can be traveled relative to nc

before declaring a false alarm and returning to coarse acquisition. This upper limit

directly affects the false alarm penalty time and is assumed to be an integer multiple

of M , say ±kM with respect to nc. For the mth correlator at the jth dwell-time,

the output is defined as z
(m)
j = s

(m)
j + n

(m)
j for m = 0, 1, · · · , M − 1. The correlator

mean is given in (4.23) and the noise is Gaussian with zero mean and variance NcN0.

This group of M correlator outputs can then be used to decide whether or not the

search should terminate. Some example stopping criteria are listed below under the

assumption that the uncertainty region is fixed by the upper limit ±kM :

1. Search in both directions and stop after the entire uncertainty region has been

examined

2. Search in one direction followed by the other direction and stop at any point if

|z(m)
j | < T1 for all m

3. Search in one direction followed by the other direction and stop at any point if∑
m |z

(m)
j |n < T3 for some constant n, e.g., n = 1 or 2

4. Search in one direction until |z(m)
j | < T2 for all m then search in the other

direction and stop if |z(m)
j | < T2 for all m
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Independent of the stopping criterion is a verification criterion, which basically deter-

mines if a false alarm has occurred. It is assumed that the largest correlator magni-

tudes are stored during the fine acquisition process in a vector v = [v1, v2, · · · , vM ]

with the corresponding locations stored in a different vector. After every dwell-time

the components of v are updated and v1 represents the maximum magnitude, v2

represents the second largest, and so on. Once the search has stopped, a decision

must be made as to whether or not the estimates in v are adequate. Some example

verification criteria include:

1. Fine acquisition is complete if vM > T4

2. Fine acquisition is complete if
∑

m vn
m > T5 for some n, e.g., n = 1 or 2

3. Coarse acquisition is resumed if vm < T6 for some m

If the estimates in v pass the verification phase then the next phase of synchronization

encountered is tracking. If the bin spacing is sufficiently small so that the estimates

are within the tracking pull-in range then v can be passed directly to the tracking

processor. Otherwise an intermediate stage is required which reduces the timing

uncertainty on each path estimate to a sufficient level. This process, termed coarse

tracking, is discussed briefly in Chapter 6. Basically the coarse tracking process

either successfully locks onto M paths and begins continual signal tracking and data

detection or it rejects the estimates and initiates either coarse or fine acquisition. It

is possible for only a subset of the estimates to be rejected and in this case some

paths are tracked while a number of correlators continue to scan the area near the
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tracked paths. This same procedure is followed if any of the paths fall out of lock

once tracking has begun.

For the fine acquisition algorithms analyzed below, it will be assumed that acqui-

sition is complete once the verification criterion has been satisfied for those bins in the

detection set. If the verification criterion is satisfied for improper bins then a fixed

penalty time will be incorporated and acquisition will be resumed. This is analogous

to the false alarm penalty time seen in Chapter 4. In both cases this false alarm

penalty time is random and in the interest of simplifying the analysis a fixed number

has been used. This number could possibly be the mean of the false alarm penalty

time or if a more worst case analysis is required a bound based upon the standard

deviation could be used.

Selection of a stopping criterion and a corresponding verification criterion from

the two lists above results in many different possibilities, all of which can be analyzed

using the self-similar signal flow graphs introduced in Chapter 3. For example, the

analysis of stopping criterion 1, which is examined in detail below, can be performed

using the signal flow graph shown in Figure 3.6. Similarly, stopping criterion 2 and

stopping criterion 3 require the use of the graph in Figure 3.13 while stopping criterion

4 requires the graph in Figure 3.14. From this point forward, use of verification

criterion 1 is assumed. The analysis of the other verification criteria can be performed

in a similar manner to the analysis shown in the next section.
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5.1 Verification Probability Using Non-IID Order

Statistics

The components of v are updated every dwell-time during fine acquisition as more of

the search space is examined. Thus the total number of observed random variables

increases each dwell-time. These random variables are independent Gaussian random

variables with equal variance and differing means so that the components of v are

order statistics of a group of non-IID random variables. Appendix C discusses an

efficient, iterative method for computing the distribution function for these order

statistics.

The probability of completing fine acquisition via verification criterion 1 requires

the smallest component of v to be larger than some threshold. This is equivalent to

all the components of v exceeding some threshold by virtue of the vector’s construc-

tion. Here, the order statistics are drawn from the entire uncertainty region, which is

assumed to consist of 2kM + 1 bins. These bins include the coarse acquisition termi-

nation point, ε(n), and the kM bins to the left and the kM bins to the right of ε(n).

The self-similar signal flow graph used to analyze this situation is shown in Figure

3.6. The verification probability associated with this graph for n = 0, 1, · · · , Ns− 1 is

Pv,n = Pr(vM > T ) = 1− Pr(vM ≤ T ) (5.1)
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The probability Pr(vM ≤ T ) is given in (C.9) and thus the verification probability is:

Pv,n = 1−
M∑

m=1

H∗
2kM+2−m ·

kM∏
j=−kM

(1−Rn⊕j) (5.2)

The ⊕ operator represents modulo Ns integer addition. From Appendix C the terms,

H∗
m, not to be confused with the signal flow graph path gains, are as follows for

m = 2kM −M + 2, 2kM −M + 3, · · ·, 2kM :

H∗
m =

1

2kM + 1−m
·

2kM+1−m∑
i=1

(−1)i+1L−iH
∗
m+i (5.3)

The m = 2kM + 1 term is seen from Appendix C to be unity, i.e., H∗
2kM+1 = 1.

The factor L−i above is defined in terms of the distribution function and the com-

plementary distribution function of the random variables as shown in (C.8), which is

adapted here in terms of the probabilities Rj.

L−i =
kM∑

j=−kM

(
1−Rn⊕j

Rn⊕j

)−i

(5.4)

The probability, Rj, represents the probability that the correlator magnitude exceeds

some given threshold. If the coarse acquisition and fine acquisition processes were to

use the same detection threshold then Rj would simply be the transition probability,

Pj, properly computed for hybrid acquisition as discussed in Section 4.3.

Rj = Pr(|zj| > ΥF ·
√

Ep)
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Figure 5.2: Normalized correlator mean for a code length of Nc = 16, Tf = 1000
nsec, N = 256, and Tc = 10 nsec. The two regions shown represent coarse acquisition
termination points both inside and outside the multipath cluster.

= Q
(√ Ep

NcN0

· (ΥF +
sj√
Ep

)
)

+ Q
(√ Ep

NcN0

· (ΥF −
sj√
Ep

)
)

(5.5)

As in Section 4.3, the correlator mean, sj, used in these probabilities is computed

linearly across the uncertainty region, i.e., j · Tf/N = kβ,jTc + βr,j where kβ,j and βr,j

are used in (4.22) which is subsequently used to produce the correlator means, sj, as

per (4.23).

An example is now given which contrasts the verification probability for a detec-

tion bin within the multipath cluster with a false alarm bin outside of the multipath
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Figure 5.3: Verification probability versus normalized threshold for a code length of
Nc = 16, M = 8 correlators, k = 2, and Ep/N0 = 0 dB, 10 dB, and 20 dB.

cluster. Figure 5.2 shows the two regions of interest assuming coarse acquisition

termination points of 14 · Tf/N = 54.6875 nsec and 2048 · Tf/N = 8000 nsec as high-

lighted in the figure. Assuming that there are M = 8 correlators available and that

k = 2 sets the uncertainty region size for fine acquisition to 2kM + 1 = 33 bins. The

verification probability is the probability that, after examining all of these bins, the

largest M = 8 observations exceed the normalized threshold, ΥF . Figure 5.3 shows

this verification probability as a function of the normalized threshold, ΥF , at the two

points ε(n) = 14 and ε(n) = 2048 for signal-to-noise ratios of Ep/N0 = 0 dB, 10 dB,

and 20 dB.
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As can be seen from Figure 5.3, at a low signal-to-noise ratio the verification prob-

abilities for the two locations (n = 14 and n = 2048) are very similar for all thresholds.

Recall that the first location represents a bin in the middle of the multipath cluster

while the second represents a bin far from the cluster. This indicates that verification

will be poor at low signal-to-noise ratios for the particular verification criterion under

consideration. As the signal-to-noise ratio increases, however, the distinction between

the two locations becomes more apparent. As can be seen at the high signal-to-noise

ratio of 20 dB, there is a wide range of thresholds around ΥF = 1.5 that provide high

acceptance probabilities for the ‘in-cluster’ bin and low acceptance (high rejection)

probabilities for the ‘out-of-cluster’ bin. The overall probability of correctly acquir-

ing, as well as the mean acquisition time, both depend on the verification criterion’s

ability to distinguish these two types of bins. This distinction can be improved by

increasing the ‘post-correlation’ signal-to-noise ratio by directly increasing Ep/N0, by

increasing the code length, Nc, or by increasing the dwell-time during verification

above a single code period.

5.2 Mean Acquisition Time

Now that the verification probabilities have been computed, the mean acquisition

time can be determined. Recall that here we examine the combination of stopping

criterion 1 with verification criterion 1. The signal flow graph of Figure 3.6 represents

this situation and can be used to determine the mean acquisition time. The path
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gains for this graph are given in (3.11). These gains are now modified slightly as per

Section 4.3 to yield the hybrid search performance. These modified path gains are:

Hε(n)(z) =


Pε(n)	k1 · Pv,ε(n)	k1 · z2k+1 if n ∈ I(k1)

0 else

Gε(n)(z) =



1− Pε(n)	k1 + Pε(n)	k1 · (1− Pv,ε(n)	k1) · z2k if n ∈ A1(k1)

(1− Pε(n)	k1) · z + Pε(n)	k1 · (1− Pv,ε(n)	k1) · z2k+1 if n ∈ A2(k1)

Pε(n)	k1

[
1− Pv,ε(n)	k1(1− zJ)

]
z2k + 1− Pε(n)	k1 if n ∈ A3(k1)

Pε(n)	k1

[
1− Pv,ε(n)	k1(1− zJ)

]
z2k+1 + (1− Pε(n)	k1)z if n ∈ A4(k1)

The conditions indicated by the sets Ai(k1) correspond to the same conditions in

(3.11), namely A1(k1) = I(k1) ∩ Bc, A2(k1) = I(k1) ∩ B, A3(k1) = I(k1)
c ∩ Bc, and

A4(k1) = I(k1)
c ∩ B. Now the mean acquisition time can be computed using (4.29),

which essentially averages the mean acquisition time over the uniform direct path

arrival time. The verification probabilities to be used in these path gains are given in

(5.2). Figure 5.4 shows the mean acquisition time for an M = 8 hybrid bit reversal

search, a code length of Nc = 16, k = 2, and J = 996. The M = 8 hybrid bit reversal

results of Figure 4.17 are also shown in the figure for comparison.

The detection thresholds, Υ and ΥF are optimized for minimum mean acquisition

time at each signal-to-noise ratio independently in Figure 5.4. The optimum value of

Υ was found to be approximately equal to the optimum value used for the M = 8
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Figure 5.4: Mean acquisition time with and without verification for M = 8 correlators
using a hybrid bit reversal search, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256,
k = 2, J = 996, and stopping criterion 1 with verification criterion 1. The detection
thresholds, Υ and ΥF , are optimized for minimum mean acquisition time.

hybrid bit reversal search of Section 4.3. As expected, a certain amount of insight

into the optimum value of ΥF can be gained from the verification probabilities for ‘in-

cluster’ versus ‘out-of-cluster’ bins as in Figure 5.3. That is, ΥF should be chosen so

that the verification probability is large for ‘in-cluster’ bins and small otherwise. For

example, the optimum value of ΥF was determined to be roughly 0.75 at Ep/N0 = 20

dB which, from Figure 5.3, makes sense intuitively. For Ep/N0 = 10 dB, it is not as

obvious from Figure 5.3 what ΥF should be, exactly, although the region near ΥF = 2

seems likely. Figure 5.5 shows the mean acquisition time versus ΥF for a number of

different coarse acquisition detection thresholds, Υ. As can be seen, the optimum

threshold is indeed ΥF = 2.
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Figure 5.5: Mean acquisition time for M = 8 correlators using a hybrid bit reversal
search, Ep/N0 = 10 dB, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, k = 2,
J = 996, and stopping criterion 1 with verification criterion 1.

For Ep/N0 = 0 dB, the distinction between a proper detection bin and every other

bin is not as clear due to the large amount of observation noise. This is evident by

the verification probability shown in Figure 5.3. At this low signal-to-noise ratio,

however, insight into the optimum detection threshold can be gained from Section

3.2.1, specifically Figure 3.8. As was discussed in that section, the mean acquisition

time is minimized when the verification probability is unity as the signal-to-noise

ratio decreases toward zero (−∞ dB). The optimum value of ΥF was found to be

1.5, and the mean acquisition time for a number of detection thresholds is shown in

Figure 5.6. At this point, the verification probability for both types of bins is indeed

approaching unity as evident in Figure 5.3.
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Figure 5.6: Mean acquisition time for M = 8 correlators using a hybrid bit reversal
search, Ep/N0 = 0 dB, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, k = 2,
J = 996, and stopping criterion 1 with verification criterion 1.

5.3 Acquisition Probability

Upon completion of the verification process, one of two possibilities exists. The

hypothesis in question, namely the bin at which coarse acquisition was terminated,

is either accepted as a proper terminating bin or it is not. Up until now a final level

of verification has been assumed as evident by the false alarm penalty time, J , so

that the probability of correctly acquiring was always unity. Here, this last stage of

verification is removed so that the acquisition probability can be examined assuming
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only the verification criterion studied in the previous section. Analogous to (3.18)

and (3.19), the hybrid path gains for this scenario are:

Hε(n)(z) =


Pε(n)	k1 · Pv,ε(n)	k1 · z2k+1 if n ∈ I(k1)

0 else

Gε(n)(z) =



1− Pε(n)	k1 + Pε(n)	k1 · (1− Pv,ε(n)	k1) · z2k if n ∈ A1(k1)

(1− Pε(n)	k1) · z + Pε(n)	k1 · (1− Pv,ε(n)	k1) · z2k+1 if n ∈ A2(k1)

Pε(n)	k1

[
1− Pv,ε(n)	k1

]
z2k + 1− Pε(n)	k1 if n ∈ A3(k1)

Pε(n)	k1

[
1− Pv,ε(n)	k1

]
z2k+1 + (1− Pε(n)	k1)z if n ∈ A4(k1)

The probability of correctly terminating this hybrid search is Pc = PACQ(1). As in

(3.20), due to the the uniform nature of the the first detection bin, this acquisition

probability is:

Pc =
1

Ns

Ns−1∑
k1=0

PACQ(1|k1) (5.6)

Some results are now shown for a hybrid bit reversal search with M = 8 correlators,

a code length of Nc = 16, and the signal-to-noise ratio of Ep/N0 = 10 dB. Figures

5.7 and 5.8 show the mean acquisition time and acquisition probability, respectively,

as a function of the verification threshold, ΥF , for the coarse acquisition detection

threshold, Υ, varying between 0 and 10. The search operating characteristic curve is

obtained by plotting the acquisition probability versus the mean acquisition time, as

shown in Figure 5.9.
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Figure 5.7: Mean acquisition time for an M = 8 hybrid bit reversal search, Ep/N0 =
10 dB, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, and k = 2

Figure 5.8: Acquisition probability for an M = 8 hybrid bit reversal search, Ep/N0 =
10 dB, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, and k = 2
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Figure 5.9: Search operating characteristic for an M = 8 hybrid bit reversal search,
Ep/N0 = 10 dB, Nc = 16, Tf = 1000 nsec, Tc = 10 nsec, N = 256, and k = 2
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Chapter 6

Summary and Future Work

In any communication system, synchronization is of fundamental importance since

without it, information cannot be reliably exchanged. Wireless communication sys-

tems designed to work indoors or in urban environments have the difficult task of

synchronizing in the presence of dense multipath. For the ultra-wideband (UWB)

signals discussed here, the indoor environment can induce a long delay spread, but

typically these paths are resolvable. This fact actually aids the acquisition process

since any number of paths can be located.

The general UWB acquisition process employed here was divided into two stages,

coarse and fine acquisition. Because of the clustering phenomenon of the various

paths in the multipath channel, the coarse acquisition process focused first on finding

this cluster of paths. The search analysis techniques studied for this process included

a Markov chain analysis, as well as a novel generalized signal flow graph analysis

approach. This latter produces a complete statistical description of the search time,
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as well as the overall probability of correctly terminating the search. This general-

ized signal flow graph approach also allowed the hybrid serial/parallel search to be

examined using the same mathematical framework. Additionally, arbitrary search

patterns, as well as arbitrary detection scenarios, could also be examined with this

new technique.

Once the cluster had been located, the fine acquisition process then attempted

to locate the strongest paths within the multipath cluster, and in doing so combined

the verification and channel estimation stages into a single process. The combined

analysis of coarse and fine acquisition led to the idea of a self-similar signal flow

graph. This new graphical structure allows for the analysis of a broad range of search

problems. One specific application of this self-similar signal flow graph is in the area

of sequential detection, producing a new analysis technique useful for studying an old

problem. The number of problems suitable for analysis using these novel graphical

structures and techniques is vast, extending well beyond just the acquisition of UWB

or wideband-CDMA signals. Within the current framework, there are many new

possibilities left unexplored. Thoughts on such future work are now given.

The frame clock at the receiver has been assumed throughout this work to run at

the same rate as the frame clock in the transmitter. Clock instabilities, such as jitter

or drift, and relative motion between the two radios will affect the acquisition and

tracking processes. Future work should investigate the effect of the clocks running at

different rates.
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Throughout it has been assumed that there is no associated penalty time incurred

when an observer transitions between search bins, e.g., state ε(n) followed by ε(n+1).

This has been assumed since all that changes is a code sequence for a local template

waveform, and one can basically switch to any other code sequence in the same amount

of time. In other situations this may not be the case. That is, the amount of time

required for an observer to switch from ε(n1) to ε(n2) may be depend on n1 and n2

and will directly affect the optimum selection of the search order, ε(n). One example

would be the scanning of a mirror in a free space optical communications system that

is trying to acquire. There is a finite amount of time required to transition between

search bins set by the amount of time required to steer the mirror. Incorporation of

these penalty times between observations is straightforward in the current framework.

During coarse acquisition, if detection occurs then all of the available resources

are diverted to fine acquisition, i.e., all the correlators. This allows the signal flow

graph approach to be used for analysis purposes. The optimal resource allocation

problem has not been examined, that is, how many correlators should be diverted to

fine acquisition and how many should be left in the coarse search mode? Additionally,

what if a detection occurs at the coarse search level while another bin is being verified

during a fine search? Resources would again need to be diverted for verification

purposes, so that the number of available resources fluctuates as a function of time.

In addition, the problem can be constrained such that only those observers in coarse

search mode which are ‘close enough’ to the detection point of one of the observers

are diverted to search the region near that particular observer. This constraint makes
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a certain amount sense if a cost is associated with traveling to the new location (such

as some amount of time) as just mentioned above.

At the start of the acquisition process, no a-priori knowledge is assumed of the

channel, except possibly some knowledge of the delay spread as required by the opti-

mum ‘look and jump’ search. Assuming prior knowledge of the channel (or a reason-

able estimate), we can space the M correlators relative to one another based upon the

spacing between the largest paths in the cluster. We could then hop the entire group

around the search space in unison instead of letting each correlator search based upon

its own pattern. Would this method perform better than the coarse/fine acquisition

procedure described earlier? Obviously there would be a cost associated with doing

this since the channel estimates must first be obtained, but the performance benefit

may outweigh this cost.

Once the fine acquisition process is complete, the path estimates are passed to

a tracking processor where each path is tracked. Methods which share information

amongst the various path trackers have been shown to provide performance improve-

ment relative to the situation involving no information sharing. Following fine acqui-

sition, if all trackers obtain lock then acquisition is complete. If some number of

them don’t obtain lock then the available correlators are sent back to perform the

fine acquisition process once again. If none of them obtain lock then either all the

correlators perform fine acquisition in the immediate vicinity or coarse acquisition is

reinitiated.
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Finally, some thoughts are given on analyzing the tracking process using the graph-

ical structures introduced in this work. Specifically, consider a self-similar signal flow

graph with at least 3 rings. The last ring, which is completely circular, is simply a ring

without an acquisition state in the middle. Instead a ‘loss of lock’ state is present.

This state leads to the ring above the current one, back to precisely the state where

tracking was first entered (or the state next to this state). Once fine acquisition has

completed the innermost ring is entered. Each frame time, the states in this inner-

most circle are stepped through one at a time. At any point in time the state in the

center can be entered which leads back to fine acquisition. The probability of entering

this center state is the ‘loss of lock’ probability.
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Appendix A

Mean Search Time for Unity

Detection and False Alarm

Probabilities

From Section 2.4 the generating function into the acquisition state using the gener-

alized signal flow graph is

PACQ(z) =

Ns−1∑
k=0

πε(k)

Ns−1∑
i=0

Hε(i⊕k)(z)
i−1∏
j=0

Gε(j⊕k)(z)

1−
Ns−1∏
i=0

Gε(i)(z)

(A.1)
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For detection and false alarm probabilities that are the constant across all states,

(2.54) and (2.55) yield the following path gains:

Hε(i)(z) =


PDz if i ∈ I

0 else

(A.2)

and

Gε(i)(z) =


(1− PD)z if i ∈ I

(1− PFA)z + PFAzJ+1 else

(A.3)

As before, the set I represents those indices, ik for k = 0, · · ·, K − 1, such that ε(ik)

leads to the acquisition state. Since the detection and false alarm probabilities are

assumed constant in (A.3) it is seen that the denominator of (A.1) becomes:

1−
Ns−1∏
i=0

Gε(i)(z) = 1− ((1− PD)z)K ·
(
(1− PFA)z + PFAzJ+1

)Ns−K
(A.4)

Here it is assumed that PD and PFA are both unity which reveals that (A.4) is simply

one for K ≥ 1. Explicitly writing out the numerator of (A.1) in a similar manner for

PD and PFA both equaling one and also assuming that πn = 1/Ns for all n reveals

that:

PACQ(z) =
1

Ns

·
(
z · z(J+1)·nε(0) + z · z(J+1)·nε(1) + · · ·+ z · z(J+1)·nε(Ns−1)

)
(A.5)
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The exponent, nε(k), in the above equation is the clockwise distance around the cir-

cular state diagram from state ε(k) to the nearest state, ε(ij) for j = 0, · · ·, K − 1,

which leads into the acquisition state. This distance can be written as:

nε(k) = min
l∈I

d (ε(k), ε(l)) = min
0≤j<K

d (ε(k), ε(ij)) (A.6)

where d(x, y) is the clockwise distance (in number of state transitions) from state x

to state y:

d(x, y) =


(y − x) if y ≥ x

Ns + (y − x) else

(A.7)

An example is now given which aids in verifying some of the results of Section 4.2.

Namely when the normalized detection threshold, Υ, is set to zero, the transition

probabilities in (4.24) become unity. Thus the generating function given in (A.5)

is now applicable. If the first K states lead to the acquisition state and the search

permutation is linear, ε(n) = n, then I = 0, 1, · · · , K − 1 and n0 = n1 = · · · =

nK−1 = 0 and nNs−1 = 1, nNs−2 = 2, · · ·, nK+1 = Ns − K − 1, nK = Ns − K.

Substituting these distances into (A.5) yields

PACQ(z) =
1

Ns

·

(
K · z +

Ns−K∑
k=1

z · z(J+1)·k

)
(A.8)
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Here we have
∑0

k=1(·) = 0 which occurs when K = Ns. The mean search time is then

computed as

E(TACQ) =
d

dz
PACQ(z)

∣∣∣∣
z=1

=
1

Ns

(
K +

Ns−K∑
k=1

1 + (J + 1)k

)

=
1

Ns

(
Ns + (J + 1) · (Ns −K)(Ns −K + 1)

2

)

= 1 +
1

2
· (J + 1) ·

(
1− K

Ns

)
· (Ns −K + 1) (A.9)

The mean acquisition time given by the above equations is in units of dwell times,

where one dwell time in Section 4.2 is equal to one code period, Nc ·Tf . For J = 1000,

Ns = Nc ·N = 16 · 256 = 4096, K = 50, and Tf = 1000 nsec we see that (A.9) yields

E(TACQ) · Nc · Tf = 32.01 seconds. This agrees with the results of Section 4.2 for a

normalized detection threshold, Υ, equal to zero. Similarly, as Ep/N0 vanishes toward

zero this same result is also seen since the transition probabilities for Ep/N0 = 0

are the same as those probabilities for Υ = 0. For J = 1000, Ns = Nc · N =

64 · 256 = 16384, K = 50, and Tf = 1000 nsec equation (A.9) yields E(TACQ)· Nc ·Tf

= 521.65 seconds, which also agrees with the results of Section 4.2. Several such

numerical comparisons are shown in Table A.1.
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Use of the moment generating function in (A.5) for a bit reversal search is not as

straightforward. However, as was seen in Chapter 2 the bit reversal search and the

‘look and jump’ resulted in exactly the same mean search time for proper values of

K. Even for those values of K that did not produce exact agreement between the two

types of searches, the observed difference is quite small. Thus an approximation to

the bit reversal search performance can be obtained using the ‘look and jump’ search.

Since here it is assumed that every bin is a-priori equally likely, the ‘look and jump’

search essentially divides the search space into K regions each containing Ns/K bins

(assuming K divides Ns evenly). The mean time spent in any of these K regions is

identical and the overall generating function reveals this:

PACQ(z) =
1

Ns

·K · z ·
Ns/K−1∑

k=0

z(J+1)·k (A.10)

The mean acquisition time resulting from this generating function is:

E(TACQ) = 1 +
1

2
· (J + 1) ·

(
Ns

K
− 1

)
(A.11)

As before this gives the mean search time in integer multiples of dwell-times and must

be multiplied by Nc · Tf to give the mean time in seconds. Table A.1 compares the

results determined here with the mean-time-to-acquisition (MTA) results from Section

4.2. Also shown is the other extreme, namely the large signal-to-noise ratio scenario.

As the signal-to-noise ratio increases, the detection probability increases toward unity

and the false alarm probability decreases toward zero (for the proper selection of
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Table A.1: Comparison of the mean-time-to-acquisition (MTA) of Section 4.2 with
the closed-form asymptotic expressions

detection threshold). Thus the results of Section 2.2, which were computed for PD = 1

and PFA = 0, are compared to the mean acquisition time results of Section 4.2. The

‘High SNR’ results from Section 4.2 shown in Table A.1 were computed at Ep/N0 = 20

dB and Ep/N0 = 100 dB for the linear and bit reversal search, respectively. As can

be see from the table, the linear results are in exact agreement while the bit reversal

results are in close agreement. Also, from the table it is noted that the ratio of

the MTA at a high signal-to-noise ratio to the MTA at a low signal-to-noise ratio is

approximately equal to the the false alarm penalty time (in dwell-times).
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Appendix B

UWB Time-Hopping Codes for

Multiple Users

The process presented here for generating the time-hopping codes used in Section 4.2

is derived from [47]. For a more detailed explanation of the relevant coding theory

that particular reference should be consulted as only the procedural steps required

to generate time-hopping codes are given here. Only a single code is required for the

acquisition analyses given in Chapter 4 even though the procedure explained here

generates a family of codes, each with low auto-correlation, as well as low cross-

correlation amongst members in the family.

The first step in generating a UWB time-hopping code is to specify the code

length Nc, the code chip time time, Tc, the frame time Tf , and the guard time, Ng,

which sets the maximum hopping location, Ng ·Tc, within the frame time. All of these

parameters were introduced in Section 1.2. It is assumed that the frame time is an

integer number of code chip times, i.e., Tf = Nf · Tc where Nf is a positive integer.
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Next, the smallest prime number, p, greater than or equal to Nc is chosen. A set

of p− 1 polynomials is generated as

f (i)(x) = i · x2 for i = 1, 2, · · · , p− 1 (B.1)

Each polynomial in the set is now associated with a p× p matrix A(i) with elements

defined by

a(i)
m,n =


1 if f (i)(n) = m, 0 ≤ m ≤ p− 1, 0 ≤ n ≤ p− 1

0 else

(B.2)

The matrix A(i) has a single 1 in each of its columns. A sequence, an for n =

0, 1, · · · , p − 1, is generated which gives the row index between 0 and p − 1 of this

single 1 in each of the columns. The sequence, an, is now mapped into a new sequence,

cn, such that 0 ≤ cn ≤ Ng via:

cn =

⌊
an ·

Ng

p− 1

⌋
(B.3)

This sequence, which is of length p, is truncated to the first Nc elements since p may

be larger than Nc. This truncated sequence is the desired UWB time-hopping code.

As an example, consider the length Nc = 16 code used in Section 4.2. The system

parameters chosen in that section were Tf = 1000 nsec, Tc = 10 nsec, Nf = 100, and
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Ng = 70. The smallest prime number greater than or equal to 16 is p = 17. The

matrix, A(3), associated with this value of p is

A(3) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(B.4)

From this matrix it is seen that an=0, 3, 12, 10, 14, 7, 6, 11, 5, 5, 11, 6, 7, 14, 10,

12, 3. From (B.3) the time hopping code is cn=0, 13, 52, 43, 61, 30, 26, 48, 21, 21,
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48, 26, 30, 61, 43, 52. Here the sequence has been truncated so it is a length Nc = 16

code. This code was seen in Section 4.2. The other members of this code family can

be generated by varying the superscript, i. For the code just given, i = 3 was seen

from brute force comparison with all other values of i = 0, · · · , 16 to yield the code

with the best auto-correlation property.

For completeness, the Nc = 64 length code used in Section 4.2 is listed here. This

code was generated with the same frame time, chip time, and guard time as above.

For this longer code, however, p = 67 is the smallest prime greater than or equal to

64. The code selected corresponded to i = 14: cn=0, 14, 59, 62, 24, 15, 37, 16, 26,

65, 63, 20, 6, 22, 67, 1, 35, 27, 49, 30, 41, 10, 9, 38, 25, 42, 18, 23, 58, 51, 4, 57, 68,

39, 39, 68, 57, 4, 51, 58, 23, 18, 42, 25, 38, 9, 10, 41, 30, 49, 27, 35, 1, 67, 22, 6, 20,

63, 65, 26, 16, 37, 15, 24.
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Appendix C

Probability Distributions for

Non-IID Order Statistics

Let z1, z2, · · · , zN be a group of independent random variables, each with distribution

function Fj(z) = Pr(zj ≤ z). This collection of random variables is often described

as non-IID (where IID means independent, identically distributed) or INID (inde-

pendent, not identically distributed) in the literature. The order statistics from this

group of random variables is obtained by ordering the variables based upon their

observed values. The nth order statistic of the group is denoted as z(n) and are all

listed below:

z(1) = min
n

zn

z(2) = 2nd min
n

zn (C.1)

...

z(N) = max
n

zn
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For the IID case, each random variable having distribution function Fz(z), the distri-

bution function for the jth order statistic, denoted as F(j)(z) = Pr(z(j) ≤ z), is found

fairly easily for j = 1, 2, · · · , N to be [7]:

F(j)(z) =
N∑

k=j

(
N

k

)
F k

z (z) (1− Fz(z))N−k (C.2)

For the non-IID case each random variable has its own distribution function, i.e., zj

has distribution Fj(z). For this case the distribution of the jth order statistic is quite

complicated and computationally expensive in its general form [10]:

F(m)(z) =
N∑

i=m

∑
Si

i∏
k=1

Fjk
(z)

N∏
k=i+1

(1− Fjk
(z)) (C.3)

The second summation is taken over all permutations Si such that j1 < · · · < ji

and ji+1 < · · · < jN . A simpler method is available which computes the distribution

function of the order statistics recursively [6]. This method is much more efficient

from a computational standpoint. For n = 1, 2, · · · , N − 1:

F(n)(z) = F(n+1)(z) + H∗
n(z)F(N)(z) (C.4)

where

F(N)(z) =
N∏

j=1

Fj(z) (C.5)

H∗
n(z) =

1

N − n
·

N−n∑
i=1

(−1)i+1 L−i(z)H∗
n+i(z) for 1 ≤ n ≤ N − 1 (C.6)

202



H∗
N(z) = 1 (C.7)

L−i(z) =
N∑

j=1

(
Fj(z)

1− Fj(z)

)−i

(C.8)

This recursion works most efficiently for computing the order statistics at the upper

end, i.e., near n = N , although it is strictly valid for all n. A similar recursion is seen

in [6] which is more efficient for computing the distribution of the order statistics near

the lower end.

The order statistic z(N−M+1) will be useful in Chapter 5 for computing the veri-

fication probability. The distribution function for this particular order statistic from

(C.4) is:

F(N−M+1)(z) = F(N−M+2)(z) + H∗
N−M+1(z)F(N)(z)

= F(N−M+3)(z) + H∗
N−M+2(z)F(N)(z) + H∗

N−M+1(z)F(N)(z)

...

=
(
H∗

N−M+1(z) + H∗
N−M+2(z) + · · ·+ H∗

N(z)
)
F(N)(z)

=
M∑

n=1

H∗
N−n+1(z) ·

N∏
i=1

Fi(z) (C.9)
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Appendix D

Moment Generating Function for a

General Two-Ring Self-Similar

Signal Flow Graph

The verification procedures studied in Section 3.2.2 assumed a specific search permu-

tation of the fine acquisition uncertainty region. The coarse acquisition termination

point, here denoted ε1(n), is the starting point for the fine acquisition process. Thus

the permutation on the inner ring of the self-similar signal flow graph, denoted ε2(m),

will be a function of the state ε1(n). The self-similar signal flow graph studied here is

shown in Figure D.1. The dependence of ε2(m) on ε1(n) has been suppressed in this
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figure. This graph represents a generalization of the verification processes studied

earlier. The moment generating function of this graph is found to be:

PACQ(z) =

N1−1∑
k=0

πε1(k)

N1−1∑
i=0

Hε1(i⊕k)(z)
i−1∏
j=0

Gε1(j⊕k)(z)

1−
N1−1∏
i=0

Gε1(i)(z)

(D.1)

The operator ⊕ represents modulo N1 integer addition and
∏−1

j=0(·) is defined to be

unity. The path gains for this generating function are:

Hε1(n)(z) = H̃ε1(n)(z) ·
N2−1∑
m=0

F̃ε2(m,ε1(n))(z)
m−1∏
k=0

D̃ε2(k,ε1(n))(z) (D.2)

Gε1(n)(z) = G̃ε1(n)(z) + H̃ε1(n)(z) ·
N2−1∑
m=0

Ẽε2(m,ε1(n))(z)
m−1∏
k=0

D̃ε2(k,ε1(n))(z) (D.3)

Here the dependence of the inner permutation on the outer permutation has been

shown as ε2(k, ε1(n)).
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Figure D.1: A general two-ring self-similar signal flow graph
.
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