UWBST & IWUWBS 2004

Looking for the UWB Communications Niche

R. A. Scholtz

Fred H. Cole Professor of Engineering Director, UltRa Lab University of Southern California

R. A. Scholtz

University of Southern California

UltRa I ab

1978 Quote

From the Abstract of C. L. Bennett and G. F. Ross, "Time-Domain Electromagnetics and Applications," *Proc. IEEE*, March 1978:

"...More recently baseband pulse techniques have been applied to the problem of developing a shortrange wireless communication link. Here, the low EM pollution and covertness of operation potentially provide the means for wireless transmission without licensing."

UWBST & IWUWBS 2004

UWB Regulation

Approved FCC UWB Devices

Imaging Systems

- 1. Ground penetrating radars, wall imaging, medical imaging
- 2. Thru-wall imaging & surveillance systems
- **Communication and Measurement Systems**
 - 3. Indoor systems
 - 4. Outdoor hand-held systems

Vehicular Radar Systems

5. Collision avoidance, improved airbag activation, suspension systems, etc.

UltRa I ab

UWB Emission Limit for Indoor Systems

R. A. Scholtz

Approximate Power Computations

Short-Range Ultra-Wideband Systems

Comparison of Energy Link Loss

Input
energy:
$$W_{in} = \frac{1}{2\pi} \int_{BW} \frac{|V_G(\omega)|^2 R_T(\omega)}{|Z_T(\omega) + Z_G(\omega)|^2} d\omega$$
 Receive
energy: $W_{rec} = \frac{1}{2\pi} \int_{BW} \frac{|V_L(\omega)|^2}{Z_L^*(\omega)} d\omega$
Friis eq. w/ $\frac{W_{rec}(\omega)}{W_{in}(\omega)} = \frac{G_t(\omega)G_r(\omega)\lambda^2}{(4\pi r)^2} (1 - |\Gamma(\omega)|^2)$ Link
loss: $L_{link} = \frac{W_{rec}}{W_{in}}$

Normalized (r =1) Energy Link Loss for Various Antennas and Excitations

T/R Antennas (Dipoles)	Gaussian (rigorous)	Monocycle (rigorous)	Mid-band Frequency	Mid-band Friis eq.	Mid-band Friis w/ Z-Mismatch
Short	-85.5 dB	-84.0 dB	430 MHz	-20.8 dB	-87.0 dB
Resonant	-23.9 dB	-23.9 dB	500 MHz	-22.1 dB	-22.4 dB
Lossy	-43.1 dB	-41.8 dB	500 MHz	-22.1 dB	-22.3 dB

See D. Pozar, Closed-Form Approximations for Link Loss in an UWB Radio System Using Small Antennas, *IEEE Trans. on Antennas and Prop.*, Sept. '03.

UMass Antenna Lab

USC UltRa Lab

UC Berkeley BWRC

Materials Penetration

Friis' Equation Adjustments

R. A. Scholtz

University of Southern California

UWBST & IWUWBS 2004

UWB Propagation

A Pulse Response Gallery

R. A. Scholtz

University of Southern California

USS Curtiss Measurements

R. A. Scholtz

University of Southern California

Channel/Receiver Model Development

m(t) = channel response waveform
h(t) = correlator template function

Problem: Find $\{a_n, t_n\}_{n=1}^{N}$ that provides a good estimate $\widehat{m}(t)$ of the channel response function m(t).

$$\widehat{m(t)} = \sum_{n=1}^{N} a_n h(t-t_n)$$

Significance: N is a measure of Rake receiver complexity.

R. A. Scholtz

University of Southern California

Simple CLEAN Analysis

Start: m(t), h(t) Initialize: n=0 $f_0(t) = m(t) \star h(t)$ $g(t) = h(t) \star h(t)$ Find largest Iterate: crosscorrelation n ←n+1 at a_n, t_n Update: No n = N? $f_{n+1}(t) = f_n(t) - a_n g(t - t_n)$ Yes Compile Stop UltRa Lab

QuickTime™ and a Animation decompressor are needed to see this picture.

QuickTime™ and a Animation decompressor are needed to see this picture.

QuickTime™ and a Animation decompressor are needed to see this picture.

R. A. Scholtz

UWB Array Processing

Cluster Models

See J. Cramer, R. Scholtz, and M. Win, "Evaluation of an Ultra-Wide-Band Propagation Channel," *IEEE Trans. On Antennas and Propagation*, May 2002.

UltRa Lab

Jean-Marc Cramer

R. A. Scholtz

Multipath Polarization Measurement

Directional Effects - Large Antennas

Fig. 7. Radiation of a Gaussian pulse from a cylindrical monopole antenna. Each trace shows the far-zone electric field ξ'_{θ} at a fixed polar angle θ as a function of the normalized time t/τ_a . b/a = 2.30, h/a = 65.8, and $\tau_p/\tau_a = 8.04 \times 10^{-2}$.

From: J. Maloney et al., "Accurate Computation of the Radiation from Simple Antennas Using the Finite-Difference Time-Domain Method," *IEEE Trans. On Antennas and Propagation*, July 1990.

R. A. Scholtz

University of Southern California

UWBST & IWUWBS 2004

UWB Receiver Design

Selective Rake Performance

1 ns transmitted pulse

number of Rake fingers

Selective Rake Performance

For a description of the development of these curves of selective Rake performance, see:

M. Win and R. Scholtz, "Characterization of Ultra-Wide Bandwidth Wireless Indoor Channels: A Communication Theoretic View," *IEEE JSAC*, December 2002.

Propagation data and papers are available at: http://click.usc.edu/New_Site/

R. A. Scholtz

University of Southern California

Transmitted-Reference System

From R. Scholtz, *Coding for Adaptive Capability in Random Channel Communications*, PhD Thesis, Stanford University, 1963.

R. A. Scholtz

University of Southern California

TR and SR UWB Comparisons

Stored reference (one Rake finger) receiver performance:

$$P_{\rm eSR} = Q\left(\sqrt{2E_{\rm p}N_{\rm p}\eta_{\rm capSR}/N_{\rm o}}\right)$$

Transmitted reference receiver (analog delay) performance:

$$P_{\rm eTR} \approx Q \left(\left[\frac{2}{N_{\rm p}} \left(\frac{N_{\rm o}}{\eta_{\rm capTR} E_{\rm p}} \right) + \frac{WT_{\rm corr}}{N_{\rm p}} \left(\frac{N_{\rm o}}{\eta_{\rm capTR} E_{\rm p}} \right)^2 \right]^{-\frac{1}{2}} \right)$$

(uncoded binary transmission with antipodal flip modulation)

Yi-Ling Chao

R. A. Scholtz

University of Southern California

TR and SR UWB Comparisons

second derivative Gaussian pulse with duration = 0.7ns

$$E_b/N_o$$
 Adjustment

Effective $E_{\rm b}/N_{\rm o}$ at the data detector

$$\begin{aligned} R_{\rm b}(E_{\rm b}/N_{\rm o})_{\rm eff} &= (P_{\rm t}G_{\rm t})(1/L_{\rm prop}4\pi\,R^2) \\ &\quad \cdot (G_{\rm r}\lambda^2/4\pi)\,\eta_{\rm ant}\eta_{\rm cap}\,/\,N_{\rm o} \end{aligned}$$

energy capture efficiency

UltRa Lab

University of Southern California

R. A. Scholtz

UWBST & IWUWBS 2004

Pulse Design

Short-Range Ultra-Wideband Systems

Received Pulse Width Minimization

See: D. Pozar, "Waveform **Optimizations for** Ultra-Wideband Radio Systems," IEEE Trans. Antennas and Prop., September 2003.

Short-Range Ultra-Wideband Systems

Pulse Compression

David Pozar

UMass Antenna Lab

USC UltRa Lab

UC Berkeley BWRC

Short-Range Ultra-Wideband Systems **Antenna-Circuit Interactions** 4 4 Load Original "Digitized" 0.9 0.8 0.7 ~3-bit amplitude resolution Radiated with 150-picosecond sampling **EM** Field Outpu 0.4 0.3 \overline{V}_{Rx} 0.2 E. 0.1 100 150 200 250 300 350 400 450 500 0 Gen 2 Time sample Freq, Hz Time, s x 10⁹ Time, s x 10⁻⁹ x 10⁻⁹ Anatoliy Boryssenko, Dan Schaubert UC Berkeley BWRC **UMass Antenna Lab USC UltRa Lab**

UWB Signal Synthesizer

AP9950 and BX4120 UWB Ultra Wideband Signal Generator, Ando Electric Co., Ltd, Yokohama, Japan.

Shusaku Shimada demonstrating equipment at the UltRa Lab, July 30 - August 3, 2003.

UltRa Lab

UWBST & IWUWBS 2004

Time Resolution and Ranging

Ranging Algorithms

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

945

950

1 ns

(time)

955

960

965 Nanoseconds

Where is the beginning of the first return? Is the line-ofsight blocked?

Joon-Yong Lee

R. A. Scholtz

University of Southern California

UltRa Lab

975

980

970

1 foot

(space)

Test Site (Basement, EEB, USC)

receiver positions

Measured Signals

R. A. Scholtz

University of Southern California

Diffusion Models

Thresholding Effects

Joon-Yong Lee

R. A. Scholtz

University of Southern California

Statistics of δ and ρ

Differential delay between direct and strongest path signals when these signals are distinct.

Amplitude ratio of direct-path signal to strongest path signal when these signals are distinct.

R. A. Scholtz

University of Southern California

Test Site (Basement, EEB, USC)

receiver positions

Ranging Algorithm Performance

UWBST & IWUWBS 2004

Acquisition

Eric Homier

R. A. Scholtz

University of Southern California

Two Types of Serial Searches

Bit Reversal Search: The linear search indices are 'bit reversed'. For $N = 2^4$ the indices 0000, 0001, 0010, ..., 1110, 1111 are bit reversed to yield the search order: 0000, 1000, 0100, ..., 0111, 1111

Bit-Reversal Serial Search

Single-User Frame Acquisition

The terminating bins for the office environment (cargo ship) are approximately consecutive over 100 nsec (2000 nsec) so that K/N= 100/1000 = 0.1 (2000/4000 = 0.5)

S = mean number of bins searched to achieve acquisition

R. A. Scholtz

University of Southern California

UWBST & IWUWBS 2004

Interference Handling

Interference in UWB Receiver

R. A. Scholtz

University of Southern California

A Hypothetical Situation

A Performance Comparison

Problem: F and I not known a priori.

R. A. Scholtz

University of Southern California

Frequency Channelized ADC

R. A. Scholtz

University of Southern California

$$E_{\rm b}/N_{\rm o}$$
 Adjustment II

University of Southern California

UWB Poll Respondents

Respondents	Pac.	Europe	N. Am.	other	Total
Faculty	9	5	14		28
Government	8		3		11
Industry	4	2	8	1	15
Student	2		16	2	20
(anonymous)				1	1
Total	23	7	41	4	75

April 28, 2004

R. A. Scholtz

University of Southern California

UWB Performance Challenges

Hardware Challenge Checklist

For CMOS/SiGe full-band implementation in the 3.1-10.6 GHz band:

- 5.6 High-quality antenna (full-band)
- 5.3 LNA design (full-band)
- 5.6 Transmitter (full-band)
- 3.9 All-digital receiver (full-band)
- 5.6 Hybrid receiver (analog correlation)
- 6.1 500 MHz all-digital receiver

Scoring: 10 = easy 6 = possible now with effort 3 = may be available in 5 years 1 = impossible

R. A. Scholtz

University of Southern California

UWB Indoor Application Checklist

(viable business applications in the next 3 years)

6.9	position location
6.3	imaging through materials
5.6	intrusion alarms
6.7	personal area networks
6.0	radio frequency tags

Score it: 10 = a sure money maker 6 = competitive in the marketplace 1 = a good way to lose money

R. A. Scholtz

University of Southern California

DS-Impulse or OFDM?

Which is the better modulation for UWB communiucations in the 3.1-10.6 GHz band?

DS Impulse

44%

QuickTime™ and a F (Uncompressed) decompressor are needed to see this picture. OFDM 56%

UltRa Lab

For More Information ...

See the UltRa Lab web site at http://ultra.usc.edu/New_Site/ or http://click.usc.edu/New_Site/

